Diseño de un equipo de electrodiálisis inversa para su aplicación en esquemas híbridos de desalinización de agua de mar.

dc.contributor.advisorOsorio Arias, Andrés Fernando
dc.contributor.authorRoldan Carvajal, Mateo
dc.contributor.researchgroupOCEANICOS - Grupo de Oceanografía e Ingeniería Costera de la Universidad Nacionalspa
dc.contributor.researchgroupGrupo de Ingenieria Electroquímica - GRIEQUIspa
dc.date.accessioned2021-10-13T16:29:42Z
dc.date.available2021-10-13T16:29:42Z
dc.date.issued2020
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEn esta tesis se presenta un estudio del diseño de un equipo de Electrodiálisis Inversa (RED) para la recuperación de energía de la salmuera resultante de la desalinización de agua de mar. Para ello, se discuten modelos termodinámicos usados en el cálculo teórico de la energía disponible en un gradiente salino, y se plantea un modelo multiescala que considera fenómenos propios de una celda y de la interacción entre varias celdas, como corrientes parásitas y caídas de presión, lo cual es un acople novedoso en el modelamiento de RED. El modelo se apoya en dinámica de fluidos computacional para la estimación de caídas de presión en ramificaciones y combinaciones de flujo. Se encontró que los cálculos termodinámicos se pueden hacer más rigurosos estimando adecuadamente las moles del solvente y los coeficientes de actividad; por otro lado, la comparación del modelo multiescala con diferentes experimentaciones reportadas en la literatura indica que el modelo predice satisfactoriamente la potencia bruta, pero subestima las pérdidas por bombeo y, por ende, las potencia neta. Se recomienda mayor estudio en la estimación de las caídas de presión en RED. Tanto el modelo termodinámico como el multiescala se usaron en un estudio paramétrico de 18 combinaciones para un equipo operando a condiciones típicas de RED con soluciones de 171 y 1000 mol.m-3 (salmuera de desalinización). Los resultados sugieren que un equipo de 500 celdas con 7 ductos (de cada solución) de 6.35x10-3 m de diámetro y con espaciadores de 330x10-6 m de espesor, entregan mayor densidad de potencia neta que equipos con combinaciones de diámetros mayores o empaques más delgados. Los resultados de este estudio paramétrico deben ser validados experimentalmente. (Texto tomado de la fuente)spa
dc.description.abstractThis thesis addresses the design of a Reverse Electrodialysis stack for its application in the recovery of energy from the brine resulting in seawater desalination. Thermodynamic models for the theoretical calculations of the available energy in a Salinity gradient are discussed, also, a multi-scale model considering unitary cell and overall stack phenomena, such as parasitic currents and pressure drop, is proposed. The coupling of these three approaches: unitary cell, parasitic currents, and pressure drop in the same model is a novelty in the RED field. The model uses computational fluid dynamics for the estimation of pressure drops associated to flow branching and combination. It was found that thermodynamics calculation might be more accurate by the proper estimation of the solvent moles and the activity coefficients; on the other hand, the comparison of the multi-scale model with some experimentation reported on literature depicts that the model predicts gross power correctly, however pressure drops are underestimated, consequently, the net power is overestimated. Deeper research in RED pressure drops is recommended. Both, the thermodynamic and multi-scale models were used in a parametric study of 18 different configurations for a RED stack operating at typical conditions with NaCl solutions of 171 and 1000 mol.m-3 (desalination brine). The results suggest that a higher net power density can be achieved with a stack with 500 cells, 7 ducts (of each type of solution) with 6.35x10-3 m diameter, and spacers with 330x10-6 m thickness, than with stacks with higher diameters and thinner spacers. The results of this parametric study still must be validated experimentally.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.methodsPlanteamiento de modelo multiescala validado con datos experimentales en la literatura.spa
dc.description.notesLa presente tesis se realizó en el marco de un convenio de cooperación entre la Facultad de Minas de la Universidad Nacional de Colombia, Sede Medellín y el Centro Mexicano de Innovación en Energía del Océano (CEMIE-O). En esta, se presenta un modelo para diseñar un equipo de electrodiálisis inversa, la cual probó para condiciones de sistemas híbridos con desalinización de agua de mar.spa
dc.description.researchareaEnergía del Gradiente Salinospa
dc.description.sponsorshipCentro Mexicano de Innovación en Energía del Océano (CEMIE-O)spa
dc.format.extentxi, 160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80539
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesOrganización de Naciones Unidas, “Transformar nuestro mundo: Agenda 2030 Para El Desarrollo Sostenible,” Nueva York, 2015.spa
dc.relation.referencesU.S Energy Information Administration, “International Energy Outlook 2019 with projections to 2050.”spa
dc.relation.referencesOrganización de Naciones Unidas, “Energía asequible y no contaminante - Desarrollo Sostenible.” [Online]. Available:spa
dc.relation.referencesS. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–303, Aug. 2012.spa
dc.relation.referencesOrganización de Naciones Unidas, “Agua y saneamiento - Desarrollo Sostenible.” [Online]. Available: https://www.un.org/sustainabledevelopment/es/water-and-sanitation/. [Accessed: 08-Nov-2019].spa
dc.relation.referencesS. N. Gosling and N. W. Arnell, “A global assessment of the impact of climate change on water scarcity,” Clim. Change, vol. 134, no. 3, pp. 371–385, Feb. 2016.spa
dc.relation.referencesJ. Schewe et al., “Multimodel assessment of water scarcity under climate change,” Proc. Natl. Acad. Sci., vol. 111, no. 9, pp. 3245–3250, Mar. 2014.spa
dc.relation.referencesG. McGranahan, D. Balk, and B. Anderson, “The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones,” Environ. Urban., vol. 19, no. 1, pp. 17–37, Apr. 2007.spa
dc.relation.referencesB. Neumann, A. T. Vafeidis, J. Zimmermann, and R. J. Nicholls, “Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment,” PLoS One, vol. 10, no. 3, 2015.spa
dc.relation.referencesC. Small and R. J. Nicholls, “A global analysis of human settlement in coastal zones,” J. Coast. Res., vol. 19, no. 3, pp. 584–599, 2003.spa
dc.relation.referencesE. Jones, M. Qadir, M. T. H. van Vliet, V. Smakhtin, and S. mu Kang, “The state of desalination and brine production: A global outlook,” Sci. Total Environ., vol. 657, pp. 1343–1356, 2019.spa
dc.relation.referencesDepartamento Nacional de Planeación, “Clean water and sanitation - The 2030 Agenda in Colombia - Sustainable Development Goals,” 2018. [Online]. Available: https://www.ods.gov.co/en/goals/clean-water-and-sanitation. [Accessed: 09-Mar-2020].spa
dc.relation.referencesA. F. Osorio, S. Ortega, and S. Arango-Aramburo, “Assessment of the marine power potential in Colombia,” Renew. Sustain. Energy Rev., vol. 53, pp. 966–977, Jan. 2016.spa
dc.relation.referencesE. Brauns, “An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy,” Desalin. Water Treat., vol. 13, no. 1–3, pp. 53–62, Jan. 2010.spa
dc.relation.referencesM. Vanoppen, G. Blandin, S. Derese, P. Le Clech, J. Post, and A. R. D. Verliefde, “Salinity gradient power and desalination,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 281–313.spa
dc.relation.referencesF. La Mantia, D. Brogioli, and M. Pasta, “Capacitive mixing and mixing entropy battery,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 181–218.spa
dc.relation.referencesN. Y. Yip, D. Brogioli, H. V. M. Hamelers, and K. Nijmeijer, “Salinity gradients for sustainable energy: Primer, progress, and prospects,” Environ. Sci. Technol., vol. 50, no. 22, pp. 12072–12094, 2016.spa
dc.relation.referencesR. A. Tufa et al., “Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage,” Appl. Energy, vol. 225, no. May, pp. 290–331, Sep. 2018.spa
dc.relation.referencesG. Micale, A. Cipollina, and A. Tamburini, “Salinity gradient energy,” in Sustainable Energy from Salinity Gradients, First., Elsevier, 2016, pp. 1–17.spa
dc.relation.referencesS. Vallejo-Castaño, “GENERACIÓN DE ENERGÍA A PARTIR DEL GRADIENTE SALINO ENTRE EL AGUA DE RÍO Y DE MAR UTILIZANDO UNA CELDA DE ELECTRODIALISIS INVERSA,” Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesA. Cipollina et al., “Reverse electrodialysis: Applications,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 135–180.spa
dc.relation.referencesE. Güler, R. Elizen, D. a. Vermaas, M. Saakes, and K. Nijmeijer, “Performance-determining membrane properties in reverse electrodialysis,” J. Memb. Sci., vol. 446, pp. 266–276, 2013.spa
dc.relation.referencesS. Pawlowski, J. G. Crespo, and S. Velizarov, “Profiled ion exchange membranes: A comprehensible review,” Int. J. Mol. Sci., vol. 20, no. 1, 2019.spa
dc.relation.referencesJ. Veerman, J. W. Post, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model,” J. Memb. Sci., vol. 310, no. 1–2, pp. 418–430, Mar. 2008.spa
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, I. D. L. Bogle, and G. Micale, “A simulation tool for analysis and design of reverse electrodialysis using concentrated brines,” Chem. Eng. Res. Des., vol. 93, no. May, pp. 441–456, 2015.spa
dc.relation.referencesD. A. Vermaas, E. Guler, M. Saakes, and K. Nijmeijer, “Theoretical power density from salinity gradients using reverse electrodialysis,” Energy Procedia, vol. 20, pp. 170–184, 2012.spa
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis,” J. Memb. Sci., vol. 468, pp. 133–148, 2014.spa
dc.relation.referencesS. Vallejo, “Energy generation from salinity gradients through Reverse Electrodialysis and Capacitive Reverse Electrodialysis,” Universidad Nacional de Colombia - Sede Medellín, 2017.spa
dc.relation.referencesS. Vallejo-Castaño and C. Ignacio Sánchez-Sáenz, “Design and optimization of a reverse electrodialysis stack for energy generation through salinity gradients •,” Rev. DYNA, vol. 84, no. 202, pp. 84–91, 2017.spa
dc.relation.referencesM. Chen et al., “An internal-integrated RED/ED system for energy-saving seawater desalination: A model study,” Energy, vol. 170, pp. 139–148, Mar. 2019.spa
dc.relation.referencesR. E. Pattle, “Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile,” Nature, vol. 174, no. 4431, pp. 660–660, 1954.spa
dc.relation.referencesO. Alvarez-Silva, A. F. Osorio, and C. Winter, “Practical global salinity gradient energy potential,” Renew. Sustain. Energy Rev., vol. 60, pp. 1387–1395, 2016.spa
dc.relation.referencesO. Alvarez-Silva, C. Winter, and A. F. Osorio, “Salinity Gradient Energy at River Mouths,” Environ. Sci. Technol. Lett., vol. 1, no. 10, pp. 410–415, Oct. 2014.spa
dc.relation.referencesInternational Energy Agency, “Total Electricity Generation,” IEA Energy Atlas, 2017. [Online]. Available: http://energyatlas.iea.org/#!/tellmap/-1118783123. [Accessed: 12-Mar-2020].spa
dc.relation.referencesO. Alvarez-Silva and A. F. Osorio, “Salinity gradient energy potential in Colombia considering site specific constraints,” Renew. Energy, vol. 74, pp. 737–748, Feb. 2015.spa
dc.relation.referencesF. Helfer and C. Lemckert, “The power of salinity gradients : An Australian example,” Renew. Sustain. Energy Rev., vol. 50, pp. 1–16, 2015.spa
dc.relation.referencesO. Reyes-mendoza, O. Alvarez-silva, X. Chiappa-carrara, and C. Enriquez, “Variability of the thermohaline structure of a coastal hypersaline lagoon and the implications for salinity gradient energy harvesting,” Sustain. Energy Technol. Assessments, vol. 38, no. January, p. 100645, 2020.spa
dc.relation.referencesJ.-Y. Nam et al., “Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent,” Water Res., vol. 148, pp. 261–271, Jan. 2019.spa
dc.relation.referencesG. Amy et al., “Membrane-based seawater desalination: Present and future prospects,” Desalination, vol. 401, pp. 16–21, 2017.spa
dc.relation.referencesD. a. Vermaas, M. Saakes, and K. Nijmeijer, “Doubled power density from salinity gradients at reduced intermembrane distance,” Environ. Sci. Technol., vol. 45, no. 16, pp. 7089–7095, 2011.spa
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: Evaluation of suitable electrode systems,” J. Appl. Electrochem., vol. 40, no. 8, pp. 1461–1474, 2010.spa
dc.relation.referencesF. Giacalone, M. Papapetrou, G. Kosmadakis, A. Tamburini, G. Micale, and A. Cipollina, “Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment,” Energy, vol. 181, pp. 532–547, 2019.spa
dc.relation.referencesJ. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density,” J. Memb. Sci., vol. 343, no. 1, pp. 7–15, 2009.spa
dc.relation.referencesJ. Moreno, V. Díez, M. Saakes, and K. Nijmeijer, “Mitigation of the effects of multivalent ion transport in reverse electrodialysis,” J. Memb. Sci., vol. 550, no. December 2017, pp. 155–162, 2018.spa
dc.relation.referencesJ. Veerman and D. A. Vermaas, “Reverse electrodialysis: Fundamentals,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 77–133.spa
dc.relation.referencesS. Pawlowski, J. G. Crespo, and S. Velizarov, “Pressure drop in reverse electrodialysis: Experimental and modeling studies for stacks with variable number of cell pairs,” J. Memb. Sci., vol. 462, pp. 96–111, 2014.spa
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water,” J. Memb. Sci., vol. 327, no. 1–2, pp. 136–144, Feb. 2009.spa
dc.relation.referencesS. Pawlowski, V. Geraldes, J. G. Crespo, and S. Velizarov, “Computational fluid dynamics (CFD) assisted analysis of profiled membranes performance in reverse electrodialysis,” J. Memb. Sci., vol. 502, pp. 179–190, 2016.spa
dc.relation.referencesL. Gurreri, G. Battaglia, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “Multi-physical modelling of reverse electrodialysis,” Desalination, vol. 423, no. August, pp. 52–64, 2017.spa
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, W. van Baak, and G. Micale, “Modelling the Reverse ElectroDialysis process with seawater and concentrated brines,” Desalin. Water Treat., vol. 49, no. 1–3, pp. 404–424, 2012.spa
dc.relation.referencesO. Scialdone, A. Albanese, A. D’Angelo, A. Galia, and C. Guarisco, “Investigation of electrode material – redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pairs,” J. Electroanal. Chem., vol. 704, pp. 1–9, Sep. 2013.spa
dc.relation.referencesS.-Y. Lee, D.-J. Lee, K.-H. Yeon, W.-G. Kim, M.-S. Kang, and J.-S. Park, “A Cyclic Voltammetric Study of Electrodes for Reverse Electrodialysis,” J. Korean Electrochem. Soc., vol. 16, no. 3, pp. 145–150, Aug. 2013.spa
dc.relation.referencesO. Scialdone, C. Guarisco, S. Grispo, a D. Angelo, and a Galia, “Investigation of electrode material - Redox couple systems for reverse electrodialysis processes. Part I: Iron redox couples,” J. Electroanal. Chem., vol. 681, pp. 66–75, 2012.spa
dc.relation.referencesJ. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, “Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system,” Environ. Sci. Technol., vol. 42, no. 15, pp. 5785–5790, 2008.spa
dc.relation.referencesR. Audinos, “Electrodialyse inverse. Etude de l’energie electrique obtenue a partir de deux solutions de salinites differentes,” J. Power Sources, vol. 10, no. 3, pp. 203–217, 1983.spa
dc.relation.referencesD. A. Vermaas, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers, and K. Nijmeijer, “Clean energy generation using capacitive electrodes in reverse electrodialysis,” Energy Environ. Sci., vol. 6, no. 2, pp. 643–651, 2013.spa
dc.relation.referencesA. Daniilidis, D. A. Vermaas, R. Herber, and K. Nijmeijer, “Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis,” Renew. Energy, 2014.spa
dc.relation.referencesP. Długołęcki, P. Ogonowski, S. J. Metz, M. Saakes, K. Nijmeijer, and M. Wessling, “On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport,” J. Memb. Sci., vol. 349, no. 1–2, pp. 369–379, Mar. 2010.spa
dc.relation.referencesM. L. La Cerva et al., “Coupling CFD with a one-dimensional model to predict the performance of reverse electrodialysis stacks,” J. Memb. Sci., vol. 541, no. May, pp. 595–610, 2017.spa
dc.relation.referencesR. Long, B. Li, Z. Liu, and W. Liu, “Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization,” Energy, vol. 151, pp. 1–10, 2018.spa
dc.relation.referencesF. Giacalone, P. Catrini, A. Tamburini, A. Cipollina, A. Piacentino, and G. Micale, “Exergy analysis of reverse electrodialysis,” Energy Convers. Manag., vol. 164, no. March, pp. 588–602, 2018.spa
dc.relation.referencesM. Tedesco et al., “Reverse electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up,” J. Memb. Sci., vol. 492, pp. 9–20, 2015.spa
dc.relation.referencesD. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, “Influence of multivalent ions on renewable energy generation in reverse electrodialysis,” Energy Environ. Sci., vol. 7, no. 4, pp. 1434–1445, 2014.spa
dc.relation.referencesJ. W. Post, H. V. M. Hamelers, and C. J. N. Buisman, “Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system,” J. Memb. Sci., vol. 330, no. 1–2, pp. 65–72, 2009.spa
dc.relation.referencesE. Fontananova et al., “Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion,” J. Power Sources, vol. 340, pp. 282–293, 2017.spa
dc.relation.referencesA. H. Avci, R. A. Tufa, E. Fontananova, G. Di Profio, and E. Curcio, “Reverse Electrodialysis for energy production from natural river water and seawater,” Energy, vol. 165, pp. 512–521, Dec. 2018.spa
dc.relation.referencesD. a. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, “Influence of multivalent ions on renewable energy generation in reverse electrodialysis,” Energy Environ. Sci., vol. 7, no. 4, pp. 1434–1445, 2014.spa
dc.relation.referencesJ. Moreno, N. de Hart, M. Saakes, and K. Nijmeijer, “CO2 saturated water as two-phase flow for fouling control in reverse electrodialysis,” Water Res., vol. 125, pp. 23–31, 2017.spa
dc.relation.referencesT. Rijnaarts, N. T. Shenkute, J. A. Wood, W. M. De Vos, and K. Nijmeijer, “Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis,” ACS Sustain. Chem. Eng., vol. 6, no. 5, pp. 7035–7041, 2018.spa
dc.relation.referencesD. a. Vermaas, D. Kunteng, M. Saakes, and K. Nijmeijer, “Fouling in reverse electrodialysis under natural conditions,” Water Res., vol. 47, no. 3, pp. 1289–1298, 2013.spa
dc.relation.referencesD. A. Vermaas, D. Kunteng, J. Veerman, M. Saakes, and K. Nijmeijer, “Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis.,” Environ. Sci. Technol., vol. 48, no. 5, pp. 3065–73, Mar. 2014.spa
dc.relation.referencesM. Turek and B. Bandura, “Renewable energy by reverse electrodialysis,” Desalination, vol. 205, no. 1–3, pp. 67–74, 2007.spa
dc.relation.referencesM. Tedesco, C. Scalici, D. Vaccari, A. Cipollina, A. Tamburini, and G. Micale, “Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines.,” J. Memb. Sci., vol. 500, pp. 33–45, Feb. 2016.spa
dc.relation.referencesM. Tedesco, A. Cipollina, A. Tamburini, and G. Micale, “Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines,” J. Memb. Sci., vol. 522, pp. 226–236, 2016.spa
dc.relation.referencesREDStack, “Blue Energy Demo Katwijk - Intentieverklaring niet verlengd,” Nieuws, 2020. [Online]. Available: https://www.redstack.nl/nl/nieuws/95/blue-energy-demo-katwijk--intentieverklaring-niet-verlengd. [Accessed: 18-Mar-2020].spa
dc.relation.referencesOcean Energy Systems, “Annual Report Annual Report - An overview of Ocean Energy Activities,” 2019.spa
dc.relation.referencesF. Helfer, C. Lemckert, and Y. G. Anissimov, “Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends - A review,” J. Memb. Sci., vol. 453, pp. 337–358, 2014.spa
dc.relation.referencesA. P. Straub, A. Deshmukh, and M. Elimelech, “Pressure-retarded osmosis for power generation from salinity gradients: is it viable?,” Energy Environ. Sci., vol. 9, no. 1, pp. 31–48, 2016.spa
dc.relation.referencesN. Y. Yip and M. Elimelech, “Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis,” Environ. Sci. Technol., vol. 46, no. 9, pp. 5230–5239, 2012.spa
dc.relation.referencesJ. M. Salamanca, O. Álvarez-Silva, and F. Tadeo, “Potential and analysis of an osmotic power plant in the Magdalena River using experimental field-data,” Energy, vol. 180, pp. 548–555, 2019.spa
dc.relation.referencesStatkraft, “Crown Princess of Norway to open the world’s first osmotic power plant,” Pressrelease, 2009. [Online]. Available: https://www.statkraft.com/media/press-releases/Press-releases-archive/2009/crown-princess-mette-marit-to-open-the-worlds-first-osmotic-power-plant/. [Accessed: 13-Oct-2019].spa
dc.relation.referencesS. Zhang, G. Han, X. Li, C. Wan, and T.-S. Chung, “Pressure retarded osmosis: Fundamentals,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 19–53.spa
dc.relation.referencesStatkraft, “Statkraft halts osmotic power investments,” news, 2013. [Online]. Available: https://www.statkraft.com/media/news/News-archive/2013/Statkraft-halts-osmotic-power-investments. [Accessed: 13-Sep-2019].spa
dc.relation.referencesM. Kurihara, H. Sakai, A. Tanioka, and H. Tomioka, “Role of pressure-retarded osmosis (PRO) in the mega-ton water project,” Desalin. Water Treat., vol. 57, no. 55, pp. 26518–26528, Nov. 2016.spa
dc.relation.referencesM. Kurihara and H. Takeuchi, “SWRO-PRO System in ‘ Mega-ton Water System ’ for Energy Reduction and Low Environmental Impact,” vol. 1, pp. 1–15, 2018.spa
dc.relation.referencesA. Achilli and K. L. Hickenbottom, “Pressure retarded osmosis: Applications,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 55–75.spa
dc.relation.referencesD. Brogioli, “Extracting Renewable Energy from a Salinity Difference Using a Capacitor,” Phys. Rev. Lett., vol. 103, no. 5, p. 058501, Jul. 2009.spa
dc.relation.referencesB. B. Sales, M. Saakes, J. W. Post, C. J. N. Buisman, P. M. Biesheuvel, and H. V. M. Hamelers, “Direct Power Production from a Water Salinity Difference in a Membrane-Modified Supercapacitor Flow Cell,” Environ. Sci. Technol., vol. 44, no. 14, pp. 5661–5665, Jul. 2010.spa
dc.relation.referencesF. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, “Batteries for Efficient Energy Extraction from a Water Salinity Difference,” Nano Lett., vol. 11, no. 4, pp. 1810–1813, Apr. 2011.spa
dc.relation.referencesM. Papapetrou and K. Kumpavat, “Environmental aspects and economics of salinity gradient power (SGP) processes,” in Sustainable Energy from Salinity Gradients, Elsevier, 2016, pp. 315–335.spa
dc.relation.referencesE. J. Marín Coria et al., Energía del Gradiente Salino, 1st ed. CEMIE-Océano: Universidad Autónoma de Campeche, 2020.spa
dc.relation.referencesC. Seyfried, H. Palko, and L. Dubbs, “Potential local environmental impacts of salinity gradient energy: A review,” Renew. Sustain. Energy Rev., vol. 102, pp. 111–120, Mar. 2019.spa
dc.relation.referencesR. C. Newell, L. J. Seiderer, N. M. Simpson, and J. E. Robinson, “Impacts of Marine Aggregate Dredging on Benthic Macrofauna off the South Coast of the United Kingdom,” J. Coast. Res., vol. 201, no. 201, pp. 115–125, 2004.spa
dc.relation.referencesO. Alvarez-Silva, A. Y. Maturana, C. A. Pacheco-Bustos, and A. F. Osorio, “Effects of water pretreatment on the extractable salinity gradient energy at river mouths: the case of Magdalena River, Caribbean Sea,” J. Ocean Eng. Mar. Energy, vol. 5, no. 3, pp. 227–240, Aug. 2019.spa
dc.relation.referencesT. Höpner and J. Windelberg, “Elements of environmental impact studies on coastal desalination plants,” Desalination, vol. 108, no. 1–3, pp. 11–18, Feb. 1997.spa
dc.relation.referencesC. Fritzmann, J. Lowenberg, T. Wintgens, and T. Melin, “State-of-the-art of reverse osmosis desalination,” Desalination, vol. 216, no. 1–3, pp. 1–76, Oct. 2007.spa
dc.relation.referencesJ. Veerman, “Reverse Electrodialysis design and optimization by modeling and experimentation,” University of Groningen, Groningen, 2010.spa
dc.relation.referencesJ. Moreno, S. Grasman, R. Van Engelen, and K. Nijmeijer, “Upscaling Reverse Electrodialysis,” Environ. Sci. Technol., vol. 52, no. 18, pp. 10856–10863, 2018.spa
dc.relation.referencesP. S. Z. Rogers and K. S. Pitzer, “Volumetric Properties of Aqueous Sodium Chloride Solutions,” J. Phys. Chem. Ref. Data, vol. 11, no. 1, pp. 15–81, 1982.spa
dc.relation.referencesJ. W. Post et al., “Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis,” J. Memb. Sci., vol. 288, pp. 218–230, 2007.spa
dc.relation.referencesK. S. Pitzer, J. C. Peiper, and R. H. Busey, “Thermodynamic Properties of Aqueous Sodium Chloride Solutions,” J. Phys. Chem. Ref. Data, vol. 13, no. 1, pp. 1–102, Jan. 1984.spa
dc.relation.referencesR. A. Tufa, E. Curcio, E. Brauns, W. van Baak, E. Fontananova, and G. Di Profio, “Membrane Distillation and Reverse Electrodialysis for Near-Zero Liquid Discharge and low energy seawater desalination,” J. Memb. Sci., vol. 496, pp. 325–333, 2015.spa
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Reverse electrodialysis: A validated process model for design and optimization,” Chem. Eng. J., vol. 166, pp. 256–268, 2011.spa
dc.relation.referencesR. Long, B. Li, Z. Liu, and W. Liu, “Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization,” Energy, vol. 158, pp. 427–436, 2018.spa
dc.relation.referencesR. Ortiz-Imedio, L. Gomez-Coma, M. Fallanza, A. Ortiz, R. Ibañez, and I. Ortiz, “Comparative performance of Salinity Gradient Power-Reverse Electrodialysis under different operating conditions,” Desalination, vol. 457, no. December 2018, pp. 8–21, May 2019.spa
dc.relation.referencesM. Tedesco et al., “Analysis and simulation of scale-up potentials in reverse electrodialysis,” Desalin. Water Treat., vol. 55, no. 12, pp. 3391–3403, 2015.spa
dc.relation.referencesJ. G. Hong, W. Zhang, J. Luo, and Y. Chen, “Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions,” Appl. Energy, vol. 110, pp. 244–251, Oct. 2013.spa
dc.relation.referencesJ. G. Hong, W. Zhang, J. Luo, and Y. Chen, “Corrigendum to ‘Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions’ [Appl. Energy 110 (2013) 244–251],” Appl. Energy, vol. 129, pp. 398–399, Sep. 2014.spa
dc.relation.referencesL. Gómez-Coma et al., “Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis,” J. Memb. Sci., vol. 592, p. 117385, Dec. 2019.spa
dc.relation.referencesI. Rubinstein, J. Pretz, and E. Staude, “Open circuit voltage in a reverse electrodialysis cell,” Phys. Chem. Chem. Phys., vol. 3, no. 9, pp. 1666–1667, 2001.spa
dc.relation.referencesA. Culcasi et al., “Ionic shortcut currents via manifolds in reverse electrodialysis stacks,” Desalination, vol. 485, p. 114450, Jul. 2020.spa
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, and G. Micale, “CFD analysis of the fluid flow behavior in a reverse electrodialysis stack,” Desalin. Water Treat., vol. 48, no. 1–3, pp. 390–403, 2012.spa
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study,” J. Memb. Sci., vol. 497, pp. 300–317, 2016.spa
dc.relation.referencesA. Tamburini, G. La Barbera, A. Cipollina, M. Ciofalo, and G. Micale, “CFD simulation of channels for direct and reverse electrodialysis,” Desalin. Water Treat., vol. 48, pp. 370–389, 2012.spa
dc.relation.referencesL. Gurreri, A. Tamburini, A. Cipollina, G. Micale, and M. Ciofalo, “CFD simulation of mass transfer phenomena in spacer filled channels for reverse electrodialysis applications,” Chem. Eng. Trans., vol. 32, no. 2010, pp. 1879–1884, 2013.spa
dc.relation.referencesL. Gurreri, M. Ciofalo, A. Cipollina, A. Tamburini, W. Van Baak, and G. Micale, “CFD modelling of profiled-membrane channels for reverse electrodialysis,” Desalin. Water Treat., vol. 55, no. 12, pp. 3404–3423, 2015.spa
dc.relation.referencesJ. Jang, Y. Kang, J. H. Han, K. Jang, C. M. Kim, and I. S. Kim, “Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes,” Desalination, vol. 491, no. May, p. 114540, 2020.spa
dc.relation.referencesJ. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, “Electrical Power from Sea and River Water by Reverse Electrodialysis: A First Step from the Laboratory to a Real Power Plant,” Environ. Sci. Technol., vol. 44, no. 23, pp. 9207–9212, Dec. 2010.spa
dc.relation.referencesD. A. Vermaas, J. Veerman, N. Y. Yip, M. Elimelech, M. Saakes, and K. Nijmeijer, “High efficiency in energy generation from salinity gradients with reverse electrodialysis,” ACS Sustain. Chem. Eng., vol. 1, no. 10, pp. 1295–1302, 2013.spa
dc.relation.referencesC. Simões, D. Pintossi, M. Saakes, Z. Borneman, W. Brilman, and K. Nijmeijer, “Electrode segmentation in reverse electrodialysis: Improved power and energy efficiency,” Desalination, vol. 492, no. July, p. 114604, 2020.spa
dc.relation.referencesP. Trinidad, C. Ponce de León, and F. C. Walsh, “The application of flow dispersion models to the FM01-LC laboratory filter-press reactor,” Electrochim. Acta, vol. 52, no. 2, pp. 604–613, 2006.spa
dc.relation.referencesE. H. Hossen et al., “Temporal variation of power production via reverse electrodialysis using coastal North Carolina waters and its correlation to temperature and conductivity,” Desalination, vol. 491, p. 114562, Oct. 2020.spa
dc.relation.referencesH. Strathmann, Ion-Exchange Membrane Separation Processes. Elsevier Science, 2004.spa
dc.relation.referencesF. Coeuret, Introducción a la ingeniería electroquímica, En español. Barcelona: Reverté, 1992.spa
dc.relation.referencesJ. D. Seader, E. J. Henley, and D. K. Roper, Separation Process Principles, 3rd Edition, Third. John Wiley Incorporated, 2010.spa
dc.relation.referencesL. Han, S. Galier, and H. Roux-de Balmann, “Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution,” Desalination, vol. 373, pp. 38–46, Oct. 2015.spa
dc.relation.referencesV. M. Ortiz-Martínez et al., “A comprehensive study on the effects of operation variables on reverse electrodialysis performance,” Desalination, vol. 482, no. November 2019, p. 114389, 2020.spa
dc.relation.referencesC. Tristán, M. Fallanza, R. Ibáñez, and I. Ortiz, “Recovery of salinity gradient energy in desalination plants by reverse electrodialysis,” Desalination, vol. 496, no. August, p. 114699, Dec. 2020.spa
dc.relation.referencesY. A. Cengel and J. M. Cimbala, “Flujo en tuberías,” in Mecánica de Fluidos - Fundamentos y Aplicaciones, 1ra Edició., Ciudad de México: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V., 2006, pp. 321–386.spa
dc.relation.referencesF. M. White, “Viscous Flow in Ducts,” in Fluid Mechanics, Eighth., New York: McGraw-Hill, 2015, pp. 339–421.spa
dc.relation.referencesJ. Wang, “Theory of flow distribution in manifolds,” Chem. Eng. J., vol. 168, no. 3, pp. 1331–1345, 2011.spa
dc.relation.referencesW. L. McCabe, J. C. Smith, and P. Harriot, “Flujo de fluidos no compresibles en tuberías y canales de conducción,” in OPERACIONES UNITARIAS EN INGENIERÍA QUÍMICA, Séptima Ed., Ciudad de México: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. de C.V, 2007, p. 130.spa
dc.relation.referencesJ. P. Van Doormaal and G. D. Raithby, “ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS,” Numer. Heat Transf., vol. 7, no. 2, pp. 147–163, Apr. 1984.spa
dc.relation.referencesI. ANSYS, ANSYS Fluent User’s Guide. U.S.A.: ANSYS, Inc., 2013.spa
dc.relation.referencesJiro, “GRABIT, MATLAB Central File Exchange.,” 2016. [Online]. Available: https://la.mathworks.com/matlabcentral/fileexchange/7173-grabit.spa
dc.relation.referencesJ. S. Newman and K. E. Thomas-Alyea, Electrochemical systems, Third. New Jersey: John Wiley & Sons, Inc., 2014.spa
dc.relation.referencesM. Elimelech and W. A. Phillip, “The Future of Seawater Desalination: Energy, Technology, and the Environment,” Science (80-. )., vol. 333, no. 6043, pp. 712–717, Aug. 2011.spa
dc.relation.referencesS. Lee, J. Choi, Y. G. Park, H. Shon, C. H. Ahn, and S. H. Kim, “Hybrid desalination processes for beneficial use of reverse osmosis brine: Current status and future prospects,” Desalination, no. September 2017, pp. 0–1, 2018.spa
dc.relation.references“GMVP opened the SWRO-PRO pilot plant of recovering the salinity gradient energy.” [Online]. Available: https://www.desalination.biz/news/5/GMVP-opened-the-SWRO-PRO-pilot-plant-of-recovering-the-salinity-gradient-energy/8891/. [Accessed: 13-Apr-2018].spa
dc.relation.referencesY. G. Park, K. Chung, I. H. Yeo, W. I. Lee, and T. S. Park, “Development of a SWRO-PRO hybrid desalination system: Pilot plant investigations,” Water Sci. Technol. Water Supply, vol. 18, no. 2, pp. 473–481, 2018.spa
dc.relation.referencesB. J. Feinberg, G. Z. Ramon, and E. M. V. Hoek, “Thermodynamic Analysis of Osmotic Energy Recovery at a Reverse Osmosis Desalination Plant,” Environ. Sci. Technol., vol. 47, no. 6, pp. 2982–2989, 2013.spa
dc.relation.referencesJ. Kim, M. Park, S. A. Snyder, and J. H. Kim, “Reverse osmosis (RO) and pressure retarded osmosis (PRO) hybrid processes: Model-based scenario study,” Desalination, vol. 322, pp. 121–130, 2013.spa
dc.relation.referencesM. Vanoppen, S. Derese, A. Bakelants, and A. Verliefde, “Reduction of reverse osmosis desalination energy demand by osmotic dilution / osmotic energy recovery – a realistic modelling approach,” Desalin. Environ. Clean Water Energy, pp. 23–24, 2014.spa
dc.relation.referencesD. I. Kim, J. Kim, H. K. Shon, and S. Hong, “Pressure retarded osmosis (PRO) for integrating seawater desalination and wastewater reclamation: Energy consumption and fouling,” J. Memb. Sci., vol. 483, pp. 34–41, 2015.spa
dc.relation.referencesW. Li, W. B. Krantz, E. R. Cornelissen, J. W. Post, A. R. D. Verliefde, and C. Y. Tang, “A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management,” Appl. Energy, vol. 104, pp. 592–602, 2013.spa
dc.relation.referencesY. Mei and C. Y. Tang, “Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications,” J. Memb. Sci., vol. 539, no. May, pp. 305–312, 2017.spa
dc.relation.referencesP. J. Fierro and E. K. Nyer, Eds., “Section 13A - Physical Properties of Water,” in The Water Encyclopedia, Third Edit., Boca Ratón: Taylor & Francis Group, 2006, pp. 13–2.spa
dc.relation.referencesM. El Guendouzi, A. Dinane, and A. Mounir, “Water activities, osmotic and activity coefficients in aqueous chloride solutions at T = 298.15 K by the hygrometric method,” J. Chem. Thermodyn., vol. 33, no. 9, pp. 1059–1072, 2001.spa
dc.relation.referencesS. Glasstone, Termodinámica para químicos, Quinta Ed. Madrid: Aguilar, 1970.spa
dc.relation.referencesM. Micari et al., “Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications,” J. Memb. Sci., vol. 551, no. January, pp. 315–325, Apr. 2018.spa
dc.relation.referencesS. S. Islam, R. L. Gupta, and K. Ismail, “Extension of the Falkenhagen-Leist–Kelbg Equation to the Electrical Conductance of Concentrated Aqueous Electrolytes,” J. Chem. Eng. Data, vol. 36, no. 1, pp. 102–104, 1991.spa
dc.relation.referencesJ. Kestin, H. E. Khalifa, and R. J. Correia, “Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150 °C and the pressure range 0.1–35 MPa,” J. Phys. Chem. Ref. Data, vol. 10, no. 1, pp. 71–88, Jan. 1981.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembSaline water conversion - Electrodialysis process
dc.subject.lembConversión de aguas salinas - Proceso por electrodiálisis
dc.subject.proposalEnergía del Gradiente Salinospa
dc.subject.proposalElectrodiálisis Inversaspa
dc.subject.proposalDesalinizaciónspa
dc.subject.proposalIntegración de procesosspa
dc.subject.proposalSalinity Gradient Energyeng
dc.subject.proposalReverse Electrodialysiseng
dc.subject.proposalDesalinationeng
dc.subject.proposalProcess Integrationeng
dc.titleDiseño de un equipo de electrodiálisis inversa para su aplicación en esquemas híbridos de desalinización de agua de mar.spa
dc.title.translatedDesign of a reverse electrodialysis stack for its application on hybrid schemes of seawater desalination.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037631681.2020.pdf
Tamaño:
4.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: