Improvement of digital lensless holographic microscopy for the visualization of biosamples

dc.contributor.advisorGarcia Sucerquia, Jorge Iván
dc.contributor.authorZapata Valencia, Samuel Ignacio
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=om9YndgAAAAJ&hl=enspa
dc.contributor.orcidhttps://orcid.org/0000-0002-0924-3776spa
dc.contributor.orcidZapata-Valencia, Samuel I. [:0000-0002-0924-3776]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Samuel-Zapata-Valenciaspa
dc.contributor.researchgroupOptica y Procesamiento Opto-Digitalspa
dc.date.accessioned2024-05-03T13:26:18Z
dc.date.available2024-05-03T13:26:18Z
dc.date.issued2023
dc.description.abstractDigital Lensless Holographic Microscopy (DLHM) is an imaging technique that has been used to visualize micrometer-sized samples. The simplicity of the required hardware, the adaptability of digital processing, and its label-free attribute have positioned it as an attractive, portable, and cost-effective alternative for observing microscopic biological samples. Despite the simplicity of its implementation, the hardware used to record the digital holograms has limitations that directly affect the visualization of biological samples. In this master’s thesis in Engineering Physics, the identified limitations of the DLHM hardware and their impact on the visualization of micrometer-sized objects are studied. An improvement of those limitations is proposed by implementing opto-numerical methods, which are tested by visualizing biosamples. Given the importance of the Numerical Aperture (NA) for the performance of DLHM, a method for characterizing and validating the NA of propagating beam illuminations is developed. A method for expanding the field of view of the visualized samples is presented. Finally, a multiview method for correcting DLHM in-line holograms is proposed to eliminate illumination artifacts inherited from the illumination source, and also to recover the information of occluded structured samples visualized in DLHM. The results were reported on two manuscripts already published in indexed journals of international circulations and five proceedings or submitted abstracts of presentations at international conferences.eng
dc.description.abstractLa Microscopía Holográfica Digital sin Lentes (DLHM) es una técnica de imagen que ha sido utilizada para la visualización de muestras de tamaño micrométrico. La simplicidad en el hardware requerido, la adaptabilidad en el procesamiento digital y la no necesidad de marcadores la han posicionado como una alternativa atractiva, portable y eficiente en términos de costos para la visualización de muestras biológicas micrométricas. A pesar de la simplicidad en su implementación, los componentes de hardware utilizados para capturar los hologramas digitales tienen limitaciones que afectan directamente la correcta visualización de muestras. En la presente tesis de maestría en Ingeniería Física, se estudian las limitaciones en el hardware de DLHM y su impacto para la visualización de objetos microscópicos. A su vez, se proponen mejoras a estas limitaciones por medio de la implementación de métodos opto-numéricos los cuales son validados por la visualización de muestras biológicas. Dada la importancia de la apertura numérica (NA) para el rendimiento en DLHM, se presenta un método para la caracterización y validación de la NA en haces de luz. Se propone además un método para la expansión del campo de visión de los objetos observados. Finalmente, se propone un método para corregir los hologramas en línea de DLHM con el fin de eliminar artefactos inherentes a la fuente de iluminación y también para recuperar la información de objetos con estructura visualizados en DLHM. Además de esto, adjuntos con esta tesis se encuentran dos manuscritos publicados en revistas indexadas de circulación internacional y 5 resúmenes aprobados o actas de congresos internacionales, donde los resultados de esta tesis fueron presentados. (tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular en Físicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMágister en Ingeniería Físicaspa
dc.format.extent75 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86021
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Físicaspa
dc.relation.referencesJ. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836 (2006).spa
dc.relation.referencesH. Tobon-Maya, S. I. Zapata-Valencia, E. Zora-Guzmán, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope," Appl. Opt. 60, A205 (2021).spa
dc.relation.referencesC. Trujillo, P. Piedrahita-Quintero, and J. Garcia-Sucerquia, "Digital lensless holographic microscopy: numerical simulation and reconstruction with ImageJ," Appl. Opt. 59, 5788 (2020).spa
dc.relation.referencesJ. F. Restrepo and J. Garcia-Sucerquia, "Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform," Appl. Opt. 49, 6430–6435 (2010).spa
dc.relation.referencesC. Buitrago-Duque and J. Garcia-Sucerquia, "Non-approximated Rayleigh–Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields," Appl. Opt. 58, G11 (2019).spa
dc.relation.referencesP. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy, Springer Series in Surface Sciences (Springer Berlin Heidelberg, 2011), Vol. 46.spa
dc.relation.referencesW. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. 98, 11301–11305 (2002).spa
dc.relation.referencesB. Ghosh and K. Agarwal, "Viewing life without labels under optical microscopes," Commun. Biol. 6, (2023).spa
dc.relation.referencesJ. A. Picazo-Bueno, K. Trindade, M. Sanz, and V. Micó, "Design, Calibration, and Application of a Robust, Cost-Effective, and High-Resolution Lensless Holographic Microscope," Sensors 22, 553 (2022).spa
dc.relation.referencesM. Sanz, J. A. Picazo-Bueno, J. García, and V. Micó, "Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm," Opt. Express (2015).spa
dc.relation.referencesH. Tobón-Maya, A. Gómez-Ramírez, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Adapting a Blu-ray optical pickup unit as a point source for digital lensless holographic microscopy," Appl. Opt. 62, D39 (2023).spa
dc.relation.referencesC. Buitrago-Duque, B. Patiño-Jurado, and J. Garcia-Sucerquia, "Robust and compact digital Lensless Holographic microscope for Label-Free blood smear imaging," HardwareX 13, e00408 (2023).spa
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Cone-shaped optical fiber tip for cost-effective digital lensless holographic microscopy," Appl. Opt. 59, 2969 (2020).spa
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Step-Index Optical Fibers with 0.88 Numerical Aperture," J. Light. Technol. 37, 3734–3739 (2019).spa
dc.relation.referencesM. J. Lopera and C. Trujillo, "Holographic point source for digital lensless holographic microscopy," Opt. Lett. 47, 2862 (2022).spa
dc.relation.referencesA. A. Adeyemi and T. E. Darcie, "Expansion of field of view in digital in-line holography with a programmable point source," Appl. Opt. 48, 3291–3301 (2009).spa
dc.relation.referencesH. Tobon-Maya, C. Trujillo, and J. Garcia-Sucerquia, "Preprocessing in digital lensless holographic microscopy for intensity reconstructions with enhanced contrast," Appl. Opt. 60, A215 (2021).spa
dc.relation.referencesW. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, "Tracking particles in four dimensions with in-line holographic microscopy," Opt. Lett. 28, 164 (2003).spa
dc.relation.referencesA. Buades, B. Coll, and J.-M. Morel, "A Non-Local Algorithm for Image Denoising," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (IEEE, n.d.), pp. 60–65.spa
dc.relation.referencesK. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising with Block-Matching and 3D Filtering (2006).spa
dc.relation.referencesJ. J. Barton, "Photoelectron holography = holography + photoelectron diffraction," J. Electron Spectros. Relat. Phenomena 51, 37–53 (1990).spa
dc.relation.referencesS. K. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. H. Jericho, and H. J. J. Kreuzer, "Submersible digital in-line holographic microscope," Rev. Sci. Instrum. 77, 43706–43710 (2006).spa
dc.relation.referencesS. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, "In-line digital holographic microscopy for terrestrial and exobiological research," Planet. Space Sci. 58, 701–705 (2010).spa
dc.relation.referencesJ. S. Underkoffler, "Occlusion Processing and Smooth Surface Shading for Fully Computed Synthetic Holography," Pract. Hologr. XI Hologr. Mater. III 3011, 19–30 (1997).spa
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. García-Sucerquia, "Automatic method to measure the numerical aperture of a propagating Gaussian light beam," Opt. Pura y Apl. 55, 1–8 (2022).spa
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, "Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging," J. Opt. Soc. Am. A 40, C150 (2023).spa
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Método Automático Para La Medición de La Apertura Numérica de Haces de Luz Gaussianos. (2021).spa
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Cost-effective digital lensless holographic microscope," in OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, PcAOP) (Optica Publishing Group, 2021), Vol. 60, p. DW4C.3.spa
dc.relation.referencesS. I. Zapata-Valencia and J. Garcia-Sucerquia, "Improvement of the image reconstruction in digital lensless holographic microscopy by scanning of the sample plane," in Latin America Optics and Photonics (LAOP) Conference 2022 (Optica Publishing Group, 2022), p. W1D.2.spa
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Removal of Perturbations from Optical-Pickup-Unit-Based Illumination for Digital Lensless Holographic Microscopy (2023).spa
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Recovery of Occluded Objects in Digital Lensless Holographic (2023).spa
dc.relation.referencesD. Gabor, "A new microscopic principle," Nature 161, 777–778 (1948).spa
dc.relation.referencesJ. F. Restrepo and J. Garcia-Sucerquia, "Diffraction-based modeling of high-numerical-aperture in-line lensless holograms," Appl. Opt. 50, 1745 (2011).spa
dc.relation.referencesU. Schnars and W. P. O. Jueptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85–101 (2002).spa
dc.relation.referencesL. Repetto, F. Pellistri, E. Piano, and C. Pontiggia, "Gabor’s hologram in a modern perspective," Am. J. Phys. 72, 964–967 (2004).spa
dc.relation.referencesJ. W. Goodman, Introduction to Fourier Optics, 3rd Editio (Roberst & Company Publishers, 2005).spa
dc.relation.referencesM. J. Lopera and C. Trujillo, "Linear diattenuation imaging of biological samples with digital lensless holographic microscopy," Appl. Opt. 61, B77 (2022).spa
dc.relation.referencesJ. Garcia-Sucerquia, "Color lensless digital holographic microscopy with micrometer resolution," Opt. Lett. 37, 1724 (2012).spa
dc.relation.referencesE. Serabyn, K. Liewer, C. Lindensmith, K. Wallace, and J. Nadeau, "Compact, lensless digital holographic microscope for remote microbiology," Opt. Express 24, 28540–28548 (2016).spa
dc.relation.referencesM. Sanz, M. Trusiak, J. García, and V. Micó, "Variable zoom digital in-line holographic microscopy," Opt. Lasers Eng. 127, (2020).spa
dc.relation.referencesN. I. Lewis, X. Wenbo, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, "Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography," Phycologia 45, 61–70 (2006).spa
dc.relation.referencesE. Hecht, Optics, 4th ed. (Addison Wesley Publishing Company, 2002).spa
dc.relation.referencesJ. W. Goodman, Statistical Optics, 1st ed. (Wiley, 2000).spa
dc.relation.referencesS. Grare, "Compact, low-cost Blu-Ray pickup-based digital holographic microscope," Opt. Lasers Eng. 160, 107272 (2023).spa
dc.relation.referencesV. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, "Microplastic Identification via Holographic Imaging and Machine Learning," Adv. Intell. Syst. 2, 1900153 (2020).spa
dc.relation.referencesJ. Maycock, C. P. McElhinney, B. M. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, "Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms," Appl. Opt. 45, 2975–2985 (2006).spa
dc.relation.referencesB. Javidi, R. Ponce-Díaz, and S.-H. Hong, "Three-dimensional recognition of occluded objects by using computational integral imaging," Opt. Lett. 31, 1106 (2006).spa
dc.relation.referencesP. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2nd ed. (Cambridge University Press, 1996).spa
dc.relation.referencesJ. P. Lewis, "Fast Template Matching," in Vision Interface 95 (Canadian Image Processing and Pattern Recognition Society, Quebec City, Canada, May 15-19, 1995), pp. 120–123.spa
dc.relation.referencesJ. Garcia-Sucerquia, D. Alvarez-Palacio, and J. Kreuzer, "Digital In-line Holographic Microscopy of Colloidal Systems of Microspheres," in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings, OSA, ed. (OSA, 2007).spa
dc.relation.referencesA. E. Siegman, Lasers, 1st ed. (University Science Books, 1986).spa
dc.relation.referencesK. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164–168 (1944).spa
dc.relation.referencesD. Gabor, "Microscopy by reconstructed wave-fronts," in Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences (1949), pp. 454–487.spa
dc.relation.referencesR. A. Frazor and W. S. Geisler, "Local luminance and contrast in natural images," Vision Res. 46, 1585–1598 (2006).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalmicroscopía holográfica digital sin lentesspa
dc.subject.proposallimitaciones de DLHMspa
dc.subject.proposalapertura numéricaspa
dc.subject.proposalcampo de visiónspa
dc.subject.proposalartefactos en la iluminaciónspa
dc.subject.proposaloclusionesspa
dc.subject.proposaldigital lensless holographic microscopyeng
dc.subject.proposalDLHM limitationseng
dc.subject.proposalnumerical apertureeng
dc.subject.proposalfield of vieweng
dc.subject.proposalillumination artifactseng
dc.subject.proposalocclusionseng
dc.subject.wikidataMicroscopia óptica
dc.subject.wikidataLentes
dc.subject.wikidataHolograma
dc.titleImprovement of digital lensless holographic microscopy for the visualization of biosampleseng
dc.title.translatedMejoramiento en la visualización de muestras biológicas en microscopía holográfica digital sin lentesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle202010034333-NANOSCOPIA INTERFEROMÉTRICA SHEARING PARA LA DETECCIÓN DE BACTERIAS.spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128463401.2023.pdf
Tamaño:
2.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: