Metodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.

dc.contributor.advisorÁlvarez Zapata, Hernán
dc.contributor.authorSerrano Caldera, María Fernanda
dc.contributor.researchgroupGrupo de Investigación en Procesos Dinámicos-KALMANspa
dc.date.accessioned2021-10-12T13:31:48Z
dc.date.available2021-10-12T13:31:48Z
dc.date.issued2021-10-11
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl secado es una operación unitaria crítica en términos de consumo de energía y calidad del producto. La operación de secado consiste en retirar una fase líquida, como humedad, desde una fase sólida o líquida, por mecanismos de transferencia de energía y masa. A través del secado, en particular de alimentos, se logra prolongar la vida útil del producto al reducir su contenido de humedad, lo cual provoca cambios en propiedades físicas y sensoriales del producto. En general, la descripción del secado de sólidos encontrados en la literatura, se limita a modelos particulares del sólido que se seca. En estos modelos se calcula la cinética de secado desde una curva de cambio de peso con el tiempo para determinar puntos de operación. Sin embargo, la operación de secado puede ser descrita a través de modelos de base fenomenológica que utilizan coeficientes de transferencia de calor y masa para representar el proceso. Una de las limitantes en la construcción de modelos de base fenomenológica para el proceso de secado está dada por la falta de expresiones generales que reproduzcan el comportamiento del coeficiente local de transferencia de masa del sólido, kz, que representa la oposición de transferir el vapor de agua en el aire de los poros hacia el aire de secado por causa de la estructura porosa de solido. La falta de una expresión para el coeficiente kz, no permite analizar la fenomenología de la transferencia de masa en el proceso de secado. Como resultado del trabajo de investigación, se propone una metodología para la formulación, basada en números adimensionales, del coeficiente local de transferencia de masa en la fase s´olida para el proceso de secado. Particularmente, se aplica dicha metodolog´ıa en el secado de tomate en rodajas, calculando dicho coeficiente a partir de datos experimentales para luego obtener una expresi´on del coeficiente local de transferencia de masa en la fase s´olida kz, verificada a partir del teorema π−Buckingham, relacionando propiedades que dependen del contenido de humedad del sólido. Finalmente, se valida la formulación obtenida incluyéndola en el cálculo de transferencia de masa de un Modelo Semifísico de Base Fenomenológica desarrollado en esta tesis para el proceso de secado, obteniéndose un buen ajuste entre los datos experimentales y las predicciones del modelo. (Texto tomado de la fuente)spa
dc.description.abstractDrying is a critical unit operation in terms of energy consumption and product quality. The drying operation consists of removing a liquid phase, such as moisture, from a solid or liquid phase, by means of energy and mass transfer mechanisms. Through drying, particularly of food, it is possible to extend the useful life of the product by reducing its moisture content, which causes changes in the physical and sensory properties of the product. In general, the description of the drying of solids found in the literature is limited to particular models of the solid being dried. In these models, the drying kinetics are calculated from a curve of weight change with time to determine the operating points. However, the drying operation can be described through phenomenologically based models that use heat and mass transfer coefficients to represent the process. One of the limitations in the construction of phenomenological-based models for the drying process is given by the lack of general expressions that reproduce the behavior of the local mass transfer coefficient of the solid, kz, which represents the opposition of transferring the vapor of water in the air from the pores to the drying air because of the solid porous structure. The lack of an expression for the coefficient kz does not allow us to analyze the phenomenology of mass transfer in the drying process. As a result of the research work, a methodology is proposed for the formulation, based on dimensionless numbers, of the local mass transfer coefficient in the solid phase for the drying process. In particular, said methodology is applied in the drying of sliced tomato, calculating said coefficient from experimental data to then obtain an expression of the local mass transfer coefficient in the solid phase kZ, verified from the π - Buckingham theorem, relating properties that depend on the moisture content of the solid. Finally, the obtained formulation is validated by including it in the mass transfer calculation of a Phenomenologically Based Semi-Physical Model developed in this thesis for the drying process, obtaining a good fit between the experimental data and the model predictions.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaModelado de procesosspa
dc.format.extentvi, 153 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80506
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAlvarez, H. (2000). Control predictivo basado en modelo difuso para el control de pH, PhD thesis, INAUT UNSJ Argentina.spa
dc.relation.referencesAlvarez, H. (2019). Notas de clase para el curso Operaciones de Transferencia de Masa, Colombiaspa
dc.relation.referencesAlvarez, H. D. (2011). BALANCES DE MATERIA Y ENERGÍA. Formulación, solución y usos en Procesos Industriales., 1 edn, Editorial ArtBox, Medellín.spa
dc.relation.referencesAlvarez, H., Lamanna, R., Vega, P. & Revollar, S. (2009). Metodología para la obtención de modelos semifísicos de base fenomenológica aplicada a una sulfitadora de jugo de caña de azúcar, RIAI Revista Iberoam. de Automática e Informática Ind. 6(3): 10 – 20.spa
dc.relation.referencesAndrade, R., Lemus, R. & Perez, C. (2011). Models of sorption isotherms for food: Uses and limitations, Vitae 18(3): 325–344.spa
dc.relation.referencesArmfield (2016). Try Drier. Instruction Manual.spa
dc.relation.referencesArslan, D. & Ozcan, M. (2011). Drying of tomato slices: changes in drying kinetics, mineral contents, antioxidant activity and color parameters, CyTA Journal of Food 9: 229–236.spa
dc.relation.referencesAteeque, M., Udayraj, Mishra, R. K., Chandramohan, V. & Talukdar, P. (2014). Numerical modeling of convective drying of food with spatially dependent transfer coefficient in a turbulent flow field, International Journal of Thermal Sciences 78: 145 – 157spa
dc.relation.referencesBarati, E. & Esfahani, J. (2011a). A new solution approach for simultaneous heat and mass transfer during convective drying of mango, Journal of Food Engineering 102(4): 302 – 309.spa
dc.relation.referencesBarati, E. & Esfahani, J. (2011b). A new solution approach for simultaneous heat and mass transfer during convective drying of mango, Journal of Food Engineering 102(4): 302 – 309.spa
dc.relation.referencesBelghith, A., Azzouz, S. & ElCafsi, A. (2016). Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato, Heat and Mass Transfer 52(3): 407–419.spa
dc.relation.referencesBrooks, M. S., Ghaly, A. E. & Hana, N. H. A. E. (2008). Effect of osmotic pre treatment on the air-drying behavior and quality of plum tomato pieces, International Journal of Food Engineering 4(5).spa
dc.relation.referencesCengel, Y. & Boles, M. (2019). Termodinámica, 7 edn, Mc-GrawHill, México.spa
dc.relation.referencesCengel, Y. & Ghajar, A. (2011). Transferencia de calor y masa. Fundamentos y aplicaciones, 4 edn, Mc-GrawHill, México.spa
dc.relation.referencesColak, N., Erbay, Z. & Hepbasli, A. (2013). Performance assessment and optimization of industrial pasta drying, International Journal of Energy Research 37(8): 913–922.spa
dc.relation.referencesda Silva, W. P., e Silva, C. M., Gama, F. J. & Gomes, J. P. (2014). Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas, Journal of the Saudi Society of Agricultural Sciences 13(1): 67–74.spa
dc.relation.referencesDatt, P. (2011). Latent Heat of Vaporization Condensation, Springer Netherlands, Dordrecht, pp. 703–703.spa
dc.relation.referencesDefraeye, T. (2014). Advanced computational modelling for drying processes - a review, Applied Energy 131: 323 – 344.spa
dc.relation.referencesDemiray, E. & Tuleh, Y. (2012). Thin layer drying of tomato o (lycopersicum esculentum mill cv; rio grande) slices in a convective hot air dryer, Heat Mass Transf. 48: 8941–9847spa
dc.relation.referencesEsfahani, J., Majdi, H. & Barati, E. (2014). Analytical two-dimensional analysis of the transport phenomena occurring during convective drying: apple slices, Journal of Food Engineering 123: 87–93.spa
dc.relation.referencesGaware, T. J., Sutar, N. & Thorat, B. N. (2010). Drying of tomato using different methods comparison of dehydration and rehydration kinetics, Drying Technology 28(5): 651–658.spa
dc.relation.referencesGetahun, E., Gabbiye, N., Delele, M., Fanta, S. W., Gebrehiwot, M. G. & Vanierschot, M. (2020). Effect of maturity on the moisture sorption isotherm of chili pepper (mareko fana variety), Heliyon 6(8): e04608.spa
dc.relation.referencesHussain, M. & Dincer, I. (2003). Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying: A finite-difference approach, International Journal of Heat and Mass Transfer 46(21): 4033 – 4039.spa
dc.relation.referencesKiranoudis, C., Maroulis, Z., Tsami, E. & Kouris, D. M. (1993). Equilibrium moisture content and heat of desorption of some vegetables, Journal of Food Engineering 20(1): 55–74.spa
dc.relation.referencesKumar, Y., Singh, L., Sharanagat, V. S., Mani, S., Kumar, S. & Kumar, A. (2021). Quality attributes of convective hot air dried spine gourd (momordica dioicaroxb. ex willd) slices, Food Chemistry 347: 129041. URL: https://www.sciencedirect.com/science/article/pii/S0308814621000431spa
dc.relation.referencesLema, L., Tamayo, R. M., Tirado, J. G. & Alvarez, H. (2019). On parameter interpretability of phenomenological based semiphysical models in biology, Informatics in Medicine Unlocked 15: 100158. URL: https://www.sciencedirect.com/science/article/pii/S2352914818302181spa
dc.relation.referencesLi, M. & Duncan, S. (2008). Dynamic model analysis of batch fluidized bed dryers, Particle and Particle Systems Characterization 25: 328 – 344.spa
dc.relation.referencesLopez Vidana, E., Cesar, A., Garcia Valladares, O., Pilatowsky, I. & Brito, R. (2019). Thermal performance of a passive, mixed type solar dryer for tomato slices solanum lycopersicum, Renewable Energy 147.spa
dc.relation.referencesMartinez de la Cuesta, P. & Ruz Martinez, E. (2004). Operaciones de separación en ingeniería química, 1 edn, PEARSON EUCACION, Madrid.spa
dc.relation.referencesMujumdar, A. (2011). Handbook of Industrial Drying, 4 edn, CRC Press, Boca Raton.spa
dc.relation.referencesOnwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M. & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: A review, Comprehensive Reviews in Food Science and Food Safety 15(3): 599–618.spa
dc.relation.referencesOztop, H. F. & Akpinar, E. K. (2008). Numerical and experimental analysis of moisture transfer for convective drying of some products, International Communications in Heat and Mass Transfer 35(2): 169 – 177.spa
dc.relation.referencesPalencia, C., Nava, J., Herman, E., Rodr´ıguez, G. C. & Garc´ıa-Alvarado, M. A. (2002). Spray drying dynamic modeling with a mechanistic model, Drying Technology 20(3): 569–586.spa
dc.relation.referencesPoling, B. E., Prausnitz, J. M. & O Connell, J. (2001). The Properties of Gases and Liquids, 5 edn, McGraw Hill, New York.spa
dc.relation.referencesQiu, J., Khalloufi, S., Martynenko, A., Dalen, G. V., Schutyser, M. & Rivera, C. A. (2015). Porosity, bulk density, and volume reduction during drying: Review of measurement methods and coefficient determinations, Drying Technology 33(14): 1681–1699.spa
dc.relation.referencesSeader, J., Henley, E. J. & Roper, D. K. (2010). Separation process principles : chemical and biochemical operations, 3rd edn, John Wiley & Sons, Inc., USA.spa
dc.relation.referencesShashari, N., Hasnan, H., Hanan, A. & Noor, N. (2019). Analysis of two-dimensional (2d) fruit drying process through heat and mass transfer model, IOP Conference Series: Materials Science and Engineering 477: 012024.spa
dc.relation.referencesSilva, W., Silva, C., Jossyl, S. & Farias, V. (2012). Empirical and diffusion models to describe water transport into chickpea (cicer arietinum l.), International Journal of Food Science and Technology 48: 276–273.spa
dc.relation.referencesTreybal, R. (1989). Operaciones de trasnferencia de masa, 2 edn, McGraw Hill, Mexico.spa
dc.relation.referencesTsilingiris, P. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100Aˆ °c, Energy Conversion and Management 49(5): 1098–1110.spa
dc.relation.referencesTzempelikos, D. A., Mitrakos, D., Vouros, A. P., Bardakas, A. V., Filios, A. E. & Margaris, D. P. (2015). Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices, Journal of Food Engineering 156: 10–21.spa
dc.relation.referencesVega, A., Palacios, M., Lemus, R. & Carvalho, C. (2008). Moisture sorption isotherms and isosteric heat determination in chilean papaya (vasconcellea pubescens), Quimica Nova QUIM NOVA 31.spa
dc.relation.referencesVelásquez, S., Franco, A. P., Pena, N., Boh´orquez, J. C. & Gutierrez, N. (2021). Effect of coffee cherry maturity on the performance of the drying process of the bean sorption isotherms and dielectric spectroscopy, Food Control 123: 107692.spa
dc.relation.referencesViswanathan, R., Jayas, D. & Hulasare, R. (2003). Sorption isotherms of tomato slices and onion shreds, Biosystems Engineering 86(4): 465–472.spa
dc.relation.referencesWami, E. & Onuigezhe, M. (2014). Model equation for heat transfer coefficient of air in a batch dryer, International Journal of Scientific and Engineering Research 5: 121–127.spa
dc.relation.referencesWang, N. & Brennan, J. (1995). A mathematical model of simultaneous heat and moisture transfer during drying of potato, Journal of Food Engineering 24(1): 47 – 60.spa
dc.relation.referencesWelty, J., Wicks, C., Wilson, R. & Rorrer, G. (2007). Fundamentals of Momentum, Heat and Mass Transfer, 5 edn, Jhon Wiley and Sons, Oregon.spa
dc.relation.referencesZohuri, B. (2017). Dimensional Analysis Beyond the Pi Theorem, Springer, Boca Raton.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembFood - Drying
dc.subject.lembAlimentos - Deshidratación, secado, etc.
dc.subject.lembTomates - Deshidratación, secado, etc.
dc.subject.proposalModelado de procesosspa
dc.subject.proposalTransferencia de masaspa
dc.subject.proposalCoeficientespa
dc.subject.proposalSecado de sólidosspa
dc.subject.proposalDrying of solidseng
dc.subject.proposalMass transfereng
dc.subject.proposalCoefficienteng
dc.subject.proposalProcess modellingeng
dc.titleMetodología para la formulación del coeficiente local de transferencia de masa del sólido en el proceso de secado. Caso secado de tomate.spa
dc.title.translatedMethodology for the formulation of the local mass transfer coefficient of the solid in the drying process. Dried tomato case.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152210516.2021.pdf
Tamaño:
2.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: