En 3 día(s), 21 hora(s) y 33 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Characterization of faults in rotating machines using multivariate component analysis

dc.contributor.advisorCastellanos-Domínguez, César Germánspa
dc.contributor.advisorCardona-Morales, Óscarspa
dc.contributor.authorRuales-Torres, Anderson Albertospa
dc.contributor.researchgroupGrupo de Control y Procesamiento Digital de Señalesspa
dc.date.accessioned2020-05-13T22:09:23Zspa
dc.date.available2020-05-13T22:09:23Zspa
dc.date.issued2020spa
dc.description.abstractThis thesis aims to develop a set of methodologies that allow the feature extraction and blind source separation, to diagnose the different types of faults in gearboxes and bearings. First, it is proposed the implementation of fault detection algorithms in a gearbox with 10 fault types, where it is obtained success percentages above 85 %. Thus, the results of the classification show that feature extraction methodology is significant. Second, an analysis of different methods of blind source separation is realized, which highlights the characteristic frequencies of the fault, showing that they are a useful tool in the identification. Finally, multiple-constrained Independent Component Analysis mcICA is proposed, taking advantage of the information encoded by the signal envelope to fault localization. Therefore, the methodology discussed in this document provides both the evaluation of the state of health and the machine maintenance process. (Texto tomado de la fuente)eng
dc.description.abstractLa presente tesis pretende desarrollar un conjunto de metodología que permitan la extracción de características y la separación de fuentes ocultas, con el fin de diagnosticar los distintos tipos de fallos en cajas de engranajes y rodamientos. Primero, se propone la implementación de algoritmos para la detección de fallas en una caja de engranajes con 10 tipos de fallas, donde se obtuvo porcentajes de acierto por encima del 85 %, así, los resultados de clasificación muestran que la metodología empleada para la extracción de características es significativa. Segundo, se realiza un análisis de diferentes métodos de separación de fuentes ocultas, los cuales logran resaltar las frecuencias características de la falla, evidenciando que son una herramienta útil en la identificación. Finalmente, se propone un algoritmo de Análisis de Componentes Independientes basado en múltiples restricciones mcICA, aprovechando la información codificada por la envolvente de la señal para localizar la falla. Por lo tanto, la metodología tratada en este documento contribuye tanto a la evaluación del estado de salud como al proceso de mantenimiento de la máquina.spa
dc.description.degreelevelMaestríaspa
dc.format.extent75spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRuales-Torres, A. A. 2020. Characterization of faults in rotating machines using multivariate component analysis. masters, Universidad Nacional de Colombia-Sede Manizales.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77515
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAbboud, D., M. Elbadaoui, W. A. Smith, and R. B. Randall 2019. Advanced bearing diagnostics: A comparative study of two powerful approaches. Mechanical Systems and Signal Processing.spa
dc.relation.referencesAlvarez-Meza, A. M., A. Orozco-Gutierrez, and G. Castellanos-Dominguez 2017. Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns. Frontiers in neuroscience, 11:550.spa
dc.relation.referencesAntoni, J. 2005. Blind separation of vibration components: Principles and demonstrations. Mechanical Systems and Signal Processing, 19(6):1166 – 1180. Special Issue: Blind Source Separation.spa
dc.relation.referencesAtoui, I., H. Meradi, R. Boulkroune, and R. Saidi 2013. Fault detection and diagnosis in rotating machinery by vibration monitoring using fft and wavelet techniques. In 2013 8th international workshop on systems, signal processing and their applications (WoSSPA), Pp. 401–406. IEEE.spa
dc.relation.referencesBelouchrani, A., K. Abed-Meraim, J.-F. Cardoso, and E. Moulines 1997. A blind source separation technique using second-order statistics. IEEE Transactions on signal processing, 45(2):434–444.spa
dc.relation.referencesCaesarendra, W. and T. Tjahjowidodo 2017. A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing. Machines, 5(4):21.spa
dc.relation.referencesCardona-Morales, O. 2011. Análisis tiempo-frecuencia de señales de vibraciones mecánicas para la detección de fallos en máquinas rotativas. masters, Universidad Nacional de Colombia-Sede Manizales.spa
dc.relation.referencesCardona-Morales, O. and G. Castellanos-Dominguez 2018. Fault diagnostic of machines under variable speed operating conditions using order tracking and novelty detection. In Advances in Condition Monitoring of Machinery in Non-Stationary Operations, A. Timofiejczuk, F. Chaari, R. Zimroz, W. Bartelmus, and M. Haddar, eds., Pp. 179–189, Cham. Springer International Publishing.spa
dc.relation.referencesCardona-Morales, O., E. F. Sierra-Alonso, and G. Castellanos-Dominguez 2018. Bearing fault identification based on blind extraction of cyclostationary signals using order tracking. In Advances in Condition Monitoring of Machinery in Non-Stationary Operations, A. Timofiejczuk, F. Chaari, R. Zimroz, W. Bartelmus, and M. Haddar, eds., Pp. 191–201, Cham. Springer International Publishing.spa
dc.relation.referencesCardoso, J.-F. 1999. High-order contrasts for independent component analysis. Neural computation, 11(1):157–192.spa
dc.relation.referencesCardoso, J.-F. and A. Souloumiac 1993. Blind beamforming for non-gaussian signals. In IEE proceedings F (radar and signal processing), volume 140, Pp. 362–370. IET.spa
dc.relation.referencesCerrada, M., J. Aguilar, J. Altamiranda, and R.-V. Sánchez 2019. A hybrid heuristic algorithm for evolving models in simultaneous scenarios of classification and clustering. Knowledge and Information Systems, 61(2):755–798.spa
dc.relation.referencesCerrada, M., R.-V. Sánchez, F. Pacheco, D. Cabrera, G. Zurita, and C. Li 2016. Hierarchical feature selection based on relative dependency for gear fault diagnosis. Applied Intelligence, 44(3):687–703.spa
dc.relation.referencesChen, J., Z. Li, J. Pan, G. Chen, Y. Zi, J. Yuan, B. Chen, and Z. He 2016. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mechanical systems and signal processing, 70:1–35.spa
dc.relation.referencesChoi, S., A. Cichocki, and A. Beloucharni 2002. Second order nonstationary source separation. J. VLSI Signal Process. Syst., 32(1-2):93–104.spa
dc.relation.referencesFan, X. and M. J. Zuo 2006. Gearbox fault detection using hilbert and wavelet packet transform. Mechanical Systems and Signal Processing, 20(4):966 – 982.spa
dc.relation.referencesGiusti, R. and G. E. Batista 2013. An empirical comparison of dissimilarity measures for time series classification. In 2013 Brazilian Conference on Intelligent Systems, Pp. 82–88. IEEE.spa
dc.relation.referencesHaidong, S., J. Hongkai, L. Xingqiu, and W. Shuaipeng 2018. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowledge-Based Systems, 140:1–14.spa
dc.relation.referencesHuang, D.-S. and J.-X. Mi 2007. A new constrained independent component analysis method. IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, 18(5):1532–1535.spa
dc.relation.referencesHyvarinen, A. 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on Neural Networks, 10(3):626–634.spa
dc.relation.referencesHyvärinen, A., J. Karhunen, and E. Oja 2004. Independent component analysis, volume 46. John Wiley & Sons.spa
dc.relation.referencesHyvärinen, A. and E. Oja 2000. Independent component analysis: algorithms and applications. Neural networks, 13(4-5):411–430.spa
dc.relation.referencesIgba, J., K. Alemzadeh, C. Durugbo, and E. T. Eiriksson 2016. Analysing rms and peak values of vibration signals for condition monitoring of wind turbine gearboxes. Renewable Energy, 91:90–106.spa
dc.relation.referencesIsermann, R. 2005. Model-based fault-detection and diagnosis–status and applications. Annual Reviews in control, 29(1):71–85.spa
dc.relation.referencesIsermann, R. 2006. Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Springer Science & Business Media.spa
dc.relation.referencesJardine, A. K., D. Lin, and D. Banjevic 2006. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7):1483–1510.spa
dc.relation.referencesJiang, G., H. He, J. Yan, and P. Xie 2018. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Transactions on Industrial Electronics, 66(4):3196–3207.spa
dc.relation.referencesJing, L., M. Zhao, P. Li, and X. Xu 2017. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement, 111:1–10.spa
dc.relation.referencesJing, S. X., S. T. Guo, J. F. Leng, and X. Y. Zhao 2014. Application of fault diagnosis method based on cica to gearbox. In Mechatronics and Mechanical Engineering I, volume 664 of Applied Mechanics and Materials, Pp. 148–152. Trans Tech Publications.spa
dc.relation.referencesKass, S., A. Raad, and J. Antoni 2019. Self-running fault diagnosis method for rolling element bearing. In Mechanism, Machine, Robotics and Mechatronics Sciences, R. Rizk and M. Awad, eds., Pp. 127–140, Cham. Springer International Publishing.spa
dc.relation.referencesKim, J.-S. and S.-K. Lee 2018. Identification of tooth fault in a gearbox based on cyclostationarity and empirical mode decomposition. Structural Health Monitoring, 17(3):494–513.spa
dc.relation.referencesKopsaftopoulos, F. and S. Fassois 2013. A functional model based statistical time series method for vibration based damage detection, localization, and magnitude estimation. Mechanical Systems and Signal Processing, 39(1-2):143–161.spa
dc.relation.referencesKumar, A. and R. Kumar 2018. Role of signal processing, modeling and decision making in the diagnosis of rolling element bearing defect: A review. Journal of Nondestructive Evaluation, 38(1):5.spa
dc.relation.referencesLei, Y., Z. He, and Y. Zi 2008. A new approach to intelligent fault diagnosis of rotating machinery. Expert Systems with Applications.spa
dc.relation.referencesLei, Y., M. J. Zuo, Z. He, and Y. Zi 2010. A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Systems with Applications, 37(2):1419–1430.spa
dc.relation.referencesLeng, J., S. Jing, and C. Luo 2018. Fault feature extraction of single-channel signal from gearbox based on eemd and cica. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 11(1):69–75.spa
dc.relation.referencesLi, C., R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez 2015. Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing, 168:119–127.spa
dc.relation.referencesLu, W. and J. C. Rajapakse 2006. ICA with Reference. Neurocomputing, 69(16-18):2244–2257.spa
dc.relation.referencesMedina, R., X. Alvarez, D. Jadán, M. Cerrada, R.-V. Sánchez, and J. C. Macancela 2017. Poincaré plot features from vibration signal for gearbox fault diagnosis. In 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Pp. 1–6. IEEE.spa
dc.relation.referencesMiao, F., R. Zhao, X. Wang, and L. Jia 2020. A new fault feature extraction method for rotating machinery based on multiple sensors. Sensors, 20(6):1713.spa
dc.relation.referencesPopescu, T. D. 2010. Blind separation of vibration signals and source change detection–application to machine monitoring. Applied Mathematical Modelling, 34(11):3408–3421.spa
dc.relation.referencesQiu, H., J. Lee, J. Lin, and G. Yu 2006. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. Journal of sound and vibration, 289(4-5):1066–1090.spa
dc.relation.referencesRandall, R. B. and J. Antoni 2011. Rolling element bearing diagnosticsˆa€”a tutorial. Mechanical Systems and Signal Processing, 25(2):485 – 520.spa
dc.relation.referencesRandall, R. B., J. Antoni, and S. Chobsaard 2001. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mechanical Systems and Signal Processing, 15(5):945–962.spa
dc.relation.referencesShen, Z., Z. He, X. Chen, C. Sun, and Z. Liu 2012. A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time. Sensors, 12(8):10109–10135.spa
dc.relation.referencesSierra-Alonso, E. F., O. Cardona-Morales, C. D. Acosta-Medina, and G. Castellanos- Dominguez 2014. Spectral correlation measure for selecting intrinsic mode functions. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, E. Bayro-Corrochano and E. Hancock, eds., Pp. 231–238, Cham. Springer International Publishing.spa
dc.relation.referencesSingh, D. S. and Q. Zhao 2016. Pseudo-fault signal assisted emd for fault detection and isolation in rotating machines. Mechanical Systems and Signal Processing, 81:202–218.spa
dc.relation.referencesSmith, W. A. and R. B. Randall 2015a. Rolling element bearing diagnostics using the case western reserve university data: A benchmark study. Mechanical Systems and Signal Processing, 64-65:100 – 131.spa
dc.relation.referencesSmith, W. A. and R. B. Randall 2015b. Rolling element bearing diagnostics using the case western reserve university data: A benchmark study. Mechanical Systems and Signal Processing, 64-65:100 – 131.spa
dc.relation.referencesTao, Y., X. Wang, R.-V. S´anchez, S. Yang, and Y. Bai 2019. Spur gear fault diagnosis using a multilayer gated recurrent unit approach with vibration signal. IEEE Access, 7:56880–56889.spa
dc.relation.referencesTaylor, J. 1994. The vibration analysis handbook. Vibration Consultants.spa
dc.relation.referencesVan Der Maaten, L., E. Postma, and J. Van den Herik 2009. Dimensionality reduction: a comparative. J Mach Learn Res, 10(66-71):13.spa
dc.relation.referencesWang, D. and P. W. Tse 2012. A new blind fault component separation algorithm for a single-channel mechanical signal mixture. Journal of Sound and Vibration, 331(22):4956 – 4970.spa
dc.relation.referencesWang, Z., J. Chen, G. Dong, and Y. Zhou 2011. Constrained independent component analysis and its application to machine fault diagnosis. Mechanical Systems and Signal Processing.spa
dc.relation.referencesWu, T. and X. Xiong 2019. Fault feature extraction method of rolling bearings based on citd and fastica. In 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Pp. 849–854. IEEE.spa
dc.relation.referencesYan, X. and M. Jia 2018. A novel optimized svm classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing, 313:47–64.spa
dc.relation.referencesYang, T., Y. Guo, X. Wu, J. Na, and R.-F. Fung 2018. Fault feature extraction based on combination of envelope order tracking and cica for rolling element bearings. Mechanical Systems and Signal Processing, 113:131 – 144. SI: IMETI-MechElectro.spa
dc.relation.referencesYang, Y. and S. Nagarajaiah 2014. Blind identification of damage in time-varying systems using independent component analysis with wavelet transform. mechanical systems and signal processing, 47(1-2):3–20.spa
dc.relation.referencesYellin, D. and E. Weinstein 1994. Criteria for multichannel signal separation. IEEE transactions on signal processing, 42(8):2158–2168.spa
dc.relation.referencesZhang, Z. L. 2008. Morphologically constrained ICA for extracting weak temporally correlated signals. Neurocomputing, 71(7-9):1669–1679.spa
dc.relation.referencesZvokelj, M., S. Zupan, and I. Prebil 2016. Eemd-based multiscale ica method for slewing bearing fault detection and diagnosis. Journal of Sound and Vibration, 370:394–423.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalRodamiento de elementos rodantesspa
dc.subject.proposalRolling element bearingeng
dc.subject.proposalSeñales de vibraciónspa
dc.subject.proposalVibration signalseng
dc.subject.proposalLocalización de fallasspa
dc.subject.proposalFault localizationeng
dc.subject.proposalIndependent component analysiseng
dc.subject.proposalAnálisis de componentes independientesspa
dc.subject.proposalExtracción de característicasspa
dc.subject.proposalFeature extractioneng
dc.subject.proposalVibration analysiseng
dc.subject.proposalAnálisis de vibracionesspa
dc.titleCharacterization of faults in rotating machines using multivariate component analysisspa
dc.title.alternativeCaracterización de fallas en máquinas rotativas usando análisis de componentes multivariadospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085307444.2020.pdf
Tamaño:
16.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: