C1 biorefineries : The CO2 case
dc.contributor.advisor | Cardona Alzate, Carlos Ariel | |
dc.contributor.author | Inocencio García, Pablo José | |
dc.contributor.cvlac | Inocencio-García, Pablo-José [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001996470] | spa |
dc.contributor.googlescholar | Inocencio-García, Pablo-José [https://scholar.google.com/citations?user=tR1yZp8AAAAJ&hl=es] | spa |
dc.contributor.orcid | Inocencio-García, Pablo-José [https://orcid.org/000900036684330X] | spa |
dc.contributor.researchgate | Inocencio-García, Pablo-José [https://www.researchgate.net/profile/Pablo-Inocencio-Garcia] | spa |
dc.contributor.researchgroup | Procesos Químicos Cataliticos y Biotecnológicos | spa |
dc.contributor.scopus | Inocencio-García, Pablo-José [https://www.scopus.com/authid/detail.uri?authorId=58162518900] | spa |
dc.date.accessioned | 2025-03-18T16:26:59Z | |
dc.date.available | 2025-03-18T16:26:59Z | |
dc.date.issued | 2024 | |
dc.description | graficas, ilustraciones | spa |
dc.description.abstract | Carbon dioxide (CO2) emissions have caused a significant impact on climate change and global warming, with concentrations reaching 400 ppm in recent years. Various technologies exist for CO2 capture and utilization (CCU) in industrial facilities known as C1 biorefineries where CO2 is considered a raw material in the obtaining of various products, achieving a reduction in greenhouse gases (GHG) emissions. Then, by considering the current interest in carbon upgrading technologies, this thesis project focuses on analyzing CCU alternatives under the C1 biorefinery concept. Initially, a heuristic analysis was performed to select the best CO2 capture technology (CCS) and to study the main products to be obtained from CO2 at each technological readiness level. Moreover, experiments were carried out to produce CO-rich syngas from biomass gasification with CO2, formic acid production by electrochemical CO2, and dimethyl carbonate (DMC) production under supercritical CO2 conditions. The results of the experimental approach served as a base point for the simulation of the processes. Two additional schemes for CO2 valorization were proposed under stand-alone schemes: production of methanol by hydrogenation of CO2, and ethanol production by utilization of CO2 through the CBB cycle of the cyanobacteria Synechococcus sp. PCC 7942. In addition, these technologies were analyzed under integration schemes of C1 biorefineries based on the global market distribution for each product. Then, the feasibility of the CO2 valorization schemes was assessed by considering technical, economic, environmental, and social performance indicators. The results showed that the implementation of CO2 valorization schemes for the production of CO-rich syngas under a stand-alone configuration is the most viable alternative for the Colombian context. In addition, the integration of these schemes under C1 biorefinery scenarios for the production of methanol, CO-rich synthesis gas, DMC, and formic acid also showed viability in the four dimensions contemplated in the sustainability analysis (Texto tomado de la fuente). | eng |
dc.description.abstract | Las emisiones de dióxido de carbono (CO2) han causado un impacto significativo en el cambio climático y el calentamiento global, con concentraciones que alcanzan las 400 ppm en los últimos años. Existen diversas tecnologías para captura y utilización (CCU) del CO2 en instalaciones industriales conocidas como biorrefinerías C1, donde el CO2 se considera como materia prima en la obtención de diversos productos logrando una reducción en las emisiones de gases de efecto invernadero (GEI). En consecuencia, al considerar el interés actual en las tecnologías de aprovechamiento del carbono, esta tesis se centra en analizar las distintas alternativas de CCU bajo el concepto de biorrefinería C1. Inicialmente, se realizó un análisis heurístico para seleccionar la mejor tecnología de captura de CO2 (CCS) y estudiar los principales productos que se pueden obtener a partir del CO2 en cada nivel de madurez tecnológica. Además, se llevaron a cabo experimentos para producir gas de síntesis rico en CO a partir de la gasificación de biomasa con CO2, producción de ácido fórmico mediante reducción electroquímica CO2, y producción de dimetil carbonato (DMC) en condiciones supercríticas de CO2. Los resultados del enfoque experimental sirvieron como punto de base para la simulación de los procesos. Además, se propusieron dos esquemas adicionales para la valorización del CO2 bajo esquemas stand-alone: producción de metanol por hidrogenación de CO2 y producción de etanol mediante la utilización de CO2 a través del ciclo CBB de la cianobacteria Synechococcus sp. PCC 7942. Estas tecnologías se analizaron bajo esquemas de integración de biorrefinerías C1 propuestos con base en la distribución del mercado global para cada producto. Posteriormente, se evaluó la viabilidad de cada esquema de valorización considerando indicadores de desempeño de las dimensiones técnica, económica, ambiental y social. Los resultados demostraron que la implementación de esquemas de valorización de CO2 para la producción de gas de síntesis enriquecido en CO bajo configuración stand-alone, es la alternativas más viable para el contexto colombiano. Además, la integración de estos esquemas bajo escenarios de biorrefinerías C1 para la producción de metanol, gas de síntesis rico en CO, DMC, y ácido fórmico también presentó viabilidad en las cuatro dimensiones contempladas en el análisis de sostenibilidad. | spa |
dc.description.curriculararea | Química Y Procesos.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.format.extent | vii, 198 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87684 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | A. Demirbaş, “Energy and environmental issues relating to greenhouse gas emissions in Turkey,” Energy Convers Manag, vol. 44, no. 1, 2003, doi: 10.1016/S0196-8904(02)00056-0. | spa |
dc.relation.references | K. Hashimoto, “Global Temperature and Atmospheric Carbon Dioxide Concentration,” 2019. doi: 10.1007/978-981-13-8584-1_3. | spa |
dc.relation.references | K. Richardson et al., “Earth beyond six of nine planetary boundaries,” Sci Adv, vol. 9, no. 37, 2023, doi: 10.1126/sciadv.adh2458. | spa |
dc.relation.references | K. O. Yoro and M. O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect,” in Advances in Carbon Capture: Methods, Technologies and Applications, 2020. doi: 10.1016/B978-0-12-819657-1.00001-3. | spa |
dc.relation.references | A. Mofolasayo, “Assessing and Managing the Direct and Indirect Emissions from Electric and Fossil-Powered Vehicles,” Sustainability (Switzerland) , vol. 15, no. 2, 2023, doi: 10.3390/su15021138. | spa |
dc.relation.references | X. Jiang and D. Guan, “The global CO2 emissions growth after international crisis and the role of international trade,” Energy Policy, vol. 109, 2017, doi: 10.1016/j.enpol.2017.07.058. | spa |
dc.relation.references | K. R. Shivanna, “Climate change and its impact on biodiversity and human welfare,” 2022. doi: 10.1007/s43538-022-00073-6. | spa |
dc.relation.references | A. Thomas, A. Ramkumar, and A. Shanmugam, “CO2 acidification and its differential responses on aquatic biota – a review,” 2022. doi: 10.1016/j.envadv.2022.100219. | spa |
dc.relation.references | M. T. Huang and P. M. Zhai, “Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society,” Advances in Climate Change Research, vol. 12, no. 2, 2021, doi: 10.1016/j.accre.2021.03.004. | spa |
dc.relation.references | C. Popescu, M. Panait, M. Palazzo, and A. Siano, “Energy Transition in European Union—Challenges and Opportunities,” 2022. doi: 10.1007/978-981-19-3540-4_11. | spa |
dc.relation.references | R. Meys et al., “Achieving net-zero greenhouse gas emission plastics by a circular carbon economy,” Science (1979), vol. 374, no. 6563, 2021, doi: 10.1126/science.abg9853. | spa |
dc.relation.references | V. Spaiser, K. Scott, A. Owen, and R. Holland, “Consumption-based accounting of CO2 emissions in the sustainable development Goals Agenda,” International Journal of Sustainable Development and World Ecology, vol. 26, no. 4, 2019, doi: 10.1080/13504509.2018.1559252. | spa |
dc.relation.references | S. Luh, S. Budinis, S. Giarola, T. J. Schmidt, and A. Hawkes, “Long-term development of the industrial sector – Case study about electrification, fuel switching, and CCS in the USA,” Comput Chem Eng, vol. 133, 2020, doi: 10.1016/j.compchemeng.2019.106602. | spa |
dc.relation.references | L. Zhu, H. B. Duan, and Y. Fan, “CO2 mitigation potential of CCS in China - An evaluation based on an integrated assessment model,” J Clean Prod, vol. 103, 2015, doi: 10.1016/j.jclepro.2014.08.079. | spa |
dc.relation.references | S. Wang et al., “Distinguishing Anthropogenic CO2 Emissions From Different Energy Intensive Industrial Sources Using OCO-2 Observations: A Case Study in Northern China,” Journal of Geophysical Research: Atmospheres, vol. 123, no. 17, 2018, doi: 10.1029/2018JD029005. | spa |
dc.relation.references | N. von der Assen, L. J. Müller, A. Steingrube, P. Voll, and A. Bardow, “Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves,” Environ Sci Technol, vol. 50, no. 3, 2016, doi: 10.1021/acs.est.5b03474. | spa |
dc.relation.references | M. Rumayor, J. Fernández-González, A. Domínguez-Ramos, and A. Irabien, “Deep Decarbonization of the Cement Sector: A Prospective Environmental Assessment of CO2 Recycling to Methanol,” ACS Sustain Chem Eng, vol. 10, no. 1, 2022, doi: 10.1021/acssuschemeng.1c06118. | spa |
dc.relation.references | E. Yáñez, A. Ramírez, V. Núñez-López, E. Castillo, and A. Faaij, “Exploring the potential of carbon capture and storage-enhanced oil recovery as a mitigation strategy in the Colombian oil industry,” International Journal of Greenhouse Gas Control, vol. 94, Mar. 2020, doi: 10.1016/J.IJGGC.2019.102938. | spa |
dc.relation.references | L. I. Patiño, V. Alcántara, and E. Padilla, “Driving forces of CO2 emissions and energy intensity in Colombia,” Energy Policy, vol. 151, 2021, doi: 10.1016/j.enpol.2020.112130. | spa |
dc.relation.references | A. Silva-Parra, J. M. Trujillo-González, and E. C. Brevik, “Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis,” 2021. doi: 10.1002/ghg.2066. | spa |
dc.relation.references | G. Martinelli and P. Plescia, “Mechanochemical dissociation of calcium carbonate: Laboratory data and relation to natural emissions of CO2,” Physics of the Earth and Planetary Interiors, vol. 142, no. 3–4, 2004, doi: 10.1016/j.pepi.2003.12.009. | spa |
dc.relation.references | Z. Liu, Z. Deng, S. J. Davis, C. Giron, and P. Ciais, “Monitoring global carbon emissions in 2021,” 2022. doi: 10.1038/s43017-022-00285-w. | spa |
dc.relation.references | J. Shen, Q. Zhang, L. Xu, S. Tian, and P. Wang, “Future CO2 emission trends and radical decarbonization path of iron and steel industry in China,” J Clean Prod, vol. 326, 2021, doi: 10.1016/j.jclepro.2021.129354. | spa |
dc.relation.references | R. Farajzadeh et al., “Improved oil recovery techniques and their role in energy efficiency and reducing CO2 footprint of oil production,” J Clean Prod, vol. 369, 2022, doi: 10.1016/j.jclepro.2022.133308. | spa |
dc.relation.references | D. Neufeld, “The Carbon Footprint of the Food Supply Chain,” Visual Capitalist. | spa |
dc.relation.references | P. Madejski, K. Chmiel, N. Subramanian, and T. Kuś, “Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies,” 2022. doi: 10.3390/en15030887. | spa |
dc.relation.references | M. Kafi, H. Sanaeepur, and A. Ebadi Amooghin, “Grand Challenges in CO2 Capture and Conversion,” Journal of Resource Recovery, vol. 1, no. 2, 2023, doi: 10.52547/jrr.2302-1007. | spa |
dc.relation.references | U. Singh, A. Garg, and A. K. Singh, “Sustainable development goals as means to motivate CO2 capture and storage in Indian geologic formations,” Mar Pet Geol, vol. 160, 2024, doi: 10.1016/j.marpetgeo.2023.106668. | spa |
dc.relation.references | H. Teng and L. Y. Hsu, “High-porosity carbons prepared from bituminous coal with potassium hydroxide activation,” Ind Eng Chem Res, vol. 38, no. 8, 1999, doi: 10.1021/ie990101+. | spa |
dc.relation.references | T. G. Zarate-Barrera and J. H. Maldonado, “Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia,” PLoS One, vol. 10, no. 5, 2015, doi: 10.1371/journal.pone.0126627. | spa |
dc.relation.references | E. Jang, S. W. Choi, and K. B. Lee, “Effect of carbonization temperature on the physical properties and CO2 adsorption behavior of petroleum coke-derived porous carbon,” Fuel, vol. 248, 2019, doi: 10.1016/j.fuel.2019.03.051. | spa |
dc.relation.references | B. Llamas, M. Arribas, E. Hernandez, and L. F. Mazadiego, “Pre-Injection Phase: Site Selection and Characterization,” in CO2 Sequestration and Valorization, 2014. doi: 10.5772/57405. | spa |
dc.relation.references | T. Urych and A. Smoliński, “Numerical modeling of CO2 migration in saline aquifers of selected areas in the Upper Silesian coal basin in Poland,” Energies (Basel), vol. 12, no. 16, 2019, doi: 10.3390/en12163093. | spa |
dc.relation.references | Z.-X. Xu, Y. Tan, X.-Q. Ma, S.-Y. Wu, and B. Zhang, “The influence of NaCl during hydrothermal carbonization for rice husk on hydrochar physicochemical properties,” Energy, vol. 266, p. 126463, Mar. 2023, doi: 10.1016/j.energy.2022.126463. | spa |
dc.relation.references | L. de Souza Noel Simas Barbosa, E. Hytönen, and P. Vainikka, “Carbon mass balance in sugarcane biorefineries in Brazil for evaluating carbon capture and utilization opportunities,” Biomass Bioenergy, vol. 105, 2017, doi: 10.1016/j.biombioe.2017.07.015. | spa |
dc.relation.references | R. Soundararajan and T. Gundersen, “Coal based power plants using oxy-combustion for CO2 capture: Pressurized coal combustion to reduce capture penalty,” Appl Therm Eng, vol. 61, no. 1, 2013, doi: 10.1016/j.applthermaleng.2013.04.010. | spa |
dc.relation.references | A. Lerman and F. T. Mackenzie, “Carbonate minerals and the CO2-carbonic acid system,” in Encyclopedia of Earth Sciences Series, 2018. doi: 10.1007/978-3-319-39312-4_84. | spa |
dc.relation.references | M. K. Lam, K. T. Lee, and A. R. Mohamed, “Current status and challenges on microalgae-based carbon capture,” 2012. doi: 10.1016/j.ijggc.2012.07.010. | spa |
dc.relation.references | X. Zhang, K. Jiao, J. Zhang, and Z. Guo, “A review on low carbon emissions projects of steel industry in the World,” 2021. doi: 10.1016/j.jclepro.2021.127259. | spa |
dc.relation.references | A. T. Ubando, C. B. Felix, and W. H. Chen, “Biorefineries in circular bioeconomy: A comprehensive review,” 2020. doi: 10.1016/j.biortech.2019.122585. | spa |
dc.relation.references | W. Qiao, S. Xu, Z. Liu, X. Fu, H. Zhao, and S. Shi, “Challenges and opportunities in C1-based biomanufacturing,” 2022. doi: 10.1016/j.biortech.2022.128095. | spa |
dc.relation.references | Z. Liu, S. Shi, Y. Ji, K. Wang, T. Tan, and J. Nielsen, “Opportunities of CO2-based biorefineries for production of fuels and chemicals,” Green Carbon, vol. 1, no. 1, 2023, doi: 10.1016/j.greenca.2023.09.002. | spa |
dc.relation.references | J. Bae et al., “Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts,” 2022. doi: 10.1016/j.cej.2021.131325. | spa |
dc.relation.references | M. Pavan, “The New Biorefineries: Integration with New Technologies for Carbon Capture and Utilization to Produce Bioethanol,” 2022. doi: 10.1007/978-3-031-01241-9_19. | spa |
dc.relation.references | S. Bachleitner, Ö. Ata, and D. Mattanovich, “The potential of CO2-based production cycles in biotechnology to fight the climate crisis,” Nat Commun, vol. 14, no. 1, 2023, doi: 10.1038/s41467-023-42790-6. | spa |
dc.relation.references | M. N. Anwar et al., “CO2 utilization: Turning greenhouse gas into fuels and valuable products,” J Environ Manage, vol. 260, 2020, doi: 10.1016/j.jenvman.2019.110059. | spa |
dc.relation.references | L. Mikhelkis and V. Govindarajan, “Techno-economic and partial environmental analysis of carbon capture and storage (CCS) and carbon capture, utilization, and storage (CCU/S): Case study from proposed waste-fed district-heating incinerator in Sweden,” Sustainability (Switzerland), vol. 12, no. 15, 2020, doi: 10.3390/SU12155922. | spa |
dc.relation.references | K. Atsonios, K. D. Panopoulos, and E. Kakaras, “Investigation of technical and economic aspects for methanol production through CO2 hydrogenation,” Int J Hydrogen Energy, vol. 41, no. 4, 2016, doi: 10.1016/j.ijhydene.2015.12.074. | spa |
dc.relation.references | G. Leonzio, E. Zondervan, and P. U. Foscolo, “Methanol production by CO2 hydrogenation: Analysis and simulation of reactor performance,” Int J Hydrogen Energy, vol. 44, no. 16, 2019, doi: 10.1016/j.ijhydene.2019.02.056. | spa |
dc.relation.references | D. Mustaqim and K. Oiitaguchi, “A synthesis of bioreactions for the production of ethanol from CO2,” in Energy, 1997. doi: 10.1016/S0360-5442(96)00105-3. | spa |
dc.relation.references | V. Kontou, D. Grimekis, K. Braimakis, and S. Karellas, “Techno-economic assessment of dimethyl carbonate production based on carbon capture and utilization and power-to-fuel technology,” Renewable and Sustainable Energy Reviews, vol. 157, 2022, doi: 10.1016/j.rser.2021.112006. | spa |
dc.relation.references | S. Lee et al., “Sustainable production of formic acid by electrolytic reduction of gaseous carbon dioxide,” J Mater Chem A Mater, vol. 3, no. 6, 2015, doi: 10.1039/c4ta03893b. | spa |
dc.relation.references | K. Nakata, T. Ozaki, C. Terashima, A. Fujishima, and Y. Einaga, “High-yield electrochemical production of formaldehyde from CO2 and seawater,” Angewandte Chemie - International Edition, vol. 53, no. 3, 2014, doi: 10.1002/anie.201308657. | spa |
dc.relation.references | L. Fan et al., “Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH4 balance under global warming,” Glob Chang Biol, vol. 28, no. 2, 2022, doi: 10.1111/gcb.15935. | spa |
dc.relation.references | A. Kasinath et al., “Biomass in biogas production: Pretreatment and codigestion,” 2021. doi: 10.1016/j.rser.2021.111509. | spa |
dc.relation.references | E. D. Erickson, P. A. Tominac, and V. M. Zavala, “Biogas production in United States dairy farms incentivized by electricity policy changes,” Nat Sustain, vol. 6, no. 4, 2023, doi: 10.1038/s41893-022-01038-9. | spa |
dc.relation.references | N. N. Oehlmann and J. G. Rebelein, “The Conversion of Carbon Monoxide and Carbon Dioxide by Nitrogenases,” 2022. doi: 10.1002/cbic.202100453. | spa |
dc.relation.references | H. Gruber et al., “Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen,” Biomass Convers Biorefin, vol. 11, no. 6, 2021, doi: 10.1007/s13399-019-00459-5. | spa |
dc.relation.references | C. Benevenuti, P. Amaral, T. Ferreira, and P. Seidl, “Impacts of Syngas Composition on Anaerobic Fermentation,” 2021. doi: 10.3390/reactions2040025. | spa |
dc.relation.references | S. Coufourier, Q. Gaignard Gaillard, J. F. Lohier, A. Poater, S. Gaillard, and J. L. Renaud, “Hydrogenation of CO2, Hydrogenocarbonate, and Carbonate to Formate in Water using Phosphine Free Bifunctional Iron Complexes,” ACS Catal, vol. 10, no. 3, 2020, doi: 10.1021/acscatal.9b04340. | spa |
dc.relation.references | K. Fernández-Caso, G. Díaz-Sainz, M. Alvarez-Guerra, and A. Irabien, “Electroreduction of CO2: Advances in the Continuous Production of Formic Acid and Formate,” 2023. doi: 10.1021/acsenergylett.3c00489. | spa |
dc.relation.references | J. Yan et al., “Bi-Eu bimetallic catalysts enabling ultrastable electroreduction of CO2 with a ∼ 100% formate Faradaic efficiency,” Chemical Engineering Journal, vol. 467, 2023, doi: 10.1016/j.cej.2023.143531. | spa |
dc.relation.references | R. Thunuguntla, H. K. Atiyeh, R. L. Huhnke, and R. S. Tanner, “CO2-based production of C2-C6 acids and alcohols: The potential of novel Clostridia,” Bioresour Technol Rep, vol. 25, 2024, doi: 10.1016/j.biteb.2023.101713. | spa |
dc.relation.references | L. Hu et al., “Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions,” 2022. doi: 10.1016/j.biotechadv.2022.107954. | spa |
dc.relation.references | M. M. F. Hasan, M. S. Zantye, and M. K. Kazi, “Challenges and opportunities in carbon capture, utilization and storage: A process systems engineering perspective,” Comput Chem Eng, vol. 166, 2022, doi: 10.1016/j.compchemeng.2022.107925. | spa |
dc.relation.references | H. Guzmán et al., “How to make sustainable CO2 conversion to Methanol: Thermocatalytic versus electrocatalytic technology,” Chemical Engineering Journal, vol. 417, 2021, doi: 10.1016/j.cej.2020.127973. | spa |
dc.relation.references | A. Habibollahzade, P. Ahmadi, and M. A. Rosen, “Biomass gasification using various gasification agents: Optimum feedstock selection, detailed numerical analyses and tri-objective grey wolf optimization,” J Clean Prod, vol. 284, 2021, doi: 10.1016/j.jclepro.2020.124718. | spa |
dc.relation.references | L. Chen and J. Shi, “Co-electrolysis toward value-added chemicals,” 2022. doi: 10.1007/s40843-021-1809-5. | spa |
dc.relation.references | N. Anoop et al., “Plasma catalysis: a feasible solution for carbon dioxide valorization?,” 2021. doi: 10.1007/s10098-021-02203-y. | spa |
dc.relation.references | N. M. Holden, A. M. Neill, J. C. Stout, D. O’Brien, and M. A. Morris, “Biocircularity: a Framework to Define Sustainable, Circular Bioeconomy,” Circular Economy and Sustainability, vol. 3, no. 1, 2023, doi: 10.1007/s43615-022-00180-y. | spa |
dc.relation.references | L. M. Alsarhan, A. S. Alayyar, N. B. Alqahtani, and N. H. Khdary, “Circular carbon economy (Cce): A way to invest co2 and protect the environment, a review,” 2021. doi: 10.3390/su132111625. | spa |
dc.relation.references | H. Naims, “Economic aspirations connected to innovations in carbon capture and utilization value chains,” J Ind Ecol, vol. 24, no. 5, 2020, doi: 10.1111/jiec.13003. | spa |
dc.relation.references | I. Kahupi, C. Eiríkur Hull, O. Okorie, and S. Millette, “Building competitive advantage with sustainable products – A case study perspective of stakeholders,” J Clean Prod, vol. 289, 2021, doi: 10.1016/j.jclepro.2020.125699. | spa |
dc.relation.references | L. J. Müller et al., “The carbon footprint of the carbon feedstock CO2,” Energy Environ Sci, vol. 13, no. 9, 2020, doi: 10.1039/d0ee01530j. | spa |
dc.relation.references | J. Annie Modestra, L. Matsakas, U. Rova, and P. Christakopoulos, “Prospects and trends in bioelectrochemical systems: Transitioning from CO2 towards a low-carbon circular bioeconomy,” Bioresour Technol, vol. 364, 2022, doi: 10.1016/j.biortech.2022.128040. | spa |
dc.relation.references | X. Yuan, C. W. Su, M. Umar, X. Shao, and O. R. LOBONŢ, “The race to zero emissions: Can renewable energy be the path to carbon neutrality?,” J Environ Manage, vol. 308, 2022, doi: 10.1016/j.jenvman.2022.114648. | spa |
dc.relation.references | V. Rodin, J. Lindorfer, H. Böhm, and L. Vieira, “Assessing the potential of carbon dioxide valorisation in Europe with focus on biogenic CO2,” Journal of CO2 Utilization, vol. 41, 2020, doi: 10.1016/j.jcou.2020.101219. | spa |
dc.relation.references | P. S. Fennell, N. Florin, T. Napp, and T. Hills, “CCS from industrial sources,” Sustainable Technologies, Systems & Policies, vol. 2012, no. 2, 2012, doi: 10.5339/stsp.2012.ccs.17. | spa |
dc.relation.references | K. Bäckstrand, J. Meadowcroft, and M. Oppenheimer, “The politics and policy of carbon capture and storage: Framing an emergent technology,” 2011. doi: 10.1016/j.gloenvcha.2011.03.008. | spa |
dc.relation.references | K. Hillstrom and L. Hillstrom, “Kyoto Protocol,” in Encyclopedia of the U.S. Government and the Environment: History, Policy, and Politics [2 volumes], vol. 2, 2010. | spa |
dc.relation.references | E. Dogan, M. Z. Chishti, N. Karimi Alavijeh, and P. Tzeremes, “The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries,” Technol Forecast Soc Change, vol. 181, 2022, doi: 10.1016/j.techfore.2022.121756. | spa |
dc.relation.references | R. Rehan and M. Nehdi, “Carbon dioxide emissions and climate change: Policy implications for the cement industry,” Environ Sci Policy, vol. 8, no. 2, 2005, doi: 10.1016/j.envsci.2004.12.006. | spa |
dc.relation.references | F. Dehdar, N. Silva, J. A. Fuinhas, M. Koengkan, and N. Nazeer, “The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions,” Energies (Basel), vol. 15, no. 22, 2022, doi: 10.3390/en15228486. | spa |
dc.relation.references | M. Zhao, B. Li, J. Ren, and Z. Hao, “Competition equilibrium of ride-sourcing platforms and optimal government subsidies considering customers’ green preference under peak carbon dioxide emissions,” Int J Prod Econ, vol. 255, 2023, doi: 10.1016/j.ijpe.2022.108679. | spa |
dc.relation.references | C. Che, Y. Chen, X. Zhang, and Z. Zhang, “The Impact of Different Government Subsidy Methods on Low-Carbon Emission Reduction Strategies in Dual-Channel Supply Chain,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/6668243. | spa |
dc.relation.references | C. Ma, H. Yang, W. Zhang, and S. Huang, “Low-carbon consumption with government subsidy under asymmetric carbon emission information,” J Clean Prod, vol. 318, 2021, doi: 10.1016/j.jclepro.2021.128423. | spa |
dc.relation.references | B. Holtsmark and M. L. Weitzman, “On the Effects of Linking Cap-and-Trade Systems for CO 2 Emissions,” Environ Resour Econ (Dordr), vol. 75, no. 3, 2020, doi: 10.1007/s10640-020-00401-8. | spa |
dc.relation.references | W. Chen, J. Chen, and Y. Ma, “Renewable energy investment and carbon emissions under cap-and-trade mechanisms,” J Clean Prod, vol. 278, 2021, doi: 10.1016/j.jclepro.2020.123341. | spa |
dc.relation.references | L. Ahmadi, M. Kannangara, and F. Bensebaa, “Cost-effectiveness of small scale biomass supply chain and bioenergy production systems in carbon credit markets: A life cycle perspective,” Sustainable Energy Technologies and Assessments, vol. 37, 2020, doi: 10.1016/j.seta.2019.100627. | spa |
dc.relation.references | A. Balmford et al., “Realizing the social value of impermanent carbon credits,” Nat Clim Chang, vol. 13, no. 11, 2023, doi: 10.1038/s41558-023-01815-0. | spa |
dc.relation.references | T. Koljonen, H. Siikavirta, R. Zevenhoven, and I. Savolainen, “CO2 capture, storage and reuse potential in Finland,” Energy, vol. 29, no. 9–10, 2004, doi: 10.1016/j.energy.2004.03.056. | spa |
dc.relation.references | M. M. F. Hasan, E. L. First, F. Boukouvala, and C. A. Floudas, “A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU,” Comput Chem Eng, vol. 81, 2015, doi: 10.1016/j.compchemeng.2015.04.034. | spa |
dc.relation.references | J. C. Solarte-Toro, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “Sustainability analysis of biorefineries based on country socio-economic and environmental context: A step-by-step way for the integral analysis of biomass upgrading processes,” Renew Energy, vol. 206, pp. 1147–1157, Apr. 2023, doi: 10.1016/j.renene.2023.02.065. | spa |
dc.relation.references | J. A. Poveda-Giraldo and C. A. Cardona Alzate, “Analysis of Sequential Pretreatments to Enhance the Early-Stage Biorefinery Designs,” Applied Sciences (Switzerland), vol. 13, no. 11, 2023, doi: 10.3390/app13116758. | spa |
dc.relation.references | A. A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications - A review,” 2010. doi: 10.1016/j.energy.2010.02.030. | spa |
dc.relation.references | J. Klemeš, I. Bulatov, and T. Cockerill, “Techno-economic modelling and cost functions of CO2 capture processes,” Comput Chem Eng, vol. 31, no. 5–6, 2007, doi: 10.1016/j.compchemeng.2006.06.002. | spa |
dc.relation.references | M. Mofarahi, Y. Khojasteh, H. Khaledi, and A. Farahnak, “Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine,” Energy, vol. 33, no. 8, 2008, doi: 10.1016/j.energy.2008.02.013. | spa |
dc.relation.references | C. H. Yu, C. H. Huang, and C. S. Tan, “A review of CO2 capture by absorption and adsorption,” 2012. doi: 10.4209/aaqr.2012.05.0132. | spa |
dc.relation.references | M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, “Post-combustion CO2 capture with chemical absorption: A state-of-the-art review,” Chemical Engineering Research and Design, vol. 89, no. 9, 2011, doi: 10.1016/j.cherd.2010.11.005. | spa |
dc.relation.references | W. H. Tay, K. K. Lau, and A. M. Shariff, “High frequency ultrasonic-assisted chemical absorption of CO2 using monoethanolamine (MEA),” Sep Purif Technol, vol. 183, 2017, doi: 10.1016/j.seppur.2017.03.068. | spa |
dc.relation.references | W. Huang, D. Zheng, H. Xie, Y. Li, and W. Wu, “Hybrid physical-chemical absorption process for carbon capture with strategy of high-pressure absorption/medium-pressure desorption,” Appl Energy, vol. 239, 2019, doi: 10.1016/j.apenergy.2019.02.007. | spa |
dc.relation.references | K. H. Smith, H. E. Ashkanani, B. I. Morsi, and N. S. Siefert, “Physical solvents and techno-economic analysis for pre-combustion CO2 capture: A review,” 2022. doi: 10.1016/j.ijggc.2022.103694. | spa |
dc.relation.references | J. Xu et al., “Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure,” J Memb Sci, vol. 581, 2019, doi: 10.1016/j.memsci.2019.03.052. | spa |
dc.relation.references | T. C. Merkel, M. Zhou, and R. W. Baker, “Carbon dioxide capture with membranes at an IGCC power plant,” J Memb Sci, vol. 389, 2012, doi: 10.1016/j.memsci.2011.11.012. | spa |
dc.relation.references | A. M. Arias, M. C. Mussati, P. L. Mores, N. J. Scenna, J. A. Caballero, and S. F. Mussati, “Optimization of multi-stage membrane systems for CO2 capture from flue gas,” International Journal of Greenhouse Gas Control, vol. 53, 2016, doi: 10.1016/j.ijggc.2016.08.005. | spa |
dc.relation.references | A. Perejón, L. M. Romeo, Y. Lara, P. Lisbona, A. Martínez, and J. M. Valverde, “The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior,” 2016. doi: 10.1016/j.apenergy.2015.10.121. | spa |
dc.relation.references | J. M. Valverde, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda, “Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2,” Appl Energy, vol. 126, 2014, doi: 10.1016/j.apenergy.2014.03.081. | spa |
dc.relation.references | P. Moldenhauer, C. Linderholm, M. Rydén, and A. Lyngfelt, “Avoiding CO2 capture effort and cost for negative CO2 emissions using industrial waste in chemical-looping combustion/gasification of biomass,” Mitig Adapt Strateg Glob Chang, vol. 25, no. 1, 2020, doi: 10.1007/s11027-019-9843-2. | spa |
dc.relation.references | P. Gayán, A. Abad, L. F. de Diego, F. García-Labiano, and J. Adánez, “Assessment of technological solutions for improving chemical looping combustion of solid fuels with CO2 capture,” Chemical Engineering Journal, vol. 233, 2013, doi: 10.1016/j.cej.2013.08.004. | spa |
dc.relation.references | J. Fan, H. Hong, L. Zhu, Q. Jiang, and H. Jin, “Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production,” Appl Energy, vol. 195, 2017, doi: 10.1016/j.apenergy.2017.03.093. | spa |
dc.relation.references | C. Hoeger, S. Burt, and L. Baxter, “Cryogenic Carbon CaptureTM Technoeconomic Analysis,” SSRN Electronic Journal, 2021, doi: 10.2139/ssrn.3820158. | spa |
dc.relation.references | Q. Li, Z. A. Chen, J.-T. Zhang, L.-C. Liu, X. C. Li, and L. Jia, “Positioning and revision of CCUS technology development in China,” International Journal of Greenhouse Gas Control, vol. 46, pp. 282–293, Mar. 2016, doi: 10.1016/j.ijggc.2015.02.024. | spa |
dc.relation.references | R. Ben-Mansour et al., “Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review,” 2016. doi: 10.1016/j.apenergy.2015.10.011. | spa |
dc.relation.references | B. Dziejarski, R. Krzyżyńska, and K. Andersson, “Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment,” 2023. doi: 10.1016/j.fuel.2023.127776. | spa |
dc.relation.references | I. P. Koronaki, L. Prentza, and V. Papaefthimiou, “Modeling of CO2 capture via chemical absorption processes - An extensive literature review,” 2015. doi: 10.1016/j.rser.2015.04.124. | spa |
dc.relation.references | M. Fang, N. Yi, W. Di, T. Wang, and Q. Wang, “Emission and control of flue gas pollutants in CO2 chemical absorption system – A review,” 2020. doi: 10.1016/j.ijggc.2019.102904. | spa |
dc.relation.references | A. M. Bukar and M. Asif, “Technology readiness level assessment of carbon capture and storage technologies,” Renewable and Sustainable Energy Reviews, vol. 200, p. 114578, Aug. 2024, doi: 10.1016/j.rser.2024.114578. | spa |
dc.relation.references | R. S. Liu et al., “Advances in Post-Combustion CO2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice,” 2021. doi: 10.1002/cssc.202002677. | spa |
dc.relation.references | S. Roussanaly and R. Anantharaman, “Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources,” Chemical Engineering Journal, vol. 327, 2017, doi: 10.1016/j.cej.2017.06.082. | spa |
dc.relation.references | M. Shen et al., “Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review,” Sep Purif Technol, vol. 299, 2022, doi: 10.1016/j.seppur.2022.121734. | spa |
dc.relation.references | R. L. Smith, G. J. Ruiz-Mercado, and M. A. Gonzalez, “Greenscope: A method for modeling chemical process sustainability,” in Sustainable Engineering Forum: Core Programming Topic at the 2011 AIChE Annual Meeting, 2011. | spa |
dc.relation.references | R. Notz, H. P. Mangalapally, and H. Hasse, “Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA,” International Journal of Greenhouse Gas Control, vol. 6, 2012, doi: 10.1016/j.ijggc.2011.11.004. | spa |
dc.relation.references | S. García, M. V. Gil, C. F. Martín, J. J. Pis, F. Rubiera, and C. Pevida, “Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture,” Chemical Engineering Journal, vol. 171, no. 2, 2011, doi: 10.1016/j.cej.2011.04.027. | spa |
dc.relation.references | L. Giordano, D. Roizard, and E. Favre, “Life cycle assessment of post-combustion CO2 capture: A comparison between membrane separation and chemical absorption processes,” International Journal of Greenhouse Gas Control, vol. 68, 2018, doi: 10.1016/j.ijggc.2017.11.008. | spa |
dc.relation.references | R. Chirone, A. Paulillo, A. Coppola, and F. Scala, “Carbon capture and utilization via calcium looping, sorption enhanced methanation and green hydrogen: A techno-economic analysis and life cycle assessment study,” Fuel, vol. 328, 2022, doi: 10.1016/j.fuel.2022.125255. | spa |
dc.relation.references | P. Bareschino, E. Mancusi, M. Urciuolo, A. Paulillo, R. Chirone, and F. Pepe, “Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization,” Renewable and Sustainable Energy Reviews, vol. 130, 2020, doi: 10.1016/j.rser.2020.109962. | spa |
dc.relation.references | G. A. Fimbres Weihs and D. E. Wiley, “Steady-state design of CO2 pipeline networks for minimal cost per tonne of CO2 avoided,” International Journal of Greenhouse Gas Control, vol. 8, 2012, doi: 10.1016/j.ijggc.2012.02.008. | spa |
dc.relation.references | S. G. Subraveti, S. Roussanaly, R. Anantharaman, L. Riboldi, and A. Rajendran, “How much can novel solid sorbents reduce the cost of post-combustion CO2 capture? A techno-economic investigation on the cost limits of pressure–vacuum swing adsorption,” Appl Energy, vol. 306, 2022, doi: 10.1016/j.apenergy.2021.117955. | spa |
dc.relation.references | D. C. Ozcan, M. Alonso, H. Ahn, J. C. Abanades, and S. Brandani, “Process and cost analysis of a biomass power plant with in situ calcium loopingCO2 capture process,” Ind Eng Chem Res, vol. 53, no. 26, 2014, doi: 10.1021/ie500606v. | spa |
dc.relation.references | P. Wang et al., “Advances in life cycle assessment of chemical absorption-based carbon capture technologies,” Sep Purif Technol, vol. 346, p. 127252, Oct. 2024, doi: 10.1016/j.seppur.2024.127252. | spa |
dc.relation.references | S. Deutz and A. Bardow, “Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption,” Nat Energy, vol. 6, no. 2, 2021, doi: 10.1038/s41560-020-00771-9. | spa |
dc.relation.references | E. Sanchez Fernandez, E. L. V. Goetheer, G. Manzolini, E. Macchi, S. Rezvani, and T. J. H. Vlugt, “Thermodynamic assessment of amine based CO2 capture technologies in power plants based on European Benchmarking Task Force methodology,” Fuel, vol. 129, 2014, doi: 10.1016/j.fuel.2014.03.042. | spa |
dc.relation.references | A. M. Plonka et al., “Mechanism of carbon dioxide adsorption in a highly selective coordination network supported by direct structural evidence,” Angewandte Chemie - International Edition, vol. 52, no. 6, 2013, doi: 10.1002/anie.201207808. | spa |
dc.relation.references | M. A. Vale, A. Ferreira, J. C. M. Pires, and G. A. L. Gonçalves, “CO2 capture using microalgae,” in Advances in Carbon Capture: Methods, Technologies and Applications, 2020. doi: 10.1016/B978-0-12-819657-1.00017-7. | spa |
dc.relation.references | W. Klinthong, Y. H. Yang, C. H. Huang, and C. S. Tan, “A Review: Microalgae and their applications in CO2 capture and renewable energy,” 2015. doi: 10.4209/aaqr.2014.11.0299. | spa |
dc.relation.references | A. Maghzian, A. Aslani, and R. Zahedi, “Review on the direct air CO2 capture by microalgae: Bibliographic mapping,” 2022. doi: 10.1016/j.egyr.2022.02.125. | spa |
dc.relation.references | B. Llamas, M. C. Suárez-Rodríguez, C. V. González-López, P. Mora, and F. G. Acién, “Techno-economic analysis of microalgae related processes for CO2 bio-fixation,” Algal Res, vol. 57, 2021, doi: 10.1016/j.algal.2021.102339. | spa |
dc.relation.references | H. Leflay, J. Pandhal, and S. Brown, “Direct measurements of CO2 capture are essential to assess the technical and economic potential of algal-CCUS,” Journal of CO2 Utilization, vol. 52, 2021, doi: 10.1016/j.jcou.2021.101657. | spa |
dc.relation.references | A. M. D. Al Ketife, F. Almomani, M. EL-Naas, and S. Judd, “A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf,” Process Safety and Environmental Protection, vol. 127, 2019, doi: 10.1016/j.psep.2019.05.003. | spa |
dc.relation.references | Thalis Environmental Services S.A., “Investing in the circular economy: Challenges and opportunities,” Chania, 2023. | spa |
dc.relation.references | R. Chauvy and G. De Weireld, “CO2 Utilization Technologies in Europe: A Short Review,” 2020. doi: 10.1002/ente.202000627. | spa |
dc.relation.references | J. Dexter and P. Fu, “Metabolic engineering of cyanobacteria for ethanol production,” Energy Environ Sci, vol. 2, no. 8, 2009, doi: 10.1039/b811937f. | spa |
dc.relation.references | J. Dexter, P. Armshaw, C. Sheahan, and J. T. Pembroke, “The state of autotrophic ethanol production in Cyanobacteria,” 2015. doi: 10.1111/jam.12821. | spa |
dc.relation.references | F. Kremer, L. M. Blank, P. R. Jones, and M. K. Akhtar, “A comparison of the microbial production and combustion characteristics of three alcohol biofuels: Ethanol, 1-butanol, and 1-octanol,” 2015. doi: 10.3389/fbioe.2015.00112. | spa |
dc.relation.references | H. Jeon, B. Jeong, J. Joo, and J. Lee, “Electrocatalytic Oxidation of Formic Acid: Closing the Gap Between Fundamental Study and Technical Applications,” 2015. doi: 10.1007/s12678-014-0226-x. | spa |
dc.relation.references | M. Rumayor, A. Dominguez-Ramos, and A. Irabien, “Formic Acid manufacture: Carbon dioxide utilization alternatives,” Applied Sciences (Switzerland), vol. 8, no. 6, 2018, doi: 10.3390/app8060914. | spa |
dc.relation.references | X. Lu, D. Y. C. Leung, H. Wang, M. K. H. Leung, and J. Xuan, “Electrochemical Reduction of Carbon Dioxide to Formic Acid,” ChemElectroChem, vol. 1, no. 5, 2014, doi: 10.1002/celc.201300206. | spa |
dc.relation.references | U. Fegade and G. Jethave, “Conversion of Carbon Dioxide into Formic Acid,” 2020. doi: 10.1007/978-3-030-28638-5_4. | spa |
dc.relation.references | A. M. Parvez, I. M. Mujtaba, and T. Wu, “Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification,” Energy, vol. 94, 2016, doi: 10.1016/j.energy.2015.11.022. | spa |
dc.relation.references | N. Sadhwani, S. Adhikari, and M. R. Eden, “Biomass Gasification Using Carbon Dioxide: Effect of Temperature, CO2/C Ratio, and the Study of Reactions Influencing the Process,” Ind Eng Chem Res, vol. 55, no. 10, 2016, doi: 10.1021/acs.iecr.5b04000. | spa |
dc.relation.references | A. Adil and L. Rao, “Methanol production from biomass: Analysis and optimization,” Mater Today Proc, vol. 57, 2022, doi: 10.1016/j.matpr.2021.12.450. | spa |
dc.relation.references | A. Abdalazeez, T. Li, W. Wang, and S. Abuelgasim, “A brief review of CO2utilization for alkali carbonate gasification and biomass/coal co-gasification: Reactivity, products and process,” Journal of CO2 Utilization, vol. 43, 2021, doi: 10.1016/j.jcou.2020.101370. | spa |
dc.relation.references | T. Hanaoka, S. Hiasa, and Y. Edashige, “Syngas production by CO2/O2 gasification of aquatic biomass,” Fuel Processing Technology, vol. 116, 2013, doi: 10.1016/j.fuproc.2013.03.049. | spa |
dc.relation.references | H. H. Bui, L. Wang, K. Q. Tran, and Ø. Skreiberg, “CO2 gasification of charcoals produced at various pressures,” Fuel Processing Technology, vol. 152, 2016, doi: 10.1016/j.fuproc.2016.06.033. | spa |
dc.relation.references | C. Gai and Y. Dong, “Experimental study on non-woody biomass gasification in a downdraft gasifier,” Int J Hydrogen Energy, vol. 37, no. 6, 2012, doi: 10.1016/j.ijhydene.2011.12.031. | spa |
dc.relation.references | P. Saavalainen et al., “Sustainability assessment of chemical processes: Evaluation of three synthesis routes of DMC,” J Chem, vol. 2015, 2015, doi: 10.1155/2015/402315. | spa |
dc.relation.references | A. Bansode and A. Urakawa, “Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent,” ACS Catal, vol. 4, no. 11, 2014, doi: 10.1021/cs501221q. | spa |
dc.relation.references | D. Zhu, H. Liu, Y. Huang, X. Luo, Y. Mao, and Z. Liang, “Study of Direct Synthesis of DMC from CO2and Methanol on CeO2: Theoretical Calculation and Experiment,” Ind Eng Chem Res, vol. 61, no. 30, 2022, doi: 10.1021/acs.iecr.2c01522. | spa |
dc.relation.references | L. F. S. Souza, P. R. R. Ferreira, J. L. De Medeiros, R. M. B. Alves, and O. Q. F. Araújo, “Production of DMC from CO2 via indirect route: Technical-economical-environmental assessment and analysis,” ACS Sustain Chem Eng, vol. 2, no. 1, 2014, doi: 10.1021/sc400279n. | spa |
dc.relation.references | T. N. Do and J. Kim, “Process development and techno-economic evaluation of methanol production by direct CO2 hydrogenation using solar-thermal energy,” Journal of CO2 Utilization, vol. 33, 2019, doi: 10.1016/j.jcou.2019.07.003. | spa |
dc.relation.references | Z. Gao, H. Zhao, Z. Li, X. Tan, and X. Lu, “Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria,” Energy Environ Sci, vol. 5, no. 12, 2012, doi: 10.1039/c2ee22675h. | spa |
dc.relation.references | M. Rumayor, A. Dominguez-Ramos, P. Perez, and A. Irabien, “A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture,” Journal of CO2 Utilization, vol. 34, 2019, doi: 10.1016/j.jcou.2019.07.024. | spa |
dc.relation.references | M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison, and E. Tzimas, “Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential,” Int J Hydrogen Energy, vol. 41, no. 37, pp. 16444–16462, Oct. 2016, doi: 10.1016/j.ijhydene.2016.05.199. | spa |
dc.relation.references | P. Kongpanna, V. Pavarajarn, R. Gani, and S. Assabumrungrat, “Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production,” Chemical Engineering Research and Design, vol. 93, 2015, doi: 10.1016/j.cherd.2014.07.013. | spa |
dc.relation.references | S. Sollai, A. Porcu, V. Tola, F. Ferrara, and A. Pettinau, “Renewable methanol production from green hydrogen and captured CO2: A techno-economic assessment,” Journal of CO2 Utilization, vol. 68, 2023, doi: 10.1016/j.jcou.2022.102345. | spa |
dc.relation.references | J. Kim et al., “Methanol production from CO 2 using solar-thermal energy: Process development and techno-economic analysis,” Energy Environ Sci, vol. 4, no. 9, 2011, doi: 10.1039/c1ee01311d. | spa |
dc.relation.references | S. W. Wang, D. X. Li, W. B. Ruan, C. L. Jin, and M. R. Farahani, “A techno-economic review of biomass gasification for production of chemicals,” 2018. doi: 10.1080/15567249.2017.1349212. | spa |
dc.relation.references | L. Van de steene, J. P. Tagutchou, F. J. Escudero Sanz, and S. Salvador, “Gasification of woodchip particles: Experimental and numerical study of char-H2O, char-CO2, and char-O2 reactions,” Chem Eng Sci, vol. 66, no. 20, 2011, doi: 10.1016/j.ces.2011.05.045. | spa |
dc.relation.references | V. Kontou, D. Grimekis, K. Braimakis, and S. Karellas, “Techno-economic assessment of dimethyl carbonate production based on carbon capture and utilization and power-to-fuel technology,” Renewable and Sustainable Energy Reviews, vol. 157, p. 112006, Apr. 2022, doi: 10.1016/j.rser.2021.112006. | spa |
dc.relation.references | B. Pandey, P. N. Sheth, and Y. K. Prajapati, “Air-CO2 and oxygen-enriched air-CO2 biomass gasification in an autothermal downdraft gasifier: Experimental studies,” Energy Convers Manag, vol. 270, p. 116216, Oct. 2022, doi: 10.1016/j.enconman.2022.116216. | spa |
dc.relation.references | M. Policella, Z. Wang, K. G. Burra, and A. K. Gupta, “Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires,” Appl Energy, vol. 254, 2019, doi: 10.1016/j.apenergy.2019.113678. | spa |
dc.relation.references | M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, and E. Tzimas, “Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment,” Appl Energy, vol. 161, 2016, doi: 10.1016/j.apenergy.2015.07.067. | spa |
dc.relation.references | Z. Barahmand and M. S. Eikeland, “A Scoping Review on Environmental, Economic, and Social Impacts of the Gasification Processes,” 2022. doi: 10.3390/environments9070092. | spa |
dc.relation.references | D. Iribarren, R. Calvo-Serrano, M. Martín-Gamboa, Á. Galán-Martín, and G. Guillén-Gosálbez, “Social life cycle assessment of green methanol and benchmarking against conventional fossil methanol,” Science of the Total Environment, vol. 824, 2022, doi: 10.1016/j.scitotenv.2022.153840. | spa |
dc.relation.references | D. Baur, P. Emmerich, M. J. Baumann, and M. Weil, “Assessing the social acceptance of key technologies for the German energy transition,” Energy Sustain Soc, vol. 12, no. 1, 2022, doi: 10.1186/s13705-021-00329-x. | spa |
dc.relation.references | ASTM E872-82, “Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels 1,” ASTM International, pp. 1–3, 2013, doi: 10.1520/E0872-82R13.2. | spa |
dc.relation.references | ASTM D1102-84, “Standard Test Method for ASH in Wood,” ASTM International, pp. 1–2, 2013, doi: 10.1520/D1102-84R13.1. | spa |
dc.relation.references | J. Shen, S. Zhu, X. Liu, H. Zhang, and J. Tan, “The prediction of elemental composition of biomass based on proximate analysis,” Energy Convers Manag, vol. 51, no. 5, 2010, doi: 10.1016/j.enconman.2009.11.039. | spa |
dc.relation.references | A. F. Rojas Gonzalez and C. Flórez Montes, “Valorización de residuos de frutas para combustión y pirólisis,” Revista Politécnica, vol. 15, no. 28, 2019, doi: 10.33571/rpolitec.v15n28a4. | spa |
dc.relation.references | R. Conti, D. Fabbri, I. Vassura, and L. Ferroni, “Comparison of chemical and physical indices of thermal stability of biochars from different biomass by analytical pyrolysis and thermogravimetry,” J Anal Appl Pyrolysis, vol. 122, 2016, doi: 10.1016/j.jaap.2016.10.003. | spa |
dc.relation.references | J. C. Solarte-Toro, “Oil palm rachis gasification for synthesis gas production Oil palm rachis gasification for synthesis gas production,” Universidad Nacional de Colombia, Manizales, 2017. | spa |
dc.relation.references | Y. Shen, X. Li, Z. Yao, X. Cui, and C. H. Wang, “CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier,” Energy, vol. 170, 2019, doi: 10.1016/j.energy.2018.12.176. | spa |
dc.relation.references | A. M. Mauerhofer et al., “Conversion of CO2 during the DFB biomass gasification process,” Biomass Convers Biorefin, vol. 11, no. 1, 2021, doi: 10.1007/s13399-020-00822-x. | spa |
dc.relation.references | H. Li, M. Tang, X. Huang, L. Wang, Q. Liu, and S. Lu, “An efficient biochar adsorbent for CO2 capture: Combined experimental and theoretical study on the promotion mechanism of N-doping,” Chemical Engineering Journal, vol. 466, 2023, doi: 10.1016/j.cej.2023.143095. | spa |
dc.relation.references | G. Singh et al., “Biomass derived porous carbon for CO 2 capture,” 2019. doi: 10.1016/j.carbon.2019.03.050. | spa |
dc.relation.references | M. Ramdin et al., “High-Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: Effect of pH on the Downstream Separation Process and Economics,” Ind Eng Chem Res, vol. 58, no. 51, 2019, doi: 10.1021/acs.iecr.9b03970. | spa |
dc.relation.references | S. Lee et al., “Sustainable production of HCOOH via an electrolytic reduction of gas-phase 12 CO 2,” J. Name, vol. 00, 2013. | spa |
dc.relation.references | D. Hasan, I. Mahmood, I. Ahmad, F. Aziz, and I. Ahmad, “Development of an HPLC method for formic acid analysis through peak exclusion approach,” Sains Malays, vol. 48, no. 5, 2019, doi: 10.17576/jsm-2019-4805-09. | spa |
dc.relation.references | Z. Fu and Y. Meng, “Research Progress in the Phosgene-Free and Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol,” in Chemistry Beyond Chlorine, Cham: Springer International Publishing, 2016, pp. 363–385. doi: 10.1007/978-3-319-30073-3_13. | spa |
dc.relation.references | Y. Wen et al., “Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2,” Polish Journal of Chemical Technology, vol. 17, no. 1, 2015, doi: 10.1515/pjct-2015-0010. | spa |
dc.relation.references | L. Terborg, S. Weber, S. Passerini, M. Winter, U. Karst, and S. Nowak, “Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes,” J Power Sources, vol. 245, 2014, doi: 10.1016/j.jpowsour.2013.07.030. | spa |
dc.relation.references | B. Betancur-Corredor, J. C. Loaiza-Usuga, M. Denich, and C. Borgemeister, “Gold mining as a potential driver of development in Colombia: Challenges and opportunities,” 2018. doi: 10.1016/j.jclepro.2018.07.142. | spa |
dc.relation.references | J. Leibovich, J. M. Izquierdo, C. Córdoba, J. Méndez, and V. Gómez, “Informe de gestión Federación Nacional de Cafeteros 2023,” Bogotá, 2023. doi: 10.38141/10793. | spa |
dc.relation.references | E. Fajardo, “Informe de sostenibilidad Alpina 2023,” Bogotá, 2023. Accessed: Nov. 20, 2024. [Online]. Available: https://www.alpinasostenible.com/ | spa |
dc.relation.references | A. M. Celis, “Informe de sostenibilidad Productos Ramo 2023,” Bogotá, 2023. Accessed: Nov. 20, 2024. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ramo.com.co/wp-content/uploads/2024/08/Ramo-Informe-de-Gestion-Integrado-2023.pdf | spa |
dc.relation.references | J. D. Mejía Mejía, “Informe de sostenibilidad Esenttia 2023,” Cartagena, 2023. Accessed: Nov. 20, 2024. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.esenttia.co/wp-content/uploads/2024/07/Informe-ESENTTIA-2023-web.pdf | spa |
dc.relation.references | F. Aristizábal, “Informe de sostenibilidad Cementos Argos 2023,” Bogotá, 2023. Accessed: Nov. 20, 2024. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://argos.co/wp-content/uploads/2024/02/TCFD-2023.pdf | spa |
dc.relation.references | H. Hikita, S. Asai, H. Ishikawa, and M. Honda, “The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method,” The Chemical Engineering Journal, vol. 13, no. 1, 1977, doi: 10.1016/0300-9467(77)80002-6. | spa |
dc.relation.references | B. R. W. Pinsent, L. Pearson, and F. J. W. Roughton, “The kinetics of combination of carbon dioxide with hydroxide ions,” Transactions of the Faraday Society, vol. 52, 1956, doi: 10.1039/tf9565201512. | spa |
dc.relation.references | S. Ehira, T. Takeuchi, and A. Higo, “Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria,” Appl Microbiol Biotechnol, vol. 102, no. 3, 2018, doi: 10.1007/s00253-017-8620-y. | spa |
dc.relation.references | J. K. Heffernan et al., “Enhancing CO2-Valorization Using Clostridium autoethanogenum for Sustainable Fuel and Chemicals Production,” Front Bioeng Biotechnol, vol. 8, 2020, doi: 10.3389/fbioe.2020.00204. | spa |
dc.relation.references | R. Velmurugan and A. Incharoensakdi, “Heterologous Expression of Ethanol Synthesis Pathway in Glycogen Deficient Synechococcus elongatus PCC 7942 Resulted in Enhanced Production of Ethanol and Exopolysaccharides,” Front Plant Sci, vol. 11, 2020, doi: 10.3389/fpls.2020.00074. | spa |
dc.relation.references | N. J. Oliver, C. A. Rabinovitch-Deere, A. L. Carroll, N. E. Nozzi, A. E. Case, and S. Atsumi, “Cyanobacterial metabolic engineering for biofuel and chemical production,” 2016. doi: 10.1016/j.cbpa.2016.08.023. | spa |
dc.relation.references | Y. Hirokawa, Y. Dempo, E. Fukusaki, and T. Hanai, “Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions,” J Biosci Bioeng, vol. 123, no. 1, 2017, doi: 10.1016/j.jbiosc.2016.07.005. | spa |
dc.relation.references | A. Hemmati-Sarapardeh, M. N. Amar, M. R. Soltanian, Z. Dai, and X. Zhang, “Modeling CO2 Solubility in Water at High Pressure and Temperature Conditions,” Energy and Fuels, vol. 34, no. 4, 2020, doi: 10.1021/acs.energyfuels.0c00114. | spa |
dc.relation.references | M. Rahman, “Application of metabolic engineering in industrial fermentative process,” in Advances in Food Biotechnology, 2015. doi: 10.1002/9781118864463.ch13. | spa |
dc.relation.references | Y. Shang et al., “Nutrient enhanced reclamation promoted growth, diversity and activities of carbon fixing microbes in a coal-mining subsistence land,” Soil Science and Environment, vol. 2, no. 1, 2023, doi: 10.48130/sse-2023-0002. | spa |
dc.relation.references | Y. N. Choi, J. W. Lee, J. W. Kim, and J. M. Park, “Acetyl-CoA-derived biofuel and biochemical production in cyanobacteria: a mini review,” J Appl Phycol, vol. 32, no. 3, 2020, doi: 10.1007/s10811-020-02128-x. | spa |
dc.relation.references | Q. Wang et al., “A novel bifunctional aldehyde/alcohol dehydrogenase catalyzing reduction of acetyl-CoA to ethanol at temperatures up to 95 °C,” Sci Rep, vol. 11, no. 1, 2021, doi: 10.1038/s41598-020-80159-7. | spa |
dc.relation.references | J. L. F. Alves, V. F. da Silva Filho, R. A. F. Machado, and C. Marangoni, “Ethanol enrichment from an aqueous stream using an innovative multi-tube falling film distillation column equipped with a biphasic thermosiphon,” Process Safety and Environmental Protection, vol. 139, 2020, doi: 10.1016/j.psep.2020.03.039. | spa |
dc.relation.references | J. B. Vennekötter, T. Scheuermann, R. Sengpiel, and M. Wessling, “The electrolyte matters: Stable systems for high rate electrochemical CO2 reduction,” Journal of CO2 Utilization, vol. 32, 2019, doi: 10.1016/j.jcou.2019.04.007. | spa |
dc.relation.references | X. Ge, R. Zhang, P. Liu, B. Liu, and B. Liu, “Optimization and control of extractive distillation for formic acid-water separation with maximum-boiling azeotrope,” Comput Chem Eng, vol. 169, 2023, doi: 10.1016/j.compchemeng.2022.108075. | spa |
dc.relation.references | J. Xu et al., “Mild and efficient extraction of hardwood hemicellulose using recyclable formic acid/water binary solvent,” Bioresour Technol, vol. 254, pp. 353–356, Apr. 2018, doi: 10.1016/j.biortech.2018.01.094. | spa |
dc.relation.references | A. L. Cerón, A. Konist, H. Lees, and O. Järvik, “Effect of woody biomass gasification process conditions on the composition of the producer gas,” Sustainability (Switzerland), vol. 13, no. 21, 2021, doi: 10.3390/su132111763. | spa |
dc.relation.references | S. Safarian, R. Unnthorsson, and C. Richter, “Hydrogen production via biomass gasification: simulation and performance analysis under different gasifying agents,” Biofuels, vol. 13, no. 6, 2022, doi: 10.1080/17597269.2021.1894781. | spa |
dc.relation.references | B. V. Babu and P. N. Sheth, “Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor,” Energy Convers Manag, vol. 47, no. 15–16, 2006, doi: 10.1016/j.enconman.2005.10.032. | spa |
dc.relation.references | J. Han et al., “Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus,” Energy Convers Manag, vol. 153, 2017, doi: 10.1016/j.enconman.2017.10.030. | spa |
dc.relation.references | D. J. Faria, L. Moreira dos Santos, F. L. Bernard, I. Selbacch Pinto, M. A. Carmona da Motta Resende, and S. Einloft, “Dehydrating agent effect on the synthesis of dimethyl carbonate (DMC) directly from methanol and carbon dioxide,” RSC Adv, vol. 10, no. 57, 2020, doi: 10.1039/d0ra06034h. | spa |
dc.relation.references | T. W. Wu and I. L. Chien, “CO2 Utilization Feasibility Study: Dimethyl Carbonate Direct Synthesis Process with Dehydration Reactive Distillation,” Ind Eng Chem Res, vol. 59, no. 3, 2020, doi: 10.1021/acs.iecr.9b05476. | spa |
dc.relation.references | É. S. Van-Dal and C. Bouallou, “Design and simulation of a methanol production plant from CO2 hydrogenation,” J Clean Prod, vol. 57, 2013, doi: 10.1016/j.jclepro.2013.06.008. | spa |
dc.relation.references | S. Ren et al., “Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation,” Journal of CO2 Utilization, vol. 36, 2020, doi: 10.1016/j.jcou.2019.11.013. | spa |
dc.relation.references | A. Adil, B. Prasad, and L. Rao, “Methanol generation from bio-syngas: experimental analysis and modeling studies,” Environ Dev Sustain, vol. 26, no. 8, 2024, doi: 10.1007/s10668-023-03541-1. | spa |
dc.relation.references | A. M. Ribeiro, J. C. Santos, A. E. Rodrigues, and S. Rifflart, “Syngas Stoichiometric Adjustment for Methanol Production and Co-Capture of Carbon Dioxide by Pressure Swing Adsorption,” Sep Sci Technol, vol. 47, no. 6, 2012, doi: 10.1080/01496395.2011.637282. | spa |
dc.relation.references | H.-Z. Tan et al., “Review on the synthesis of dimethyl carbonate,” Catal Today, vol. 316, pp. 2–12, Oct. 2018, doi: 10.1016/j.cattod.2018.02.021. | spa |
dc.relation.references | D. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson, “Syngas production for gas-to-liquids applications: Technologies, issues and outlook,” Fuel Processing Technology, vol. 71, no. 1–3, 2001, doi: 10.1016/S0378-3820(01)00140-0. | spa |
dc.relation.references | F. Schorn et al., “Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations,” Advances in Applied Energy, vol. 3, 2021, doi: 10.1016/j.adapen.2021.100050. | spa |
dc.relation.references | Z. Sajid, M. A. B. Da Silva, and S. N. Danial, “Historical analysis of the role of governance systems in the sustainable development of biofuels in Brazil and the United States of America (USA),” Sustainability (Switzerland), vol. 13, no. 12, 2021, doi: 10.3390/su13126881. | spa |
dc.relation.references | G. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability indicators for chemical processes: II. Data needs,” Ind Eng Chem Res, vol. 51, no. 5, 2012, doi: 10.1021/ie200755k. | spa |
dc.relation.references | C. A. Rueda-Duran, M. Ortiz-Sanchez, and C. A. Cardona-Alzate, “Detailed economic assessment of polylactic acid production by using glucose platform: sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials,” Biomass Convers Biorefin, 2022, doi: 10.1007/s13399-022-02501-5. | spa |
dc.relation.references | S. Kim, W. Ko, S. Youn, R. Gao, Y. Chung, and S. Bang, “Advanced Depreciation Cost Analysis for a Commercial Pyroprocess Facility in Korea,” Nuclear Engineering and Technology, vol. 48, no. 3, 2016, doi: 10.1016/j.net.2016.01.013. | spa |
dc.relation.references | M. S. Peters and K. D. Timmerhaus, Plant Design and Costing for Chemical Engineers. 1991. | spa |
dc.relation.references | J. C. Solarte-Toro, “Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case,” Doctoral thesis, Universidad Nacional de Colombia, Manizales, 2022. | spa |
dc.relation.references | R. Polo-Mendoza et al., “Environmental and economic feasibility of implementing perpetual pavements (PPs) against conventional pavements: A case study of Barranquilla city, Colombia,” Case Studies in Construction Materials, vol. 18, 2023, doi: 10.1016/j.cscm.2023.e02112. | spa |
dc.relation.references | Z. Wu, Z. Zhang, G. Xu, S. Ge, X. Xue, and H. Chen, “Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle,” Energy, vol. 300, p. 131647, Aug. 2024, doi: 10.1016/j.energy.2024.131647. | spa |
dc.relation.references | G. Prieto-Rodriguez and O. Garcia-Bedoya, “Public transportation system fare, economic impacts on the purchasing power of its users, the case of Bogotá, Colombia,” Scientific Journal of Silesian University of Technology. Series Transport, vol. 123, pp. 245–257, Jun. 2024, doi: 10.20858/sjsutst.2024.123.12. | spa |
dc.relation.references | Z. Yan et al., “Integrated Process of Monoethanolamine-Based CO2Absorption and CO2Mineralization with SFGD Slag: Process Simulation and Life-Cycle Assessment of CO2Emission,” ACS Sustain Chem Eng, vol. 9, no. 24, 2021, doi: 10.1021/acssuschemeng.1c02278. | spa |
dc.relation.references | Z. Huang, R. G. Grim, J. A. Schaidle, and L. Tao, “The economic outlook for converting CO 2 and electrons to molecules,” Energy Environ Sci, vol. 14, no. 7, pp. 3664–3678, 2021, doi: 10.1039/D0EE03525D. | spa |
dc.relation.references | J. Marcinkoski et al., “DOE Hydrogen and Fuel Cells Program Record,” DOE Hydrogen and Fuel Cells Program Record Record, 2015. | spa |
dc.relation.references | V. Aristizábal-Marulanda, J. C. Solarte-Toro, and C. A. Cardona Alzate, “Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia,” Bioresour Technol Rep, vol. 9, 2020, doi: 10.1016/j.biteb.2020.100397. | spa |
dc.relation.references | L. Lombardi, A. Corti, E. Carnevale, R. Baciocchi, and D. Zingaretti, “Carbon dioxide removal and capture for landfill gas up-grading,” in Energy Procedia, 2011. doi: 10.1016/j.egypro.2011.01.076. | spa |
dc.relation.references | Intratec solutions, “Potassium Carbonate Prices | Historical and Current.” Accessed: Oct. 17, 2024. [Online]. Available: https://www.intratec.us/chemical-markets/potassium-carbonate-price | spa |
dc.relation.references | A. P. Sibal, R. Ghosh, D. W. Flaherty, and A. S. Stillwell, “Setting benchmarks for ethylene and propylene oxidation via electrochemical routes: a process design and technoeconomic analysis approach,” Green Chemistry, vol. 26, no. 17, pp. 9455–9475, 2024, doi: 10.1039/D4GC02672A. | spa |
dc.relation.references | T. Zaiz, H. Lanez, and B. Kechida, “Aspen Hysys Simulation And Comparison Between Organic Solvents (sulfolane And Dmso) Used For Benzene Extraction,” Jun. 2013. Accessed: Oct. 17, 2024. [Online]. Available: https://www.asjp.cerist.dz/en/article/4592 | spa |
dc.relation.references | C. Valderrama, V. Quintero, and V. Kafarov, “Energy and water optimization of an integrated bioethanol production process from molasses and sugarcane bagasse: A Colombian case,” Fuel, vol. 260, 2020, doi: 10.1016/j.fuel.2019.116314. | spa |
dc.relation.references | S. Piedrahita-Rodríguez et al., “Strategy for the analysis of lignocellulosic biomass to select a viable transformation route in the Colombian context,” Environmental Science and Pollution Research, May 2024, doi: 10.1007/s11356-024-32975-x. | spa |
dc.relation.references | Methanol Institute, “Methanol price and supply/demand.” Accessed: Oct. 17, 2024. [Online]. Available: https://www.methanol.org/methanol-price-supply-demand/ | spa |
dc.relation.references | C. N. Bonacina, M. C. Romano, P. Colbertaldo, A. Milocco, and G. Valenti, “Techno-economic study of chimneyless electric arc furnace plants for the coproduction of steel and of electricity, hydrogen, or methanol,” J Clean Prod, vol. 468, p. 143048, Aug. 2024, doi: 10.1016/j.jclepro.2024.143048. | spa |
dc.relation.references | A. Abdeljaber, O. Mostafa, and M. Abdallah, “Applications of Life Cycle Costing in Waste-to-Energy Projects,” in Environmental Footprints and Eco-Design of Products and Processes, vol. Part F1544, 2023. doi: 10.1007/978-3-031-40993-6_4. | spa |
dc.relation.references | R. X. Jiménez, A. F. Young, and H. L. S. Fernandes, “Propylene glycol from glycerol: Process evaluation and break-even price determination,” Renew Energy, vol. 158, pp. 181–191, Oct. 2020, doi: 10.1016/j.renene.2020.05.126. | spa |
dc.relation.references | E. Hernández, A. Belinchón, E. R. Pachón, P. Navarro, and J. Palomar, “Toward Sustainable and Cost‐Effective CO2 Conversion Processes to Propylene Carbonate Based on Ionic Liquids,” Adv Sustain Syst, vol. 6, no. 12, Dec. 2022, doi: 10.1002/adsu.202200384. | spa |
dc.relation.references | R. Turton, Analysis, Synthesis, and Design of Chemical Processes Fourth Edition, vol. 53, no. 9. 2013. | spa |
dc.relation.references | J. C. Solarte-Toro, C. A. Rueda-Duran, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion,” Bioresour Technol Rep, vol. 15, p. 100776, Sep. 2021, doi: 10.1016/J.BITEB.2021.100776. | spa |
dc.relation.references | K. V. Mora Aguilar, “Con bonos de $20.500 es posible combatir las emisiones de carbono de las empresas,” Bonos sostenibles, Bogotá, Oct. 03, 2023. Accessed: Nov. 22, 2024. [Online]. Available: https://www.larepublica.co/especiales/bonos-sostenibles/con-bonos-de-20-500-es-posible-combatir-las-emisiones-de-carbono-de-las-empresas-3722112 | spa |
dc.relation.references | W. Klöpffer, “The critical review of life cycle assessment studies according to ISO 14040 and 14044,” 2012. doi: 10.1007/s11367-012-0426-7. | spa |
dc.relation.references | L. J. Müller, A. Kätelhön, M. Bachmann, A. Zimmermann, A. Sternberg, and A. Bardow, “A Guideline for Life Cycle Assessment of Carbon Capture and Utilization,” Front Energy Res, vol. 8, 2020, doi: 10.3389/fenrg.2020.00015. | spa |
dc.relation.references | J. C. Solarte-Toro, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “Environmental life cycle assessment (E-LCA) and social impact assessment (SIA) of small-scale biorefineries implemented in rural zones: the avocado (Persea Americana var. Americana) case in Colombia,” Environmental Science and Pollution Research, vol. 30, no. 4, pp. 8790–8808, Jun. 2022, doi: 10.1007/s11356-022-20857-z. | spa |
dc.relation.references | J. C. Solarte-Toro, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “Sustainability analysis of biorefineries based on country socio-economic and environmental context: A step-by-step way for the integral analysis of biomass upgrading processes,” Renew Energy, vol. 206, pp. 1147–1157, Apr. 2023, doi: 10.1016/j.renene.2023.02.065. | spa |
dc.relation.references | S. Y. Kpalo, M. F. Zainuddin, L. A. Manaf, and A. M. Roslan, “Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique,” Sustainability (Switzerland), vol. 12, no. 6, 2020, doi: 10.3390/su12062468. | spa |
dc.relation.references | D. Supramono, Julianto, Haqqyana, H. Setiadi, and M. Nasikin, “Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene,” in IOP Conference Series: Earth and Environmental Science, 2017. doi: 10.1088/1755-1315/93/1/012072. | spa |
dc.relation.references | E. Daouk, L. Van De Steene, F. Paviet, and S. Salvador, “Oxidative pyrolysis of a large wood particle: Effects of oxygen concentration and of particle size,” Chem Eng Trans, vol. 37, 2014, doi: 10.3303/CET1437013. | spa |
dc.relation.references | S. Ramos-Carmona, S. Delgado-Balcázar, and J. F. Pérez, “Physicochemical characterization of torrefied wood biomass under air as oxidizing atmosphere,” Bioresources, vol. 12, no. 3, 2017, doi: 10.15376/biores.12.3.5428-5448. | spa |
dc.relation.references | D. Antolini, A. S. Shivananda, F. Patuzzi, M. Grigiante, and M. Baratieri, “Experimental and modeling analysis of Air and CO2 biomass gasification in a reverse lab scale downdraft gasifier,” in Energy Procedia, 2019. doi: 10.1016/j.egypro.2019.01.304. | spa |
dc.relation.references | Z. Yao, S. You, T. Ge, and C. H. Wang, “Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation,” Appl Energy, vol. 209, 2018, doi: 10.1016/j.apenergy.2017.10.077. | spa |
dc.relation.references | K. Intani, S. Latif, M. S. Islam, and J. Müller, “Phytotoxicity of corncob biochar before and after heat treatment and washing,” Sustainability (Switzerland), vol. 11, no. 1, 2019, doi: 10.3390/su11010030. | spa |
dc.relation.references | T. Adekanye, O. Dada, and J. Kolapo, “Pyrolysis of maize cob at different temperatures for biochar production: Proximate, ultimate and spectroscopic characterisation,” Research in Agricultural Engineering, vol. 68, no. 1, 2022, doi: 10.17221/106/2020-RAE. | spa |
dc.relation.references | J. Gutiérrez, A. Rubio-Clemente, and J. F. Pérez, “ANALYSIS OF BIOCHARS PRODUCED FROM THE GASIFICATION OF Pinus Patula PELLETS AND CHIPS AS SOIL AMENDMENTS,” Maderas: Ciencia y Tecnologia, vol. 24, 2022, doi: 10.4067/S0718-221X2022000100449. | spa |
dc.relation.references | D. Zhou et al., “Role of Ash Content in Biochar for Copper Immobilization,” Environ Eng Sci, vol. 33, no. 12, 2016, doi: 10.1089/ees.2016.0042. | spa |
dc.relation.references | T. Wang, M. Camps-Arbestain, M. Hedley, and P. Bishop, “Predicting phosphorus bioavailability from high-ash biochars,” Plant Soil, vol. 357, no. 1, 2012, doi: 10.1007/s11104-012-1131-9. | spa |
dc.relation.references | F. Güleç, O. Williams, E. T. Kostas, A. Samson, and E. Lester, “A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction,” Energy Convers Manag, vol. 270, 2022, doi: 10.1016/j.enconman.2022.116260. | spa |
dc.relation.references | B. Tasim et al., “Quality evaluation of biochar prepared from different agricultural residues,” Sarhad Journal of Agriculture, vol. 35, no. 1, 2019, doi: 10.17582/journal.sja/2019/35.1.134.143. | spa |
dc.relation.references | P. C. Kuo and W. Wu, “Thermodynamic analysis of a combined heat and power system with CO2 utilization based on co-gasification of biomass and coal,” Chem Eng Sci, vol. 142, 2016, doi: 10.1016/j.ces.2015.11.030. | spa |
dc.relation.references | K. Im-Orb, L. Simasatitkul, and A. Arpornwichanop, “Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification,” Fuel, vol. 164, 2016, doi: 10.1016/j.fuel.2015.10.018. | spa |
dc.relation.references | S. Guo, Y. Li, Y. Wang, L. Wang, Y. Sun, and L. Liu, “Recent advances in biochar-based adsorbents for CO2 capture,” Carbon Capture Science and Technology, vol. 4, 2022, doi: 10.1016/j.ccst.2022.100059. | spa |
dc.relation.references | P. Brassard et al., “Biochar for soil amendment,” in Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications, 2019. doi: 10.1016/B978-0-12-814893-8.00004-3. | spa |
dc.relation.references | S. M. Hwang et al., “Investigation on electroreduction of CO2to formic acid using Cu3(BTC)2metal-organic framework (Cu-MOF) and graphene oxide,” ACS Omega, vol. 5, no. 37, 2020, doi: 10.1021/acsomega.0c03170. | spa |
dc.relation.references | V. S. K. Yadav and M. K. Purkait, “Electrochemical reduction of CO2 to HCOOH using zinc and cobalt oxide as electrocatalysts,” New Journal of Chemistry, vol. 39, no. 9, 2015, doi: 10.1039/c5nj01182e. | spa |
dc.relation.references | J. Wu, F. Risalvato, and X.-D. Zhou, “ Effects of the Electrolyte on Electrochemical Reduction of CO 2 on Sn Electrode ,” ECS Trans, vol. 41, no. 33, 2012, doi: 10.1149/1.3702412. | spa |
dc.relation.references | X. Zheng et al., “Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate,” Joule, vol. 1, no. 4, 2017, doi: 10.1016/j.joule.2017.09.014. | spa |
dc.relation.references | T. N. Nguyen et al., “Catalyst Regeneration via Chemical Oxidation Enables Long-Term Electrochemical Carbon Dioxide Reduction,” J Am Chem Soc, vol. 144, no. 29, 2022, doi: 10.1021/jacs.2c04081. | spa |
dc.relation.references | M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, and A. T. Bell, “Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu,” J Am Chem Soc, vol. 138, no. 39, 2016, doi: 10.1021/jacs.6b07612. | spa |
dc.relation.references | C. A. Obasanjo et al., “In situ regeneration of copper catalysts for long-term electrochemical CO2 reduction to multiple carbon products,” J Mater Chem A Mater, vol. 10, no. 37, 2022, doi: 10.1039/d2ta02709g. | spa |
dc.relation.references | S. Maye, H. H. Girault, and P. Peljo, “Thermally regenerative copper nanoslurry flow batteries for heat-to-power conversion with low-grade thermal energy,” Energy Environ Sci, vol. 13, no. 7, 2020, doi: 10.1039/d0ee01590c. | spa |
dc.relation.references | S. Jin, Z. Hao, K. Zhang, Z. Yan, and J. Chen, “ Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization ,” Angewandte Chemie, vol. 133, no. 38, 2021, doi: 10.1002/ange.202101818. | spa |
dc.relation.references | Y. Lu, K. Peng, and L. Zhang, “Sustainable Recycling of Electrode Materials in Spent Li-Ion Batteries through Direct Regeneration Processes,” 2022. doi: 10.1021/acsestengg.1c00425. | spa |
dc.relation.references | D. W. Kim, C. W. Kim, J. C. Koh, and D. W. Park, “Synthesis of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquid on amorphous silica,” Journal of Industrial and Engineering Chemistry, vol. 16, no. 3, 2010, doi: 10.1016/j.jiec.2010.01.054. | spa |
dc.relation.references | D. B. G. Williams, M. S. Sibiya, P. S. van Heerden, M. Kirk, and R. Harris, “Verkade super base-catalysed transesterification of propylene carbonate with methanol to co-produce dimethyl carbonate and propylene glycol,” J Mol Catal A Chem, vol. 304, no. 1–2, 2009, doi: 10.1016/j.molcata.2009.02.005. | spa |
dc.relation.references | A. A. Kiss, J. J. Pragt, H. J. Vos, G. Bargeman, and M. T. de Groot, “Enhanced Process for Methanol Production by CO2 Hydrogenation,” in Computer Aided Chemical Engineering, vol. 38, 2016. doi: 10.1016/B978-0-444-63428-3.50169-7. | spa |
dc.relation.references | H. Yang, J. J. Kaczur, S. D. Sajjad, and R. I. Masel, “Electrochemical conversion of CO2 to formic acid utilizing SustainionTM membranes,” Journal of CO2 Utilization, vol. 20, 2017, doi: 10.1016/j.jcou.2017.04.011. | spa |
dc.relation.references | Z. Huang, G. Grim, J. Schaidle, and L. Tao, “Using waste CO2 to increase ethanol production from corn ethanol biorefineries: Techno-economic analysis,” Appl Energy, vol. 280, 2020, doi: 10.1016/j.apenergy.2020.115964. | spa |
dc.relation.references | C. Su, H. Wei, Z. Wang, H. Ayed, A. Mouldi, and A. A. Shayesteh, “Economic accounting and high-tech strategy for sustainable production: A case study of methanol production from CO2 hydrogenation,” Int J Hydrogen Energy, vol. 47, no. 62, 2022, doi: 10.1016/j.ijhydene.2022.01.124. | spa |
dc.relation.references | N. Yusuf and F. Almomani, “Highly effective hydrogenation of CO2 to methanol over Cu/ZnO/Al2O3 catalyst: A process economy & environmental aspects,” Fuel, vol. 332, 2023, doi: 10.1016/j.fuel.2022.126027. | spa |
dc.relation.references | D. Kang, J. Byun, and J. Han, “Electrochemical production of formic acid from carbon dioxide: A life cycle assessment study,” J Environ Chem Eng, vol. 9, no. 5, 2021, doi: 10.1016/j.jece.2021.106130. | spa |
dc.relation.references | Y. Khojasteh-Salkuyeh, O. Ashrafi, E. Mostafavi, and P. Navarri, “CO2utilization for methanol production; Part I: Process design and life cycle GHG assessment of different pathways,” Journal of CO2 Utilization, vol. 50, 2021, doi: 10.1016/j.jcou.2021.101608. | spa |
dc.relation.references | T. Cordero-Lanzac et al., “A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks,” Journal of Energy Chemistry, vol. 68, 2022, doi: 10.1016/j.jechem.2021.09.045. | spa |
dc.relation.references | Y. G. Lee, H. U. Lee, J. M. Lee, N. Y. Kim, and D. H. Jeong, “Design of Dimethyl Carbonate (DMC) Synthesis Process Using CO2, Techno-economic Analysis, and Life Cycle Assessment,” Korean Journal of Chemical Engineering, vol. 41, no. 1, 2024, doi: 10.1007/s11814-024-00019-2. | spa |
dc.relation.references | A. Banu, N. Mir, D. Ewis, M. H. El-Naas, A. I. Amhamed, and Y. Bicer, “Formic acid production through electrochemical reduction of CO2: A life cycle assessment,” Energy Conversion and Management: X, vol. 20, 2023, doi: 10.1016/j.ecmx.2023.100441. | spa |
dc.relation.references | N. Kirchhübel and P. Fantke, “Getting the chemicals right: Toward characterizing toxicity and ecotoxicity impacts of inorganic substances,” J Clean Prod, vol. 227, 2019, doi: 10.1016/j.jclepro.2019.04.204. | spa |
dc.relation.references | A. Ghannadzadeh and A. H. Tarighaleslami, “Exergy-aided environmental life cycle assessment of propylene oxide production,” International Journal of Life Cycle Assessment, vol. 27, no. 1, 2022, doi: 10.1007/s11367-021-01969-z. | spa |
dc.relation.references | R. Bhandari, C. A. Trudewind, and P. Zapp, “Life cycle assessment of hydrogen production via electrolysis - A review,” 2014. doi: 10.1016/j.jclepro.2013.07.048. | spa |
dc.relation.references | M. G. Kibria et al., “Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design,” 2019. doi: 10.1002/adma.201807166. | spa |
dc.relation.references | M. Y. Lee, K. T. Park, W. Lee, H. Lim, Y. Kwon, and S. Kang, “Current achievements and the future direction of electrochemical CO2 reduction: A short review,” Crit Rev Environ Sci Technol, vol. 50, no. 8, 2020, doi: 10.1080/10643389.2019.1631991. | spa |
dc.relation.references | A. Riaz, G. Zahedi, and J. J. Klemeš, “A review of cleaner production methods for the manufacture of methanol,” 2013. doi: 10.1016/j.jclepro.2013.06.017. | spa |
dc.relation.references | X. Jie et al., “The decarbonisation of petroleum and other fossil hydrocarbon fuels for the facile production and safe storage of hydrogen,” Energy Environ Sci, vol. 12, no. 1, 2019, doi: 10.1039/c8ee02444h. | spa |
dc.relation.references | N. Muradov, “Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives,” 2017. doi: 10.1016/j.ijhydene.2017.04.101. | spa |
dc.relation.references | J. C. Solarte-Toro, S. Piedrahita-Rodríguez, and C. A. Cardona Alzate, “A Bioeconomy Model Based on Sustainable Biorefineries to Ensure the Sustainable Development Goals (SDGs) in Colombia,” in A Sustainable Green Future: Perspectives on Energy, Economy, Industry, Cities and Environment, 2023. doi: 10.1007/978-3-031-24942-6_7. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.proposal | Carbon dioxide | eng |
dc.subject.proposal | Carbon Capture and Utilization | eng |
dc.subject.proposal | C1 biorefineries | eng |
dc.subject.proposal | Carbon neutrality | eng |
dc.subject.proposal | Circular economy | eng |
dc.subject.proposal | Techno-economic assessment | eng |
dc.subject.proposal | Life cycle assessment | eng |
dc.subject.proposal | Sustainability | eng |
dc.subject.proposal | Dióxido de carbono | spa |
dc.subject.proposal | Captura y utilización de carbono | spa |
dc.subject.proposal | Biorrefinerías C1 | spa |
dc.subject.proposal | Neutralidad de carbono | spa |
dc.subject.proposal | Economía circular | spa |
dc.subject.proposal | Evaluación tecno-económica | spa |
dc.subject.proposal | Evaluación del ciclo de vida | spa |
dc.subject.proposal | Sostenibilidad | spa |
dc.subject.unesco | Sostenibilidad | spa |
dc.subject.unesco | Impacto ambiental | spa |
dc.title | C1 biorefineries : The CO2 case | eng |
dc.title.translated | Biorrefinerías C1 : El caso del CO2 | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Universidad de Sucre | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1006425536.2025.pdf
- Tamaño:
- 3.85 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: