C1 biorefineries : The CO2 case

dc.contributor.advisorCardona Alzate, Carlos Ariel
dc.contributor.authorInocencio García, Pablo José
dc.contributor.cvlacInocencio-García, Pablo-José [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001996470]spa
dc.contributor.googlescholarInocencio-García, Pablo-José [https://scholar.google.com/citations?user=tR1yZp8AAAAJ&hl=es]spa
dc.contributor.orcidInocencio-García, Pablo-José [https://orcid.org/000900036684330X]spa
dc.contributor.researchgateInocencio-García, Pablo-José [https://www.researchgate.net/profile/Pablo-Inocencio-Garcia]spa
dc.contributor.researchgroupProcesos Químicos Cataliticos y Biotecnológicosspa
dc.contributor.scopusInocencio-García, Pablo-José [https://www.scopus.com/authid/detail.uri?authorId=58162518900]spa
dc.date.accessioned2025-03-18T16:26:59Z
dc.date.available2025-03-18T16:26:59Z
dc.date.issued2024
dc.descriptiongraficas, ilustracionesspa
dc.description.abstractCarbon dioxide (CO2) emissions have caused a significant impact on climate change and global warming, with concentrations reaching 400 ppm in recent years. Various technologies exist for CO2 capture and utilization (CCU) in industrial facilities known as C1 biorefineries where CO2 is considered a raw material in the obtaining of various products, achieving a reduction in greenhouse gases (GHG) emissions. Then, by considering the current interest in carbon upgrading technologies, this thesis project focuses on analyzing CCU alternatives under the C1 biorefinery concept. Initially, a heuristic analysis was performed to select the best CO2 capture technology (CCS) and to study the main products to be obtained from CO2 at each technological readiness level. Moreover, experiments were carried out to produce CO-rich syngas from biomass gasification with CO2, formic acid production by electrochemical CO2, and dimethyl carbonate (DMC) production under supercritical CO2 conditions. The results of the experimental approach served as a base point for the simulation of the processes. Two additional schemes for CO2 valorization were proposed under stand-alone schemes: production of methanol by hydrogenation of CO2, and ethanol production by utilization of CO2 through the CBB cycle of the cyanobacteria Synechococcus sp. PCC 7942. In addition, these technologies were analyzed under integration schemes of C1 biorefineries based on the global market distribution for each product. Then, the feasibility of the CO2 valorization schemes was assessed by considering technical, economic, environmental, and social performance indicators. The results showed that the implementation of CO2 valorization schemes for the production of CO-rich syngas under a stand-alone configuration is the most viable alternative for the Colombian context. In addition, the integration of these schemes under C1 biorefinery scenarios for the production of methanol, CO-rich synthesis gas, DMC, and formic acid also showed viability in the four dimensions contemplated in the sustainability analysis (Texto tomado de la fuente).eng
dc.description.abstractLas emisiones de dióxido de carbono (CO2) han causado un impacto significativo en el cambio climático y el calentamiento global, con concentraciones que alcanzan las 400 ppm en los últimos años. Existen diversas tecnologías para captura y utilización (CCU) del CO2 en instalaciones industriales conocidas como biorrefinerías C1, donde el CO2 se considera como materia prima en la obtención de diversos productos logrando una reducción en las emisiones de gases de efecto invernadero (GEI). En consecuencia, al considerar el interés actual en las tecnologías de aprovechamiento del carbono, esta tesis se centra en analizar las distintas alternativas de CCU bajo el concepto de biorrefinería C1. Inicialmente, se realizó un análisis heurístico para seleccionar la mejor tecnología de captura de CO2 (CCS) y estudiar los principales productos que se pueden obtener a partir del CO2 en cada nivel de madurez tecnológica. Además, se llevaron a cabo experimentos para producir gas de síntesis rico en CO a partir de la gasificación de biomasa con CO2, producción de ácido fórmico mediante reducción electroquímica CO2, y producción de dimetil carbonato (DMC) en condiciones supercríticas de CO2. Los resultados del enfoque experimental sirvieron como punto de base para la simulación de los procesos. Además, se propusieron dos esquemas adicionales para la valorización del CO2 bajo esquemas stand-alone: producción de metanol por hidrogenación de CO2 y producción de etanol mediante la utilización de CO2 a través del ciclo CBB de la cianobacteria Synechococcus sp. PCC 7942. Estas tecnologías se analizaron bajo esquemas de integración de biorrefinerías C1 propuestos con base en la distribución del mercado global para cada producto. Posteriormente, se evaluó la viabilidad de cada esquema de valorización considerando indicadores de desempeño de las dimensiones técnica, económica, ambiental y social. Los resultados demostraron que la implementación de esquemas de valorización de CO2 para la producción de gas de síntesis enriquecido en CO bajo configuración stand-alone, es la alternativas más viable para el contexto colombiano. Además, la integración de estos esquemas bajo escenarios de biorrefinerías C1 para la producción de metanol, gas de síntesis rico en CO, DMC, y ácido fórmico también presentó viabilidad en las cuatro dimensiones contempladas en el análisis de sostenibilidad.spa
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.format.extentvii, 198 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87684
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesA. Demirbaş, “Energy and environmental issues relating to greenhouse gas emissions in Turkey,” Energy Convers Manag, vol. 44, no. 1, 2003, doi: 10.1016/S0196-8904(02)00056-0.spa
dc.relation.referencesK. Hashimoto, “Global Temperature and Atmospheric Carbon Dioxide Concentration,” 2019. doi: 10.1007/978-981-13-8584-1_3.spa
dc.relation.referencesK. Richardson et al., “Earth beyond six of nine planetary boundaries,” Sci Adv, vol. 9, no. 37, 2023, doi: 10.1126/sciadv.adh2458.spa
dc.relation.referencesK. O. Yoro and M. O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect,” in Advances in Carbon Capture: Methods, Technologies and Applications, 2020. doi: 10.1016/B978-0-12-819657-1.00001-3.spa
dc.relation.referencesA. Mofolasayo, “Assessing and Managing the Direct and Indirect Emissions from Electric and Fossil-Powered Vehicles,” Sustainability (Switzerland) , vol. 15, no. 2, 2023, doi: 10.3390/su15021138.spa
dc.relation.referencesX. Jiang and D. Guan, “The global CO2 emissions growth after international crisis and the role of international trade,” Energy Policy, vol. 109, 2017, doi: 10.1016/j.enpol.2017.07.058.spa
dc.relation.referencesK. R. Shivanna, “Climate change and its impact on biodiversity and human welfare,” 2022. doi: 10.1007/s43538-022-00073-6.spa
dc.relation.referencesA. Thomas, A. Ramkumar, and A. Shanmugam, “CO2 acidification and its differential responses on aquatic biota – a review,” 2022. doi: 10.1016/j.envadv.2022.100219.spa
dc.relation.referencesM. T. Huang and P. M. Zhai, “Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society,” Advances in Climate Change Research, vol. 12, no. 2, 2021, doi: 10.1016/j.accre.2021.03.004.spa
dc.relation.referencesC. Popescu, M. Panait, M. Palazzo, and A. Siano, “Energy Transition in European Union—Challenges and Opportunities,” 2022. doi: 10.1007/978-981-19-3540-4_11.spa
dc.relation.referencesR. Meys et al., “Achieving net-zero greenhouse gas emission plastics by a circular carbon economy,” Science (1979), vol. 374, no. 6563, 2021, doi: 10.1126/science.abg9853.spa
dc.relation.referencesV. Spaiser, K. Scott, A. Owen, and R. Holland, “Consumption-based accounting of CO2 emissions in the sustainable development Goals Agenda,” International Journal of Sustainable Development and World Ecology, vol. 26, no. 4, 2019, doi: 10.1080/13504509.2018.1559252.spa
dc.relation.referencesS. Luh, S. Budinis, S. Giarola, T. J. Schmidt, and A. Hawkes, “Long-term development of the industrial sector – Case study about electrification, fuel switching, and CCS in the USA,” Comput Chem Eng, vol. 133, 2020, doi: 10.1016/j.compchemeng.2019.106602.spa
dc.relation.referencesL. Zhu, H. B. Duan, and Y. Fan, “CO2 mitigation potential of CCS in China - An evaluation based on an integrated assessment model,” J Clean Prod, vol. 103, 2015, doi: 10.1016/j.jclepro.2014.08.079.spa
dc.relation.referencesS. Wang et al., “Distinguishing Anthropogenic CO2 Emissions From Different Energy Intensive Industrial Sources Using OCO-2 Observations: A Case Study in Northern China,” Journal of Geophysical Research: Atmospheres, vol. 123, no. 17, 2018, doi: 10.1029/2018JD029005.spa
dc.relation.referencesN. von der Assen, L. J. Müller, A. Steingrube, P. Voll, and A. Bardow, “Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves,” Environ Sci Technol, vol. 50, no. 3, 2016, doi: 10.1021/acs.est.5b03474.spa
dc.relation.referencesM. Rumayor, J. Fernández-González, A. Domínguez-Ramos, and A. Irabien, “Deep Decarbonization of the Cement Sector: A Prospective Environmental Assessment of CO2 Recycling to Methanol,” ACS Sustain Chem Eng, vol. 10, no. 1, 2022, doi: 10.1021/acssuschemeng.1c06118.spa
dc.relation.referencesE. Yáñez, A. Ramírez, V. Núñez-López, E. Castillo, and A. Faaij, “Exploring the potential of carbon capture and storage-enhanced oil recovery as a mitigation strategy in the Colombian oil industry,” International Journal of Greenhouse Gas Control, vol. 94, Mar. 2020, doi: 10.1016/J.IJGGC.2019.102938.spa
dc.relation.referencesL. I. Patiño, V. Alcántara, and E. Padilla, “Driving forces of CO2 emissions and energy intensity in Colombia,” Energy Policy, vol. 151, 2021, doi: 10.1016/j.enpol.2020.112130.spa
dc.relation.referencesA. Silva-Parra, J. M. Trujillo-González, and E. C. Brevik, “Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis,” 2021. doi: 10.1002/ghg.2066.spa
dc.relation.referencesG. Martinelli and P. Plescia, “Mechanochemical dissociation of calcium carbonate: Laboratory data and relation to natural emissions of CO2,” Physics of the Earth and Planetary Interiors, vol. 142, no. 3–4, 2004, doi: 10.1016/j.pepi.2003.12.009.spa
dc.relation.referencesZ. Liu, Z. Deng, S. J. Davis, C. Giron, and P. Ciais, “Monitoring global carbon emissions in 2021,” 2022. doi: 10.1038/s43017-022-00285-w.spa
dc.relation.referencesJ. Shen, Q. Zhang, L. Xu, S. Tian, and P. Wang, “Future CO2 emission trends and radical decarbonization path of iron and steel industry in China,” J Clean Prod, vol. 326, 2021, doi: 10.1016/j.jclepro.2021.129354.spa
dc.relation.referencesR. Farajzadeh et al., “Improved oil recovery techniques and their role in energy efficiency and reducing CO2 footprint of oil production,” J Clean Prod, vol. 369, 2022, doi: 10.1016/j.jclepro.2022.133308.spa
dc.relation.referencesD. Neufeld, “The Carbon Footprint of the Food Supply Chain,” Visual Capitalist.spa
dc.relation.referencesP. Madejski, K. Chmiel, N. Subramanian, and T. Kuś, “Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies,” 2022. doi: 10.3390/en15030887.spa
dc.relation.referencesM. Kafi, H. Sanaeepur, and A. Ebadi Amooghin, “Grand Challenges in CO2 Capture and Conversion,” Journal of Resource Recovery, vol. 1, no. 2, 2023, doi: 10.52547/jrr.2302-1007.spa
dc.relation.referencesU. Singh, A. Garg, and A. K. Singh, “Sustainable development goals as means to motivate CO2 capture and storage in Indian geologic formations,” Mar Pet Geol, vol. 160, 2024, doi: 10.1016/j.marpetgeo.2023.106668.spa
dc.relation.referencesH. Teng and L. Y. Hsu, “High-porosity carbons prepared from bituminous coal with potassium hydroxide activation,” Ind Eng Chem Res, vol. 38, no. 8, 1999, doi: 10.1021/ie990101+.spa
dc.relation.referencesT. G. Zarate-Barrera and J. H. Maldonado, “Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia,” PLoS One, vol. 10, no. 5, 2015, doi: 10.1371/journal.pone.0126627.spa
dc.relation.referencesE. Jang, S. W. Choi, and K. B. Lee, “Effect of carbonization temperature on the physical properties and CO2 adsorption behavior of petroleum coke-derived porous carbon,” Fuel, vol. 248, 2019, doi: 10.1016/j.fuel.2019.03.051.spa
dc.relation.referencesB. Llamas, M. Arribas, E. Hernandez, and L. F. Mazadiego, “Pre-Injection Phase: Site Selection and Characterization,” in CO2 Sequestration and Valorization, 2014. doi: 10.5772/57405.spa
dc.relation.referencesT. Urych and A. Smoliński, “Numerical modeling of CO2 migration in saline aquifers of selected areas in the Upper Silesian coal basin in Poland,” Energies (Basel), vol. 12, no. 16, 2019, doi: 10.3390/en12163093.spa
dc.relation.referencesZ.-X. Xu, Y. Tan, X.-Q. Ma, S.-Y. Wu, and B. Zhang, “The influence of NaCl during hydrothermal carbonization for rice husk on hydrochar physicochemical properties,” Energy, vol. 266, p. 126463, Mar. 2023, doi: 10.1016/j.energy.2022.126463.spa
dc.relation.referencesL. de Souza Noel Simas Barbosa, E. Hytönen, and P. Vainikka, “Carbon mass balance in sugarcane biorefineries in Brazil for evaluating carbon capture and utilization opportunities,” Biomass Bioenergy, vol. 105, 2017, doi: 10.1016/j.biombioe.2017.07.015.spa
dc.relation.referencesR. Soundararajan and T. Gundersen, “Coal based power plants using oxy-combustion for CO2 capture: Pressurized coal combustion to reduce capture penalty,” Appl Therm Eng, vol. 61, no. 1, 2013, doi: 10.1016/j.applthermaleng.2013.04.010.spa
dc.relation.referencesA. Lerman and F. T. Mackenzie, “Carbonate minerals and the CO2-carbonic acid system,” in Encyclopedia of Earth Sciences Series, 2018. doi: 10.1007/978-3-319-39312-4_84.spa
dc.relation.referencesM. K. Lam, K. T. Lee, and A. R. Mohamed, “Current status and challenges on microalgae-based carbon capture,” 2012. doi: 10.1016/j.ijggc.2012.07.010.spa
dc.relation.referencesX. Zhang, K. Jiao, J. Zhang, and Z. Guo, “A review on low carbon emissions projects of steel industry in the World,” 2021. doi: 10.1016/j.jclepro.2021.127259.spa
dc.relation.referencesA. T. Ubando, C. B. Felix, and W. H. Chen, “Biorefineries in circular bioeconomy: A comprehensive review,” 2020. doi: 10.1016/j.biortech.2019.122585.spa
dc.relation.referencesW. Qiao, S. Xu, Z. Liu, X. Fu, H. Zhao, and S. Shi, “Challenges and opportunities in C1-based biomanufacturing,” 2022. doi: 10.1016/j.biortech.2022.128095.spa
dc.relation.referencesZ. Liu, S. Shi, Y. Ji, K. Wang, T. Tan, and J. Nielsen, “Opportunities of CO2-based biorefineries for production of fuels and chemicals,” Green Carbon, vol. 1, no. 1, 2023, doi: 10.1016/j.greenca.2023.09.002.spa
dc.relation.referencesJ. Bae et al., “Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts,” 2022. doi: 10.1016/j.cej.2021.131325.spa
dc.relation.referencesM. Pavan, “The New Biorefineries: Integration with New Technologies for Carbon Capture and Utilization to Produce Bioethanol,” 2022. doi: 10.1007/978-3-031-01241-9_19.spa
dc.relation.referencesS. Bachleitner, Ö. Ata, and D. Mattanovich, “The potential of CO2-based production cycles in biotechnology to fight the climate crisis,” Nat Commun, vol. 14, no. 1, 2023, doi: 10.1038/s41467-023-42790-6.spa
dc.relation.referencesM. N. Anwar et al., “CO2 utilization: Turning greenhouse gas into fuels and valuable products,” J Environ Manage, vol. 260, 2020, doi: 10.1016/j.jenvman.2019.110059.spa
dc.relation.referencesL. Mikhelkis and V. Govindarajan, “Techno-economic and partial environmental analysis of carbon capture and storage (CCS) and carbon capture, utilization, and storage (CCU/S): Case study from proposed waste-fed district-heating incinerator in Sweden,” Sustainability (Switzerland), vol. 12, no. 15, 2020, doi: 10.3390/SU12155922.spa
dc.relation.referencesK. Atsonios, K. D. Panopoulos, and E. Kakaras, “Investigation of technical and economic aspects for methanol production through CO2 hydrogenation,” Int J Hydrogen Energy, vol. 41, no. 4, 2016, doi: 10.1016/j.ijhydene.2015.12.074.spa
dc.relation.referencesG. Leonzio, E. Zondervan, and P. U. Foscolo, “Methanol production by CO2 hydrogenation: Analysis and simulation of reactor performance,” Int J Hydrogen Energy, vol. 44, no. 16, 2019, doi: 10.1016/j.ijhydene.2019.02.056.spa
dc.relation.referencesD. Mustaqim and K. Oiitaguchi, “A synthesis of bioreactions for the production of ethanol from CO2,” in Energy, 1997. doi: 10.1016/S0360-5442(96)00105-3.spa
dc.relation.referencesV. Kontou, D. Grimekis, K. Braimakis, and S. Karellas, “Techno-economic assessment of dimethyl carbonate production based on carbon capture and utilization and power-to-fuel technology,” Renewable and Sustainable Energy Reviews, vol. 157, 2022, doi: 10.1016/j.rser.2021.112006.spa
dc.relation.referencesS. Lee et al., “Sustainable production of formic acid by electrolytic reduction of gaseous carbon dioxide,” J Mater Chem A Mater, vol. 3, no. 6, 2015, doi: 10.1039/c4ta03893b.spa
dc.relation.referencesK. Nakata, T. Ozaki, C. Terashima, A. Fujishima, and Y. Einaga, “High-yield electrochemical production of formaldehyde from CO2 and seawater,” Angewandte Chemie - International Edition, vol. 53, no. 3, 2014, doi: 10.1002/anie.201308657.spa
dc.relation.referencesL. Fan et al., “Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH4 balance under global warming,” Glob Chang Biol, vol. 28, no. 2, 2022, doi: 10.1111/gcb.15935.spa
dc.relation.referencesA. Kasinath et al., “Biomass in biogas production: Pretreatment and codigestion,” 2021. doi: 10.1016/j.rser.2021.111509.spa
dc.relation.referencesE. D. Erickson, P. A. Tominac, and V. M. Zavala, “Biogas production in United States dairy farms incentivized by electricity policy changes,” Nat Sustain, vol. 6, no. 4, 2023, doi: 10.1038/s41893-022-01038-9.spa
dc.relation.referencesN. N. Oehlmann and J. G. Rebelein, “The Conversion of Carbon Monoxide and Carbon Dioxide by Nitrogenases,” 2022. doi: 10.1002/cbic.202100453.spa
dc.relation.referencesH. Gruber et al., “Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen,” Biomass Convers Biorefin, vol. 11, no. 6, 2021, doi: 10.1007/s13399-019-00459-5.spa
dc.relation.referencesC. Benevenuti, P. Amaral, T. Ferreira, and P. Seidl, “Impacts of Syngas Composition on Anaerobic Fermentation,” 2021. doi: 10.3390/reactions2040025.spa
dc.relation.referencesS. Coufourier, Q. Gaignard Gaillard, J. F. Lohier, A. Poater, S. Gaillard, and J. L. Renaud, “Hydrogenation of CO2, Hydrogenocarbonate, and Carbonate to Formate in Water using Phosphine Free Bifunctional Iron Complexes,” ACS Catal, vol. 10, no. 3, 2020, doi: 10.1021/acscatal.9b04340.spa
dc.relation.referencesK. Fernández-Caso, G. Díaz-Sainz, M. Alvarez-Guerra, and A. Irabien, “Electroreduction of CO2: Advances in the Continuous Production of Formic Acid and Formate,” 2023. doi: 10.1021/acsenergylett.3c00489.spa
dc.relation.referencesJ. Yan et al., “Bi-Eu bimetallic catalysts enabling ultrastable electroreduction of CO2 with a ∼ 100% formate Faradaic efficiency,” Chemical Engineering Journal, vol. 467, 2023, doi: 10.1016/j.cej.2023.143531.spa
dc.relation.referencesR. Thunuguntla, H. K. Atiyeh, R. L. Huhnke, and R. S. Tanner, “CO2-based production of C2-C6 acids and alcohols: The potential of novel Clostridia,” Bioresour Technol Rep, vol. 25, 2024, doi: 10.1016/j.biteb.2023.101713.spa
dc.relation.referencesL. Hu et al., “Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions,” 2022. doi: 10.1016/j.biotechadv.2022.107954.spa
dc.relation.referencesM. M. F. Hasan, M. S. Zantye, and M. K. Kazi, “Challenges and opportunities in carbon capture, utilization and storage: A process systems engineering perspective,” Comput Chem Eng, vol. 166, 2022, doi: 10.1016/j.compchemeng.2022.107925.spa
dc.relation.referencesH. Guzmán et al., “How to make sustainable CO2 conversion to Methanol: Thermocatalytic versus electrocatalytic technology,” Chemical Engineering Journal, vol. 417, 2021, doi: 10.1016/j.cej.2020.127973.spa
dc.relation.referencesA. Habibollahzade, P. Ahmadi, and M. A. Rosen, “Biomass gasification using various gasification agents: Optimum feedstock selection, detailed numerical analyses and tri-objective grey wolf optimization,” J Clean Prod, vol. 284, 2021, doi: 10.1016/j.jclepro.2020.124718.spa
dc.relation.referencesL. Chen and J. Shi, “Co-electrolysis toward value-added chemicals,” 2022. doi: 10.1007/s40843-021-1809-5.spa
dc.relation.referencesN. Anoop et al., “Plasma catalysis: a feasible solution for carbon dioxide valorization?,” 2021. doi: 10.1007/s10098-021-02203-y.spa
dc.relation.referencesN. M. Holden, A. M. Neill, J. C. Stout, D. O’Brien, and M. A. Morris, “Biocircularity: a Framework to Define Sustainable, Circular Bioeconomy,” Circular Economy and Sustainability, vol. 3, no. 1, 2023, doi: 10.1007/s43615-022-00180-y.spa
dc.relation.referencesL. M. Alsarhan, A. S. Alayyar, N. B. Alqahtani, and N. H. Khdary, “Circular carbon economy (Cce): A way to invest co2 and protect the environment, a review,” 2021. doi: 10.3390/su132111625.spa
dc.relation.referencesH. Naims, “Economic aspirations connected to innovations in carbon capture and utilization value chains,” J Ind Ecol, vol. 24, no. 5, 2020, doi: 10.1111/jiec.13003.spa
dc.relation.referencesI. Kahupi, C. Eiríkur Hull, O. Okorie, and S. Millette, “Building competitive advantage with sustainable products – A case study perspective of stakeholders,” J Clean Prod, vol. 289, 2021, doi: 10.1016/j.jclepro.2020.125699.spa
dc.relation.referencesL. J. Müller et al., “The carbon footprint of the carbon feedstock CO2,” Energy Environ Sci, vol. 13, no. 9, 2020, doi: 10.1039/d0ee01530j.spa
dc.relation.referencesJ. Annie Modestra, L. Matsakas, U. Rova, and P. Christakopoulos, “Prospects and trends in bioelectrochemical systems: Transitioning from CO2 towards a low-carbon circular bioeconomy,” Bioresour Technol, vol. 364, 2022, doi: 10.1016/j.biortech.2022.128040.spa
dc.relation.referencesX. Yuan, C. W. Su, M. Umar, X. Shao, and O. R. LOBONŢ, “The race to zero emissions: Can renewable energy be the path to carbon neutrality?,” J Environ Manage, vol. 308, 2022, doi: 10.1016/j.jenvman.2022.114648.spa
dc.relation.referencesV. Rodin, J. Lindorfer, H. Böhm, and L. Vieira, “Assessing the potential of carbon dioxide valorisation in Europe with focus on biogenic CO2,” Journal of CO2 Utilization, vol. 41, 2020, doi: 10.1016/j.jcou.2020.101219.spa
dc.relation.referencesP. S. Fennell, N. Florin, T. Napp, and T. Hills, “CCS from industrial sources,” Sustainable Technologies, Systems & Policies, vol. 2012, no. 2, 2012, doi: 10.5339/stsp.2012.ccs.17.spa
dc.relation.referencesK. Bäckstrand, J. Meadowcroft, and M. Oppenheimer, “The politics and policy of carbon capture and storage: Framing an emergent technology,” 2011. doi: 10.1016/j.gloenvcha.2011.03.008.spa
dc.relation.referencesK. Hillstrom and L. Hillstrom, “Kyoto Protocol,” in Encyclopedia of the U.S. Government and the Environment: History, Policy, and Politics [2 volumes], vol. 2, 2010.spa
dc.relation.referencesE. Dogan, M. Z. Chishti, N. Karimi Alavijeh, and P. Tzeremes, “The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries,” Technol Forecast Soc Change, vol. 181, 2022, doi: 10.1016/j.techfore.2022.121756.spa
dc.relation.referencesR. Rehan and M. Nehdi, “Carbon dioxide emissions and climate change: Policy implications for the cement industry,” Environ Sci Policy, vol. 8, no. 2, 2005, doi: 10.1016/j.envsci.2004.12.006.spa
dc.relation.referencesF. Dehdar, N. Silva, J. A. Fuinhas, M. Koengkan, and N. Nazeer, “The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions,” Energies (Basel), vol. 15, no. 22, 2022, doi: 10.3390/en15228486.spa
dc.relation.referencesM. Zhao, B. Li, J. Ren, and Z. Hao, “Competition equilibrium of ride-sourcing platforms and optimal government subsidies considering customers’ green preference under peak carbon dioxide emissions,” Int J Prod Econ, vol. 255, 2023, doi: 10.1016/j.ijpe.2022.108679.spa
dc.relation.referencesC. Che, Y. Chen, X. Zhang, and Z. Zhang, “The Impact of Different Government Subsidy Methods on Low-Carbon Emission Reduction Strategies in Dual-Channel Supply Chain,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/6668243.spa
dc.relation.referencesC. Ma, H. Yang, W. Zhang, and S. Huang, “Low-carbon consumption with government subsidy under asymmetric carbon emission information,” J Clean Prod, vol. 318, 2021, doi: 10.1016/j.jclepro.2021.128423.spa
dc.relation.referencesB. Holtsmark and M. L. Weitzman, “On the Effects of Linking Cap-and-Trade Systems for CO 2 Emissions,” Environ Resour Econ (Dordr), vol. 75, no. 3, 2020, doi: 10.1007/s10640-020-00401-8.spa
dc.relation.referencesW. Chen, J. Chen, and Y. Ma, “Renewable energy investment and carbon emissions under cap-and-trade mechanisms,” J Clean Prod, vol. 278, 2021, doi: 10.1016/j.jclepro.2020.123341.spa
dc.relation.referencesL. Ahmadi, M. Kannangara, and F. Bensebaa, “Cost-effectiveness of small scale biomass supply chain and bioenergy production systems in carbon credit markets: A life cycle perspective,” Sustainable Energy Technologies and Assessments, vol. 37, 2020, doi: 10.1016/j.seta.2019.100627.spa
dc.relation.referencesA. Balmford et al., “Realizing the social value of impermanent carbon credits,” Nat Clim Chang, vol. 13, no. 11, 2023, doi: 10.1038/s41558-023-01815-0.spa
dc.relation.referencesT. Koljonen, H. Siikavirta, R. Zevenhoven, and I. Savolainen, “CO2 capture, storage and reuse potential in Finland,” Energy, vol. 29, no. 9–10, 2004, doi: 10.1016/j.energy.2004.03.056.spa
dc.relation.referencesM. M. F. Hasan, E. L. First, F. Boukouvala, and C. A. Floudas, “A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU,” Comput Chem Eng, vol. 81, 2015, doi: 10.1016/j.compchemeng.2015.04.034.spa
dc.relation.referencesJ. C. Solarte-Toro, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “Sustainability analysis of biorefineries based on country socio-economic and environmental context: A step-by-step way for the integral analysis of biomass upgrading processes,” Renew Energy, vol. 206, pp. 1147–1157, Apr. 2023, doi: 10.1016/j.renene.2023.02.065.spa
dc.relation.referencesJ. A. Poveda-Giraldo and C. A. Cardona Alzate, “Analysis of Sequential Pretreatments to Enhance the Early-Stage Biorefinery Designs,” Applied Sciences (Switzerland), vol. 13, no. 11, 2023, doi: 10.3390/app13116758.spa
dc.relation.referencesA. A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications - A review,” 2010. doi: 10.1016/j.energy.2010.02.030.spa
dc.relation.referencesJ. Klemeš, I. Bulatov, and T. Cockerill, “Techno-economic modelling and cost functions of CO2 capture processes,” Comput Chem Eng, vol. 31, no. 5–6, 2007, doi: 10.1016/j.compchemeng.2006.06.002.spa
dc.relation.referencesM. Mofarahi, Y. Khojasteh, H. Khaledi, and A. Farahnak, “Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine,” Energy, vol. 33, no. 8, 2008, doi: 10.1016/j.energy.2008.02.013.spa
dc.relation.referencesC. H. Yu, C. H. Huang, and C. S. Tan, “A review of CO2 capture by absorption and adsorption,” 2012. doi: 10.4209/aaqr.2012.05.0132.spa
dc.relation.referencesM. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, “Post-combustion CO2 capture with chemical absorption: A state-of-the-art review,” Chemical Engineering Research and Design, vol. 89, no. 9, 2011, doi: 10.1016/j.cherd.2010.11.005.spa
dc.relation.referencesW. H. Tay, K. K. Lau, and A. M. Shariff, “High frequency ultrasonic-assisted chemical absorption of CO2 using monoethanolamine (MEA),” Sep Purif Technol, vol. 183, 2017, doi: 10.1016/j.seppur.2017.03.068.spa
dc.relation.referencesW. Huang, D. Zheng, H. Xie, Y. Li, and W. Wu, “Hybrid physical-chemical absorption process for carbon capture with strategy of high-pressure absorption/medium-pressure desorption,” Appl Energy, vol. 239, 2019, doi: 10.1016/j.apenergy.2019.02.007.spa
dc.relation.referencesK. H. Smith, H. E. Ashkanani, B. I. Morsi, and N. S. Siefert, “Physical solvents and techno-economic analysis for pre-combustion CO2 capture: A review,” 2022. doi: 10.1016/j.ijggc.2022.103694.spa
dc.relation.referencesJ. Xu et al., “Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure,” J Memb Sci, vol. 581, 2019, doi: 10.1016/j.memsci.2019.03.052.spa
dc.relation.referencesT. C. Merkel, M. Zhou, and R. W. Baker, “Carbon dioxide capture with membranes at an IGCC power plant,” J Memb Sci, vol. 389, 2012, doi: 10.1016/j.memsci.2011.11.012.spa
dc.relation.referencesA. M. Arias, M. C. Mussati, P. L. Mores, N. J. Scenna, J. A. Caballero, and S. F. Mussati, “Optimization of multi-stage membrane systems for CO2 capture from flue gas,” International Journal of Greenhouse Gas Control, vol. 53, 2016, doi: 10.1016/j.ijggc.2016.08.005.spa
dc.relation.referencesA. Perejón, L. M. Romeo, Y. Lara, P. Lisbona, A. Martínez, and J. M. Valverde, “The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior,” 2016. doi: 10.1016/j.apenergy.2015.10.121.spa
dc.relation.referencesJ. M. Valverde, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda, “Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2,” Appl Energy, vol. 126, 2014, doi: 10.1016/j.apenergy.2014.03.081.spa
dc.relation.referencesP. Moldenhauer, C. Linderholm, M. Rydén, and A. Lyngfelt, “Avoiding CO2 capture effort and cost for negative CO2 emissions using industrial waste in chemical-looping combustion/gasification of biomass,” Mitig Adapt Strateg Glob Chang, vol. 25, no. 1, 2020, doi: 10.1007/s11027-019-9843-2.spa
dc.relation.referencesP. Gayán, A. Abad, L. F. de Diego, F. García-Labiano, and J. Adánez, “Assessment of technological solutions for improving chemical looping combustion of solid fuels with CO2 capture,” Chemical Engineering Journal, vol. 233, 2013, doi: 10.1016/j.cej.2013.08.004.spa
dc.relation.referencesJ. Fan, H. Hong, L. Zhu, Q. Jiang, and H. Jin, “Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production,” Appl Energy, vol. 195, 2017, doi: 10.1016/j.apenergy.2017.03.093.spa
dc.relation.referencesC. Hoeger, S. Burt, and L. Baxter, “Cryogenic Carbon CaptureTM Technoeconomic Analysis,” SSRN Electronic Journal, 2021, doi: 10.2139/ssrn.3820158.spa
dc.relation.referencesQ. Li, Z. A. Chen, J.-T. Zhang, L.-C. Liu, X. C. Li, and L. Jia, “Positioning and revision of CCUS technology development in China,” International Journal of Greenhouse Gas Control, vol. 46, pp. 282–293, Mar. 2016, doi: 10.1016/j.ijggc.2015.02.024.spa
dc.relation.referencesR. Ben-Mansour et al., “Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review,” 2016. doi: 10.1016/j.apenergy.2015.10.011.spa
dc.relation.referencesB. Dziejarski, R. Krzyżyńska, and K. Andersson, “Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment,” 2023. doi: 10.1016/j.fuel.2023.127776.spa
dc.relation.referencesI. P. Koronaki, L. Prentza, and V. Papaefthimiou, “Modeling of CO2 capture via chemical absorption processes - An extensive literature review,” 2015. doi: 10.1016/j.rser.2015.04.124.spa
dc.relation.referencesM. Fang, N. Yi, W. Di, T. Wang, and Q. Wang, “Emission and control of flue gas pollutants in CO2 chemical absorption system – A review,” 2020. doi: 10.1016/j.ijggc.2019.102904.spa
dc.relation.referencesA. M. Bukar and M. Asif, “Technology readiness level assessment of carbon capture and storage technologies,” Renewable and Sustainable Energy Reviews, vol. 200, p. 114578, Aug. 2024, doi: 10.1016/j.rser.2024.114578.spa
dc.relation.referencesR. S. Liu et al., “Advances in Post-Combustion CO2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice,” 2021. doi: 10.1002/cssc.202002677.spa
dc.relation.referencesS. Roussanaly and R. Anantharaman, “Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources,” Chemical Engineering Journal, vol. 327, 2017, doi: 10.1016/j.cej.2017.06.082.spa
dc.relation.referencesM. Shen et al., “Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review,” Sep Purif Technol, vol. 299, 2022, doi: 10.1016/j.seppur.2022.121734.spa
dc.relation.referencesR. L. Smith, G. J. Ruiz-Mercado, and M. A. Gonzalez, “Greenscope: A method for modeling chemical process sustainability,” in Sustainable Engineering Forum: Core Programming Topic at the 2011 AIChE Annual Meeting, 2011.spa
dc.relation.referencesR. Notz, H. P. Mangalapally, and H. Hasse, “Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA,” International Journal of Greenhouse Gas Control, vol. 6, 2012, doi: 10.1016/j.ijggc.2011.11.004.spa
dc.relation.referencesS. García, M. V. Gil, C. F. Martín, J. J. Pis, F. Rubiera, and C. Pevida, “Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture,” Chemical Engineering Journal, vol. 171, no. 2, 2011, doi: 10.1016/j.cej.2011.04.027.spa
dc.relation.referencesL. Giordano, D. Roizard, and E. Favre, “Life cycle assessment of post-combustion CO2 capture: A comparison between membrane separation and chemical absorption processes,” International Journal of Greenhouse Gas Control, vol. 68, 2018, doi: 10.1016/j.ijggc.2017.11.008.spa
dc.relation.referencesR. Chirone, A. Paulillo, A. Coppola, and F. Scala, “Carbon capture and utilization via calcium looping, sorption enhanced methanation and green hydrogen: A techno-economic analysis and life cycle assessment study,” Fuel, vol. 328, 2022, doi: 10.1016/j.fuel.2022.125255.spa
dc.relation.referencesP. Bareschino, E. Mancusi, M. Urciuolo, A. Paulillo, R. Chirone, and F. Pepe, “Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization,” Renewable and Sustainable Energy Reviews, vol. 130, 2020, doi: 10.1016/j.rser.2020.109962.spa
dc.relation.referencesG. A. Fimbres Weihs and D. E. Wiley, “Steady-state design of CO2 pipeline networks for minimal cost per tonne of CO2 avoided,” International Journal of Greenhouse Gas Control, vol. 8, 2012, doi: 10.1016/j.ijggc.2012.02.008.spa
dc.relation.referencesS. G. Subraveti, S. Roussanaly, R. Anantharaman, L. Riboldi, and A. Rajendran, “How much can novel solid sorbents reduce the cost of post-combustion CO2 capture? A techno-economic investigation on the cost limits of pressure–vacuum swing adsorption,” Appl Energy, vol. 306, 2022, doi: 10.1016/j.apenergy.2021.117955.spa
dc.relation.referencesD. C. Ozcan, M. Alonso, H. Ahn, J. C. Abanades, and S. Brandani, “Process and cost analysis of a biomass power plant with in situ calcium loopingCO2 capture process,” Ind Eng Chem Res, vol. 53, no. 26, 2014, doi: 10.1021/ie500606v.spa
dc.relation.referencesP. Wang et al., “Advances in life cycle assessment of chemical absorption-based carbon capture technologies,” Sep Purif Technol, vol. 346, p. 127252, Oct. 2024, doi: 10.1016/j.seppur.2024.127252.spa
dc.relation.referencesS. Deutz and A. Bardow, “Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption,” Nat Energy, vol. 6, no. 2, 2021, doi: 10.1038/s41560-020-00771-9.spa
dc.relation.referencesE. Sanchez Fernandez, E. L. V. Goetheer, G. Manzolini, E. Macchi, S. Rezvani, and T. J. H. Vlugt, “Thermodynamic assessment of amine based CO2 capture technologies in power plants based on European Benchmarking Task Force methodology,” Fuel, vol. 129, 2014, doi: 10.1016/j.fuel.2014.03.042.spa
dc.relation.referencesA. M. Plonka et al., “Mechanism of carbon dioxide adsorption in a highly selective coordination network supported by direct structural evidence,” Angewandte Chemie - International Edition, vol. 52, no. 6, 2013, doi: 10.1002/anie.201207808.spa
dc.relation.referencesM. A. Vale, A. Ferreira, J. C. M. Pires, and G. A. L. Gonçalves, “CO2 capture using microalgae,” in Advances in Carbon Capture: Methods, Technologies and Applications, 2020. doi: 10.1016/B978-0-12-819657-1.00017-7.spa
dc.relation.referencesW. Klinthong, Y. H. Yang, C. H. Huang, and C. S. Tan, “A Review: Microalgae and their applications in CO2 capture and renewable energy,” 2015. doi: 10.4209/aaqr.2014.11.0299.spa
dc.relation.referencesA. Maghzian, A. Aslani, and R. Zahedi, “Review on the direct air CO2 capture by microalgae: Bibliographic mapping,” 2022. doi: 10.1016/j.egyr.2022.02.125.spa
dc.relation.referencesB. Llamas, M. C. Suárez-Rodríguez, C. V. González-López, P. Mora, and F. G. Acién, “Techno-economic analysis of microalgae related processes for CO2 bio-fixation,” Algal Res, vol. 57, 2021, doi: 10.1016/j.algal.2021.102339.spa
dc.relation.referencesH. Leflay, J. Pandhal, and S. Brown, “Direct measurements of CO2 capture are essential to assess the technical and economic potential of algal-CCUS,” Journal of CO2 Utilization, vol. 52, 2021, doi: 10.1016/j.jcou.2021.101657.spa
dc.relation.referencesA. M. D. Al Ketife, F. Almomani, M. EL-Naas, and S. Judd, “A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf,” Process Safety and Environmental Protection, vol. 127, 2019, doi: 10.1016/j.psep.2019.05.003.spa
dc.relation.referencesThalis Environmental Services S.A., “Investing in the circular economy: Challenges and opportunities,” Chania, 2023.spa
dc.relation.referencesR. Chauvy and G. De Weireld, “CO2 Utilization Technologies in Europe: A Short Review,” 2020. doi: 10.1002/ente.202000627.spa
dc.relation.referencesJ. Dexter and P. Fu, “Metabolic engineering of cyanobacteria for ethanol production,” Energy Environ Sci, vol. 2, no. 8, 2009, doi: 10.1039/b811937f.spa
dc.relation.referencesJ. Dexter, P. Armshaw, C. Sheahan, and J. T. Pembroke, “The state of autotrophic ethanol production in Cyanobacteria,” 2015. doi: 10.1111/jam.12821.spa
dc.relation.referencesF. Kremer, L. M. Blank, P. R. Jones, and M. K. Akhtar, “A comparison of the microbial production and combustion characteristics of three alcohol biofuels: Ethanol, 1-butanol, and 1-octanol,” 2015. doi: 10.3389/fbioe.2015.00112.spa
dc.relation.referencesH. Jeon, B. Jeong, J. Joo, and J. Lee, “Electrocatalytic Oxidation of Formic Acid: Closing the Gap Between Fundamental Study and Technical Applications,” 2015. doi: 10.1007/s12678-014-0226-x.spa
dc.relation.referencesM. Rumayor, A. Dominguez-Ramos, and A. Irabien, “Formic Acid manufacture: Carbon dioxide utilization alternatives,” Applied Sciences (Switzerland), vol. 8, no. 6, 2018, doi: 10.3390/app8060914.spa
dc.relation.referencesX. Lu, D. Y. C. Leung, H. Wang, M. K. H. Leung, and J. Xuan, “Electrochemical Reduction of Carbon Dioxide to Formic Acid,” ChemElectroChem, vol. 1, no. 5, 2014, doi: 10.1002/celc.201300206.spa
dc.relation.referencesU. Fegade and G. Jethave, “Conversion of Carbon Dioxide into Formic Acid,” 2020. doi: 10.1007/978-3-030-28638-5_4.spa
dc.relation.referencesA. M. Parvez, I. M. Mujtaba, and T. Wu, “Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification,” Energy, vol. 94, 2016, doi: 10.1016/j.energy.2015.11.022.spa
dc.relation.referencesN. Sadhwani, S. Adhikari, and M. R. Eden, “Biomass Gasification Using Carbon Dioxide: Effect of Temperature, CO2/C Ratio, and the Study of Reactions Influencing the Process,” Ind Eng Chem Res, vol. 55, no. 10, 2016, doi: 10.1021/acs.iecr.5b04000.spa
dc.relation.referencesA. Adil and L. Rao, “Methanol production from biomass: Analysis and optimization,” Mater Today Proc, vol. 57, 2022, doi: 10.1016/j.matpr.2021.12.450.spa
dc.relation.referencesA. Abdalazeez, T. Li, W. Wang, and S. Abuelgasim, “A brief review of CO2utilization for alkali carbonate gasification and biomass/coal co-gasification: Reactivity, products and process,” Journal of CO2 Utilization, vol. 43, 2021, doi: 10.1016/j.jcou.2020.101370.spa
dc.relation.referencesT. Hanaoka, S. Hiasa, and Y. Edashige, “Syngas production by CO2/O2 gasification of aquatic biomass,” Fuel Processing Technology, vol. 116, 2013, doi: 10.1016/j.fuproc.2013.03.049.spa
dc.relation.referencesH. H. Bui, L. Wang, K. Q. Tran, and Ø. Skreiberg, “CO2 gasification of charcoals produced at various pressures,” Fuel Processing Technology, vol. 152, 2016, doi: 10.1016/j.fuproc.2016.06.033.spa
dc.relation.referencesC. Gai and Y. Dong, “Experimental study on non-woody biomass gasification in a downdraft gasifier,” Int J Hydrogen Energy, vol. 37, no. 6, 2012, doi: 10.1016/j.ijhydene.2011.12.031.spa
dc.relation.referencesP. Saavalainen et al., “Sustainability assessment of chemical processes: Evaluation of three synthesis routes of DMC,” J Chem, vol. 2015, 2015, doi: 10.1155/2015/402315.spa
dc.relation.referencesA. Bansode and A. Urakawa, “Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent,” ACS Catal, vol. 4, no. 11, 2014, doi: 10.1021/cs501221q.spa
dc.relation.referencesD. Zhu, H. Liu, Y. Huang, X. Luo, Y. Mao, and Z. Liang, “Study of Direct Synthesis of DMC from CO2and Methanol on CeO2: Theoretical Calculation and Experiment,” Ind Eng Chem Res, vol. 61, no. 30, 2022, doi: 10.1021/acs.iecr.2c01522.spa
dc.relation.referencesL. F. S. Souza, P. R. R. Ferreira, J. L. De Medeiros, R. M. B. Alves, and O. Q. F. Araújo, “Production of DMC from CO2 via indirect route: Technical-economical-environmental assessment and analysis,” ACS Sustain Chem Eng, vol. 2, no. 1, 2014, doi: 10.1021/sc400279n.spa
dc.relation.referencesT. N. Do and J. Kim, “Process development and techno-economic evaluation of methanol production by direct CO2 hydrogenation using solar-thermal energy,” Journal of CO2 Utilization, vol. 33, 2019, doi: 10.1016/j.jcou.2019.07.003.spa
dc.relation.referencesZ. Gao, H. Zhao, Z. Li, X. Tan, and X. Lu, “Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria,” Energy Environ Sci, vol. 5, no. 12, 2012, doi: 10.1039/c2ee22675h.spa
dc.relation.referencesM. Rumayor, A. Dominguez-Ramos, P. Perez, and A. Irabien, “A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture,” Journal of CO2 Utilization, vol. 34, 2019, doi: 10.1016/j.jcou.2019.07.024.spa
dc.relation.referencesM. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison, and E. Tzimas, “Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential,” Int J Hydrogen Energy, vol. 41, no. 37, pp. 16444–16462, Oct. 2016, doi: 10.1016/j.ijhydene.2016.05.199.spa
dc.relation.referencesP. Kongpanna, V. Pavarajarn, R. Gani, and S. Assabumrungrat, “Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production,” Chemical Engineering Research and Design, vol. 93, 2015, doi: 10.1016/j.cherd.2014.07.013.spa
dc.relation.referencesS. Sollai, A. Porcu, V. Tola, F. Ferrara, and A. Pettinau, “Renewable methanol production from green hydrogen and captured CO2: A techno-economic assessment,” Journal of CO2 Utilization, vol. 68, 2023, doi: 10.1016/j.jcou.2022.102345.spa
dc.relation.referencesJ. Kim et al., “Methanol production from CO 2 using solar-thermal energy: Process development and techno-economic analysis,” Energy Environ Sci, vol. 4, no. 9, 2011, doi: 10.1039/c1ee01311d.spa
dc.relation.referencesS. W. Wang, D. X. Li, W. B. Ruan, C. L. Jin, and M. R. Farahani, “A techno-economic review of biomass gasification for production of chemicals,” 2018. doi: 10.1080/15567249.2017.1349212.spa
dc.relation.referencesL. Van de steene, J. P. Tagutchou, F. J. Escudero Sanz, and S. Salvador, “Gasification of woodchip particles: Experimental and numerical study of char-H2O, char-CO2, and char-O2 reactions,” Chem Eng Sci, vol. 66, no. 20, 2011, doi: 10.1016/j.ces.2011.05.045.spa
dc.relation.referencesV. Kontou, D. Grimekis, K. Braimakis, and S. Karellas, “Techno-economic assessment of dimethyl carbonate production based on carbon capture and utilization and power-to-fuel technology,” Renewable and Sustainable Energy Reviews, vol. 157, p. 112006, Apr. 2022, doi: 10.1016/j.rser.2021.112006.spa
dc.relation.referencesB. Pandey, P. N. Sheth, and Y. K. Prajapati, “Air-CO2 and oxygen-enriched air-CO2 biomass gasification in an autothermal downdraft gasifier: Experimental studies,” Energy Convers Manag, vol. 270, p. 116216, Oct. 2022, doi: 10.1016/j.enconman.2022.116216.spa
dc.relation.referencesM. Policella, Z. Wang, K. G. Burra, and A. K. Gupta, “Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires,” Appl Energy, vol. 254, 2019, doi: 10.1016/j.apenergy.2019.113678.spa
dc.relation.referencesM. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, and E. Tzimas, “Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment,” Appl Energy, vol. 161, 2016, doi: 10.1016/j.apenergy.2015.07.067.spa
dc.relation.referencesZ. Barahmand and M. S. Eikeland, “A Scoping Review on Environmental, Economic, and Social Impacts of the Gasification Processes,” 2022. doi: 10.3390/environments9070092.spa
dc.relation.referencesD. Iribarren, R. Calvo-Serrano, M. Martín-Gamboa, Á. Galán-Martín, and G. Guillén-Gosálbez, “Social life cycle assessment of green methanol and benchmarking against conventional fossil methanol,” Science of the Total Environment, vol. 824, 2022, doi: 10.1016/j.scitotenv.2022.153840.spa
dc.relation.referencesD. Baur, P. Emmerich, M. J. Baumann, and M. Weil, “Assessing the social acceptance of key technologies for the German energy transition,” Energy Sustain Soc, vol. 12, no. 1, 2022, doi: 10.1186/s13705-021-00329-x.spa
dc.relation.referencesASTM E872-82, “Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels 1,” ASTM International, pp. 1–3, 2013, doi: 10.1520/E0872-82R13.2.spa
dc.relation.referencesASTM D1102-84, “Standard Test Method for ASH in Wood,” ASTM International, pp. 1–2, 2013, doi: 10.1520/D1102-84R13.1.spa
dc.relation.referencesJ. Shen, S. Zhu, X. Liu, H. Zhang, and J. Tan, “The prediction of elemental composition of biomass based on proximate analysis,” Energy Convers Manag, vol. 51, no. 5, 2010, doi: 10.1016/j.enconman.2009.11.039.spa
dc.relation.referencesA. F. Rojas Gonzalez and C. Flórez Montes, “Valorización de residuos de frutas para combustión y pirólisis,” Revista Politécnica, vol. 15, no. 28, 2019, doi: 10.33571/rpolitec.v15n28a4.spa
dc.relation.referencesR. Conti, D. Fabbri, I. Vassura, and L. Ferroni, “Comparison of chemical and physical indices of thermal stability of biochars from different biomass by analytical pyrolysis and thermogravimetry,” J Anal Appl Pyrolysis, vol. 122, 2016, doi: 10.1016/j.jaap.2016.10.003.spa
dc.relation.referencesJ. C. Solarte-Toro, “Oil palm rachis gasification for synthesis gas production Oil palm rachis gasification for synthesis gas production,” Universidad Nacional de Colombia, Manizales, 2017.spa
dc.relation.referencesY. Shen, X. Li, Z. Yao, X. Cui, and C. H. Wang, “CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier,” Energy, vol. 170, 2019, doi: 10.1016/j.energy.2018.12.176.spa
dc.relation.referencesA. M. Mauerhofer et al., “Conversion of CO2 during the DFB biomass gasification process,” Biomass Convers Biorefin, vol. 11, no. 1, 2021, doi: 10.1007/s13399-020-00822-x.spa
dc.relation.referencesH. Li, M. Tang, X. Huang, L. Wang, Q. Liu, and S. Lu, “An efficient biochar adsorbent for CO2 capture: Combined experimental and theoretical study on the promotion mechanism of N-doping,” Chemical Engineering Journal, vol. 466, 2023, doi: 10.1016/j.cej.2023.143095.spa
dc.relation.referencesG. Singh et al., “Biomass derived porous carbon for CO 2 capture,” 2019. doi: 10.1016/j.carbon.2019.03.050.spa
dc.relation.referencesM. Ramdin et al., “High-Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: Effect of pH on the Downstream Separation Process and Economics,” Ind Eng Chem Res, vol. 58, no. 51, 2019, doi: 10.1021/acs.iecr.9b03970.spa
dc.relation.referencesS. Lee et al., “Sustainable production of HCOOH via an electrolytic reduction of gas-phase 12 CO 2,” J. Name, vol. 00, 2013.spa
dc.relation.referencesD. Hasan, I. Mahmood, I. Ahmad, F. Aziz, and I. Ahmad, “Development of an HPLC method for formic acid analysis through peak exclusion approach,” Sains Malays, vol. 48, no. 5, 2019, doi: 10.17576/jsm-2019-4805-09.spa
dc.relation.referencesZ. Fu and Y. Meng, “Research Progress in the Phosgene-Free and Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol,” in Chemistry Beyond Chlorine, Cham: Springer International Publishing, 2016, pp. 363–385. doi: 10.1007/978-3-319-30073-3_13.spa
dc.relation.referencesY. Wen et al., “Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2,” Polish Journal of Chemical Technology, vol. 17, no. 1, 2015, doi: 10.1515/pjct-2015-0010.spa
dc.relation.referencesL. Terborg, S. Weber, S. Passerini, M. Winter, U. Karst, and S. Nowak, “Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes,” J Power Sources, vol. 245, 2014, doi: 10.1016/j.jpowsour.2013.07.030.spa
dc.relation.referencesB. Betancur-Corredor, J. C. Loaiza-Usuga, M. Denich, and C. Borgemeister, “Gold mining as a potential driver of development in Colombia: Challenges and opportunities,” 2018. doi: 10.1016/j.jclepro.2018.07.142.spa
dc.relation.referencesJ. Leibovich, J. M. Izquierdo, C. Córdoba, J. Méndez, and V. Gómez, “Informe de gestión Federación Nacional de Cafeteros 2023,” Bogotá, 2023. doi: 10.38141/10793.spa
dc.relation.referencesE. Fajardo, “Informe de sostenibilidad Alpina 2023,” Bogotá, 2023. Accessed: Nov. 20, 2024. [Online]. Available: https://www.alpinasostenible.com/spa
dc.relation.referencesA. M. Celis, “Informe de sostenibilidad Productos Ramo 2023,” Bogotá, 2023. Accessed: Nov. 20, 2024. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ramo.com.co/wp-content/uploads/2024/08/Ramo-Informe-de-Gestion-Integrado-2023.pdfspa
dc.relation.referencesJ. D. Mejía Mejía, “Informe de sostenibilidad Esenttia 2023,” Cartagena, 2023. Accessed: Nov. 20, 2024. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.esenttia.co/wp-content/uploads/2024/07/Informe-ESENTTIA-2023-web.pdfspa
dc.relation.referencesF. Aristizábal, “Informe de sostenibilidad Cementos Argos 2023,” Bogotá, 2023. Accessed: Nov. 20, 2024. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://argos.co/wp-content/uploads/2024/02/TCFD-2023.pdfspa
dc.relation.referencesH. Hikita, S. Asai, H. Ishikawa, and M. Honda, “The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method,” The Chemical Engineering Journal, vol. 13, no. 1, 1977, doi: 10.1016/0300-9467(77)80002-6.spa
dc.relation.referencesB. R. W. Pinsent, L. Pearson, and F. J. W. Roughton, “The kinetics of combination of carbon dioxide with hydroxide ions,” Transactions of the Faraday Society, vol. 52, 1956, doi: 10.1039/tf9565201512.spa
dc.relation.referencesS. Ehira, T. Takeuchi, and A. Higo, “Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria,” Appl Microbiol Biotechnol, vol. 102, no. 3, 2018, doi: 10.1007/s00253-017-8620-y.spa
dc.relation.referencesJ. K. Heffernan et al., “Enhancing CO2-Valorization Using Clostridium autoethanogenum for Sustainable Fuel and Chemicals Production,” Front Bioeng Biotechnol, vol. 8, 2020, doi: 10.3389/fbioe.2020.00204.spa
dc.relation.referencesR. Velmurugan and A. Incharoensakdi, “Heterologous Expression of Ethanol Synthesis Pathway in Glycogen Deficient Synechococcus elongatus PCC 7942 Resulted in Enhanced Production of Ethanol and Exopolysaccharides,” Front Plant Sci, vol. 11, 2020, doi: 10.3389/fpls.2020.00074.spa
dc.relation.referencesN. J. Oliver, C. A. Rabinovitch-Deere, A. L. Carroll, N. E. Nozzi, A. E. Case, and S. Atsumi, “Cyanobacterial metabolic engineering for biofuel and chemical production,” 2016. doi: 10.1016/j.cbpa.2016.08.023.spa
dc.relation.referencesY. Hirokawa, Y. Dempo, E. Fukusaki, and T. Hanai, “Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions,” J Biosci Bioeng, vol. 123, no. 1, 2017, doi: 10.1016/j.jbiosc.2016.07.005.spa
dc.relation.referencesA. Hemmati-Sarapardeh, M. N. Amar, M. R. Soltanian, Z. Dai, and X. Zhang, “Modeling CO2 Solubility in Water at High Pressure and Temperature Conditions,” Energy and Fuels, vol. 34, no. 4, 2020, doi: 10.1021/acs.energyfuels.0c00114.spa
dc.relation.referencesM. Rahman, “Application of metabolic engineering in industrial fermentative process,” in Advances in Food Biotechnology, 2015. doi: 10.1002/9781118864463.ch13.spa
dc.relation.referencesY. Shang et al., “Nutrient enhanced reclamation promoted growth, diversity and activities of carbon fixing microbes in a coal-mining subsistence land,” Soil Science and Environment, vol. 2, no. 1, 2023, doi: 10.48130/sse-2023-0002.spa
dc.relation.referencesY. N. Choi, J. W. Lee, J. W. Kim, and J. M. Park, “Acetyl-CoA-derived biofuel and biochemical production in cyanobacteria: a mini review,” J Appl Phycol, vol. 32, no. 3, 2020, doi: 10.1007/s10811-020-02128-x.spa
dc.relation.referencesQ. Wang et al., “A novel bifunctional aldehyde/alcohol dehydrogenase catalyzing reduction of acetyl-CoA to ethanol at temperatures up to 95 °C,” Sci Rep, vol. 11, no. 1, 2021, doi: 10.1038/s41598-020-80159-7.spa
dc.relation.referencesJ. L. F. Alves, V. F. da Silva Filho, R. A. F. Machado, and C. Marangoni, “Ethanol enrichment from an aqueous stream using an innovative multi-tube falling film distillation column equipped with a biphasic thermosiphon,” Process Safety and Environmental Protection, vol. 139, 2020, doi: 10.1016/j.psep.2020.03.039.spa
dc.relation.referencesJ. B. Vennekötter, T. Scheuermann, R. Sengpiel, and M. Wessling, “The electrolyte matters: Stable systems for high rate electrochemical CO2 reduction,” Journal of CO2 Utilization, vol. 32, 2019, doi: 10.1016/j.jcou.2019.04.007.spa
dc.relation.referencesX. Ge, R. Zhang, P. Liu, B. Liu, and B. Liu, “Optimization and control of extractive distillation for formic acid-water separation with maximum-boiling azeotrope,” Comput Chem Eng, vol. 169, 2023, doi: 10.1016/j.compchemeng.2022.108075.spa
dc.relation.referencesJ. Xu et al., “Mild and efficient extraction of hardwood hemicellulose using recyclable formic acid/water binary solvent,” Bioresour Technol, vol. 254, pp. 353–356, Apr. 2018, doi: 10.1016/j.biortech.2018.01.094.spa
dc.relation.referencesA. L. Cerón, A. Konist, H. Lees, and O. Järvik, “Effect of woody biomass gasification process conditions on the composition of the producer gas,” Sustainability (Switzerland), vol. 13, no. 21, 2021, doi: 10.3390/su132111763.spa
dc.relation.referencesS. Safarian, R. Unnthorsson, and C. Richter, “Hydrogen production via biomass gasification: simulation and performance analysis under different gasifying agents,” Biofuels, vol. 13, no. 6, 2022, doi: 10.1080/17597269.2021.1894781.spa
dc.relation.referencesB. V. Babu and P. N. Sheth, “Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor,” Energy Convers Manag, vol. 47, no. 15–16, 2006, doi: 10.1016/j.enconman.2005.10.032.spa
dc.relation.referencesJ. Han et al., “Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus,” Energy Convers Manag, vol. 153, 2017, doi: 10.1016/j.enconman.2017.10.030.spa
dc.relation.referencesD. J. Faria, L. Moreira dos Santos, F. L. Bernard, I. Selbacch Pinto, M. A. Carmona da Motta Resende, and S. Einloft, “Dehydrating agent effect on the synthesis of dimethyl carbonate (DMC) directly from methanol and carbon dioxide,” RSC Adv, vol. 10, no. 57, 2020, doi: 10.1039/d0ra06034h.spa
dc.relation.referencesT. W. Wu and I. L. Chien, “CO2 Utilization Feasibility Study: Dimethyl Carbonate Direct Synthesis Process with Dehydration Reactive Distillation,” Ind Eng Chem Res, vol. 59, no. 3, 2020, doi: 10.1021/acs.iecr.9b05476.spa
dc.relation.referencesÉ. S. Van-Dal and C. Bouallou, “Design and simulation of a methanol production plant from CO2 hydrogenation,” J Clean Prod, vol. 57, 2013, doi: 10.1016/j.jclepro.2013.06.008.spa
dc.relation.referencesS. Ren et al., “Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation,” Journal of CO2 Utilization, vol. 36, 2020, doi: 10.1016/j.jcou.2019.11.013.spa
dc.relation.referencesA. Adil, B. Prasad, and L. Rao, “Methanol generation from bio-syngas: experimental analysis and modeling studies,” Environ Dev Sustain, vol. 26, no. 8, 2024, doi: 10.1007/s10668-023-03541-1.spa
dc.relation.referencesA. M. Ribeiro, J. C. Santos, A. E. Rodrigues, and S. Rifflart, “Syngas Stoichiometric Adjustment for Methanol Production and Co-Capture of Carbon Dioxide by Pressure Swing Adsorption,” Sep Sci Technol, vol. 47, no. 6, 2012, doi: 10.1080/01496395.2011.637282.spa
dc.relation.referencesH.-Z. Tan et al., “Review on the synthesis of dimethyl carbonate,” Catal Today, vol. 316, pp. 2–12, Oct. 2018, doi: 10.1016/j.cattod.2018.02.021.spa
dc.relation.referencesD. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson, “Syngas production for gas-to-liquids applications: Technologies, issues and outlook,” Fuel Processing Technology, vol. 71, no. 1–3, 2001, doi: 10.1016/S0378-3820(01)00140-0.spa
dc.relation.referencesF. Schorn et al., “Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations,” Advances in Applied Energy, vol. 3, 2021, doi: 10.1016/j.adapen.2021.100050.spa
dc.relation.referencesZ. Sajid, M. A. B. Da Silva, and S. N. Danial, “Historical analysis of the role of governance systems in the sustainable development of biofuels in Brazil and the United States of America (USA),” Sustainability (Switzerland), vol. 13, no. 12, 2021, doi: 10.3390/su13126881.spa
dc.relation.referencesG. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability indicators for chemical processes: II. Data needs,” Ind Eng Chem Res, vol. 51, no. 5, 2012, doi: 10.1021/ie200755k.spa
dc.relation.referencesC. A. Rueda-Duran, M. Ortiz-Sanchez, and C. A. Cardona-Alzate, “Detailed economic assessment of polylactic acid production by using glucose platform: sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials,” Biomass Convers Biorefin, 2022, doi: 10.1007/s13399-022-02501-5.spa
dc.relation.referencesS. Kim, W. Ko, S. Youn, R. Gao, Y. Chung, and S. Bang, “Advanced Depreciation Cost Analysis for a Commercial Pyroprocess Facility in Korea,” Nuclear Engineering and Technology, vol. 48, no. 3, 2016, doi: 10.1016/j.net.2016.01.013.spa
dc.relation.referencesM. S. Peters and K. D. Timmerhaus, Plant Design and Costing for Chemical Engineers. 1991.spa
dc.relation.referencesJ. C. Solarte-Toro, “Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case,” Doctoral thesis, Universidad Nacional de Colombia, Manizales, 2022.spa
dc.relation.referencesR. Polo-Mendoza et al., “Environmental and economic feasibility of implementing perpetual pavements (PPs) against conventional pavements: A case study of Barranquilla city, Colombia,” Case Studies in Construction Materials, vol. 18, 2023, doi: 10.1016/j.cscm.2023.e02112.spa
dc.relation.referencesZ. Wu, Z. Zhang, G. Xu, S. Ge, X. Xue, and H. Chen, “Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle,” Energy, vol. 300, p. 131647, Aug. 2024, doi: 10.1016/j.energy.2024.131647.spa
dc.relation.referencesG. Prieto-Rodriguez and O. Garcia-Bedoya, “Public transportation system fare, economic impacts on the purchasing power of its users, the case of Bogotá, Colombia,” Scientific Journal of Silesian University of Technology. Series Transport, vol. 123, pp. 245–257, Jun. 2024, doi: 10.20858/sjsutst.2024.123.12.spa
dc.relation.referencesZ. Yan et al., “Integrated Process of Monoethanolamine-Based CO2Absorption and CO2Mineralization with SFGD Slag: Process Simulation and Life-Cycle Assessment of CO2Emission,” ACS Sustain Chem Eng, vol. 9, no. 24, 2021, doi: 10.1021/acssuschemeng.1c02278.spa
dc.relation.referencesZ. Huang, R. G. Grim, J. A. Schaidle, and L. Tao, “The economic outlook for converting CO 2 and electrons to molecules,” Energy Environ Sci, vol. 14, no. 7, pp. 3664–3678, 2021, doi: 10.1039/D0EE03525D.spa
dc.relation.referencesJ. Marcinkoski et al., “DOE Hydrogen and Fuel Cells Program Record,” DOE Hydrogen and Fuel Cells Program Record Record, 2015.spa
dc.relation.referencesV. Aristizábal-Marulanda, J. C. Solarte-Toro, and C. A. Cardona Alzate, “Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia,” Bioresour Technol Rep, vol. 9, 2020, doi: 10.1016/j.biteb.2020.100397.spa
dc.relation.referencesL. Lombardi, A. Corti, E. Carnevale, R. Baciocchi, and D. Zingaretti, “Carbon dioxide removal and capture for landfill gas up-grading,” in Energy Procedia, 2011. doi: 10.1016/j.egypro.2011.01.076.spa
dc.relation.referencesIntratec solutions, “Potassium Carbonate Prices | Historical and Current.” Accessed: Oct. 17, 2024. [Online]. Available: https://www.intratec.us/chemical-markets/potassium-carbonate-pricespa
dc.relation.referencesA. P. Sibal, R. Ghosh, D. W. Flaherty, and A. S. Stillwell, “Setting benchmarks for ethylene and propylene oxidation via electrochemical routes: a process design and technoeconomic analysis approach,” Green Chemistry, vol. 26, no. 17, pp. 9455–9475, 2024, doi: 10.1039/D4GC02672A.spa
dc.relation.referencesT. Zaiz, H. Lanez, and B. Kechida, “Aspen Hysys Simulation And Comparison Between Organic Solvents (sulfolane And Dmso) Used For Benzene Extraction,” Jun. 2013. Accessed: Oct. 17, 2024. [Online]. Available: https://www.asjp.cerist.dz/en/article/4592spa
dc.relation.referencesC. Valderrama, V. Quintero, and V. Kafarov, “Energy and water optimization of an integrated bioethanol production process from molasses and sugarcane bagasse: A Colombian case,” Fuel, vol. 260, 2020, doi: 10.1016/j.fuel.2019.116314.spa
dc.relation.referencesS. Piedrahita-Rodríguez et al., “Strategy for the analysis of lignocellulosic biomass to select a viable transformation route in the Colombian context,” Environmental Science and Pollution Research, May 2024, doi: 10.1007/s11356-024-32975-x.spa
dc.relation.referencesMethanol Institute, “Methanol price and supply/demand.” Accessed: Oct. 17, 2024. [Online]. Available: https://www.methanol.org/methanol-price-supply-demand/spa
dc.relation.referencesC. N. Bonacina, M. C. Romano, P. Colbertaldo, A. Milocco, and G. Valenti, “Techno-economic study of chimneyless electric arc furnace plants for the coproduction of steel and of electricity, hydrogen, or methanol,” J Clean Prod, vol. 468, p. 143048, Aug. 2024, doi: 10.1016/j.jclepro.2024.143048.spa
dc.relation.referencesA. Abdeljaber, O. Mostafa, and M. Abdallah, “Applications of Life Cycle Costing in Waste-to-Energy Projects,” in Environmental Footprints and Eco-Design of Products and Processes, vol. Part F1544, 2023. doi: 10.1007/978-3-031-40993-6_4.spa
dc.relation.referencesR. X. Jiménez, A. F. Young, and H. L. S. Fernandes, “Propylene glycol from glycerol: Process evaluation and break-even price determination,” Renew Energy, vol. 158, pp. 181–191, Oct. 2020, doi: 10.1016/j.renene.2020.05.126.spa
dc.relation.referencesE. Hernández, A. Belinchón, E. R. Pachón, P. Navarro, and J. Palomar, “Toward Sustainable and Cost‐Effective CO2 Conversion Processes to Propylene Carbonate Based on Ionic Liquids,” Adv Sustain Syst, vol. 6, no. 12, Dec. 2022, doi: 10.1002/adsu.202200384.spa
dc.relation.referencesR. Turton, Analysis, Synthesis, and Design of Chemical Processes Fourth Edition, vol. 53, no. 9. 2013.spa
dc.relation.referencesJ. C. Solarte-Toro, C. A. Rueda-Duran, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion,” Bioresour Technol Rep, vol. 15, p. 100776, Sep. 2021, doi: 10.1016/J.BITEB.2021.100776.spa
dc.relation.referencesK. V. Mora Aguilar, “Con bonos de $20.500 es posible combatir las emisiones de carbono de las empresas,” Bonos sostenibles, Bogotá, Oct. 03, 2023. Accessed: Nov. 22, 2024. [Online]. Available: https://www.larepublica.co/especiales/bonos-sostenibles/con-bonos-de-20-500-es-posible-combatir-las-emisiones-de-carbono-de-las-empresas-3722112spa
dc.relation.referencesW. Klöpffer, “The critical review of life cycle assessment studies according to ISO 14040 and 14044,” 2012. doi: 10.1007/s11367-012-0426-7.spa
dc.relation.referencesL. J. Müller, A. Kätelhön, M. Bachmann, A. Zimmermann, A. Sternberg, and A. Bardow, “A Guideline for Life Cycle Assessment of Carbon Capture and Utilization,” Front Energy Res, vol. 8, 2020, doi: 10.3389/fenrg.2020.00015.spa
dc.relation.referencesJ. C. Solarte-Toro, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “Environmental life cycle assessment (E-LCA) and social impact assessment (SIA) of small-scale biorefineries implemented in rural zones: the avocado (Persea Americana var. Americana) case in Colombia,” Environmental Science and Pollution Research, vol. 30, no. 4, pp. 8790–8808, Jun. 2022, doi: 10.1007/s11356-022-20857-z.spa
dc.relation.referencesJ. C. Solarte-Toro, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “Sustainability analysis of biorefineries based on country socio-economic and environmental context: A step-by-step way for the integral analysis of biomass upgrading processes,” Renew Energy, vol. 206, pp. 1147–1157, Apr. 2023, doi: 10.1016/j.renene.2023.02.065.spa
dc.relation.referencesS. Y. Kpalo, M. F. Zainuddin, L. A. Manaf, and A. M. Roslan, “Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique,” Sustainability (Switzerland), vol. 12, no. 6, 2020, doi: 10.3390/su12062468.spa
dc.relation.referencesD. Supramono, Julianto, Haqqyana, H. Setiadi, and M. Nasikin, “Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene,” in IOP Conference Series: Earth and Environmental Science, 2017. doi: 10.1088/1755-1315/93/1/012072.spa
dc.relation.referencesE. Daouk, L. Van De Steene, F. Paviet, and S. Salvador, “Oxidative pyrolysis of a large wood particle: Effects of oxygen concentration and of particle size,” Chem Eng Trans, vol. 37, 2014, doi: 10.3303/CET1437013.spa
dc.relation.referencesS. Ramos-Carmona, S. Delgado-Balcázar, and J. F. Pérez, “Physicochemical characterization of torrefied wood biomass under air as oxidizing atmosphere,” Bioresources, vol. 12, no. 3, 2017, doi: 10.15376/biores.12.3.5428-5448.spa
dc.relation.referencesD. Antolini, A. S. Shivananda, F. Patuzzi, M. Grigiante, and M. Baratieri, “Experimental and modeling analysis of Air and CO2 biomass gasification in a reverse lab scale downdraft gasifier,” in Energy Procedia, 2019. doi: 10.1016/j.egypro.2019.01.304.spa
dc.relation.referencesZ. Yao, S. You, T. Ge, and C. H. Wang, “Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation,” Appl Energy, vol. 209, 2018, doi: 10.1016/j.apenergy.2017.10.077.spa
dc.relation.referencesK. Intani, S. Latif, M. S. Islam, and J. Müller, “Phytotoxicity of corncob biochar before and after heat treatment and washing,” Sustainability (Switzerland), vol. 11, no. 1, 2019, doi: 10.3390/su11010030.spa
dc.relation.referencesT. Adekanye, O. Dada, and J. Kolapo, “Pyrolysis of maize cob at different temperatures for biochar production: Proximate, ultimate and spectroscopic characterisation,” Research in Agricultural Engineering, vol. 68, no. 1, 2022, doi: 10.17221/106/2020-RAE.spa
dc.relation.referencesJ. Gutiérrez, A. Rubio-Clemente, and J. F. Pérez, “ANALYSIS OF BIOCHARS PRODUCED FROM THE GASIFICATION OF Pinus Patula PELLETS AND CHIPS AS SOIL AMENDMENTS,” Maderas: Ciencia y Tecnologia, vol. 24, 2022, doi: 10.4067/S0718-221X2022000100449.spa
dc.relation.referencesD. Zhou et al., “Role of Ash Content in Biochar for Copper Immobilization,” Environ Eng Sci, vol. 33, no. 12, 2016, doi: 10.1089/ees.2016.0042.spa
dc.relation.referencesT. Wang, M. Camps-Arbestain, M. Hedley, and P. Bishop, “Predicting phosphorus bioavailability from high-ash biochars,” Plant Soil, vol. 357, no. 1, 2012, doi: 10.1007/s11104-012-1131-9.spa
dc.relation.referencesF. Güleç, O. Williams, E. T. Kostas, A. Samson, and E. Lester, “A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction,” Energy Convers Manag, vol. 270, 2022, doi: 10.1016/j.enconman.2022.116260.spa
dc.relation.referencesB. Tasim et al., “Quality evaluation of biochar prepared from different agricultural residues,” Sarhad Journal of Agriculture, vol. 35, no. 1, 2019, doi: 10.17582/journal.sja/2019/35.1.134.143.spa
dc.relation.referencesP. C. Kuo and W. Wu, “Thermodynamic analysis of a combined heat and power system with CO2 utilization based on co-gasification of biomass and coal,” Chem Eng Sci, vol. 142, 2016, doi: 10.1016/j.ces.2015.11.030.spa
dc.relation.referencesK. Im-Orb, L. Simasatitkul, and A. Arpornwichanop, “Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification,” Fuel, vol. 164, 2016, doi: 10.1016/j.fuel.2015.10.018.spa
dc.relation.referencesS. Guo, Y. Li, Y. Wang, L. Wang, Y. Sun, and L. Liu, “Recent advances in biochar-based adsorbents for CO2 capture,” Carbon Capture Science and Technology, vol. 4, 2022, doi: 10.1016/j.ccst.2022.100059.spa
dc.relation.referencesP. Brassard et al., “Biochar for soil amendment,” in Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications, 2019. doi: 10.1016/B978-0-12-814893-8.00004-3.spa
dc.relation.referencesS. M. Hwang et al., “Investigation on electroreduction of CO2to formic acid using Cu3(BTC)2metal-organic framework (Cu-MOF) and graphene oxide,” ACS Omega, vol. 5, no. 37, 2020, doi: 10.1021/acsomega.0c03170.spa
dc.relation.referencesV. S. K. Yadav and M. K. Purkait, “Electrochemical reduction of CO2 to HCOOH using zinc and cobalt oxide as electrocatalysts,” New Journal of Chemistry, vol. 39, no. 9, 2015, doi: 10.1039/c5nj01182e.spa
dc.relation.referencesJ. Wu, F. Risalvato, and X.-D. Zhou, “ Effects of the Electrolyte on Electrochemical Reduction of CO 2 on Sn Electrode ,” ECS Trans, vol. 41, no. 33, 2012, doi: 10.1149/1.3702412.spa
dc.relation.referencesX. Zheng et al., “Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate,” Joule, vol. 1, no. 4, 2017, doi: 10.1016/j.joule.2017.09.014.spa
dc.relation.referencesT. N. Nguyen et al., “Catalyst Regeneration via Chemical Oxidation Enables Long-Term Electrochemical Carbon Dioxide Reduction,” J Am Chem Soc, vol. 144, no. 29, 2022, doi: 10.1021/jacs.2c04081.spa
dc.relation.referencesM. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, and A. T. Bell, “Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu,” J Am Chem Soc, vol. 138, no. 39, 2016, doi: 10.1021/jacs.6b07612.spa
dc.relation.referencesC. A. Obasanjo et al., “In situ regeneration of copper catalysts for long-term electrochemical CO2 reduction to multiple carbon products,” J Mater Chem A Mater, vol. 10, no. 37, 2022, doi: 10.1039/d2ta02709g.spa
dc.relation.referencesS. Maye, H. H. Girault, and P. Peljo, “Thermally regenerative copper nanoslurry flow batteries for heat-to-power conversion with low-grade thermal energy,” Energy Environ Sci, vol. 13, no. 7, 2020, doi: 10.1039/d0ee01590c.spa
dc.relation.referencesS. Jin, Z. Hao, K. Zhang, Z. Yan, and J. Chen, “ Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization ,” Angewandte Chemie, vol. 133, no. 38, 2021, doi: 10.1002/ange.202101818.spa
dc.relation.referencesY. Lu, K. Peng, and L. Zhang, “Sustainable Recycling of Electrode Materials in Spent Li-Ion Batteries through Direct Regeneration Processes,” 2022. doi: 10.1021/acsestengg.1c00425.spa
dc.relation.referencesD. W. Kim, C. W. Kim, J. C. Koh, and D. W. Park, “Synthesis of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquid on amorphous silica,” Journal of Industrial and Engineering Chemistry, vol. 16, no. 3, 2010, doi: 10.1016/j.jiec.2010.01.054.spa
dc.relation.referencesD. B. G. Williams, M. S. Sibiya, P. S. van Heerden, M. Kirk, and R. Harris, “Verkade super base-catalysed transesterification of propylene carbonate with methanol to co-produce dimethyl carbonate and propylene glycol,” J Mol Catal A Chem, vol. 304, no. 1–2, 2009, doi: 10.1016/j.molcata.2009.02.005.spa
dc.relation.referencesA. A. Kiss, J. J. Pragt, H. J. Vos, G. Bargeman, and M. T. de Groot, “Enhanced Process for Methanol Production by CO2 Hydrogenation,” in Computer Aided Chemical Engineering, vol. 38, 2016. doi: 10.1016/B978-0-444-63428-3.50169-7.spa
dc.relation.referencesH. Yang, J. J. Kaczur, S. D. Sajjad, and R. I. Masel, “Electrochemical conversion of CO2 to formic acid utilizing SustainionTM membranes,” Journal of CO2 Utilization, vol. 20, 2017, doi: 10.1016/j.jcou.2017.04.011.spa
dc.relation.referencesZ. Huang, G. Grim, J. Schaidle, and L. Tao, “Using waste CO2 to increase ethanol production from corn ethanol biorefineries: Techno-economic analysis,” Appl Energy, vol. 280, 2020, doi: 10.1016/j.apenergy.2020.115964.spa
dc.relation.referencesC. Su, H. Wei, Z. Wang, H. Ayed, A. Mouldi, and A. A. Shayesteh, “Economic accounting and high-tech strategy for sustainable production: A case study of methanol production from CO2 hydrogenation,” Int J Hydrogen Energy, vol. 47, no. 62, 2022, doi: 10.1016/j.ijhydene.2022.01.124.spa
dc.relation.referencesN. Yusuf and F. Almomani, “Highly effective hydrogenation of CO2 to methanol over Cu/ZnO/Al2O3 catalyst: A process economy & environmental aspects,” Fuel, vol. 332, 2023, doi: 10.1016/j.fuel.2022.126027.spa
dc.relation.referencesD. Kang, J. Byun, and J. Han, “Electrochemical production of formic acid from carbon dioxide: A life cycle assessment study,” J Environ Chem Eng, vol. 9, no. 5, 2021, doi: 10.1016/j.jece.2021.106130.spa
dc.relation.referencesY. Khojasteh-Salkuyeh, O. Ashrafi, E. Mostafavi, and P. Navarri, “CO2utilization for methanol production; Part I: Process design and life cycle GHG assessment of different pathways,” Journal of CO2 Utilization, vol. 50, 2021, doi: 10.1016/j.jcou.2021.101608.spa
dc.relation.referencesT. Cordero-Lanzac et al., “A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks,” Journal of Energy Chemistry, vol. 68, 2022, doi: 10.1016/j.jechem.2021.09.045.spa
dc.relation.referencesY. G. Lee, H. U. Lee, J. M. Lee, N. Y. Kim, and D. H. Jeong, “Design of Dimethyl Carbonate (DMC) Synthesis Process Using CO2, Techno-economic Analysis, and Life Cycle Assessment,” Korean Journal of Chemical Engineering, vol. 41, no. 1, 2024, doi: 10.1007/s11814-024-00019-2.spa
dc.relation.referencesA. Banu, N. Mir, D. Ewis, M. H. El-Naas, A. I. Amhamed, and Y. Bicer, “Formic acid production through electrochemical reduction of CO2: A life cycle assessment,” Energy Conversion and Management: X, vol. 20, 2023, doi: 10.1016/j.ecmx.2023.100441.spa
dc.relation.referencesN. Kirchhübel and P. Fantke, “Getting the chemicals right: Toward characterizing toxicity and ecotoxicity impacts of inorganic substances,” J Clean Prod, vol. 227, 2019, doi: 10.1016/j.jclepro.2019.04.204.spa
dc.relation.referencesA. Ghannadzadeh and A. H. Tarighaleslami, “Exergy-aided environmental life cycle assessment of propylene oxide production,” International Journal of Life Cycle Assessment, vol. 27, no. 1, 2022, doi: 10.1007/s11367-021-01969-z.spa
dc.relation.referencesR. Bhandari, C. A. Trudewind, and P. Zapp, “Life cycle assessment of hydrogen production via electrolysis - A review,” 2014. doi: 10.1016/j.jclepro.2013.07.048.spa
dc.relation.referencesM. G. Kibria et al., “Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design,” 2019. doi: 10.1002/adma.201807166.spa
dc.relation.referencesM. Y. Lee, K. T. Park, W. Lee, H. Lim, Y. Kwon, and S. Kang, “Current achievements and the future direction of electrochemical CO2 reduction: A short review,” Crit Rev Environ Sci Technol, vol. 50, no. 8, 2020, doi: 10.1080/10643389.2019.1631991.spa
dc.relation.referencesA. Riaz, G. Zahedi, and J. J. Klemeš, “A review of cleaner production methods for the manufacture of methanol,” 2013. doi: 10.1016/j.jclepro.2013.06.017.spa
dc.relation.referencesX. Jie et al., “The decarbonisation of petroleum and other fossil hydrocarbon fuels for the facile production and safe storage of hydrogen,” Energy Environ Sci, vol. 12, no. 1, 2019, doi: 10.1039/c8ee02444h.spa
dc.relation.referencesN. Muradov, “Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives,” 2017. doi: 10.1016/j.ijhydene.2017.04.101.spa
dc.relation.referencesJ. C. Solarte-Toro, S. Piedrahita-Rodríguez, and C. A. Cardona Alzate, “A Bioeconomy Model Based on Sustainable Biorefineries to Ensure the Sustainable Development Goals (SDGs) in Colombia,” in A Sustainable Green Future: Perspectives on Energy, Economy, Industry, Cities and Environment, 2023. doi: 10.1007/978-3-031-24942-6_7.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalCarbon dioxideeng
dc.subject.proposalCarbon Capture and Utilizationeng
dc.subject.proposalC1 biorefinerieseng
dc.subject.proposalCarbon neutralityeng
dc.subject.proposalCircular economyeng
dc.subject.proposalTechno-economic assessmenteng
dc.subject.proposalLife cycle assessmenteng
dc.subject.proposalSustainabilityeng
dc.subject.proposalDióxido de carbonospa
dc.subject.proposalCaptura y utilización de carbonospa
dc.subject.proposalBiorrefinerías C1spa
dc.subject.proposalNeutralidad de carbonospa
dc.subject.proposalEconomía circularspa
dc.subject.proposalEvaluación tecno-económicaspa
dc.subject.proposalEvaluación del ciclo de vidaspa
dc.subject.proposalSostenibilidadspa
dc.subject.unescoSostenibilidadspa
dc.subject.unescoImpacto ambientalspa
dc.titleC1 biorefineries : The CO2 caseeng
dc.title.translatedBiorrefinerías C1 : El caso del CO2spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad de Sucrespa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1006425536.2025.pdf
Tamaño:
3.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: