Modelación numérica por elementos finitos de un recipiente a presión cilíndrico de material compuesto

dc.contributor.advisorParedes López, Jairo Andrés
dc.contributor.authorSoto Pineda, Diana Yulieth
dc.contributor.googlescholarSoto Pineda, Diana Yuliethspa
dc.contributor.orcidSoto Pineda, Diana Yulieth [0000000283739702]spa
dc.contributor.researchgroupDiseño y Análisis de Métodos Numéricosspa
dc.date.accessioned2022-11-28T14:10:25Z
dc.date.available2022-11-28T14:10:25Z
dc.date.issued2022
dc.descriptiongráficos, tablasspa
dc.description.abstractA nivel industrial, se usan recipientes a presión para ejecutar diversos servicios, desde almacenar gases a altas presiones, transportar líquidos, intercambiadores de calor, tuberías, tanques de combustible, fuselajes, calderas entre otros. La presión aplicada al recipiente depende del tipo de uso, su geometría puede ser cilíndrica o esférica, comúnmente se fabrican en aceros aleados, pese a que este material es pesado y vulnerable a la corrosión. En la actualidad, se estudian los materiales compuestos, que presentan alta resistencia, sin problemas de corrosión y bajo peso. En un material compuesto, hay un material simple que es más ligero y resistente que hace las veces de matriz, y se une con material fibra de resistencia mayor, su combinación da lugar al compuesto. Esta tesis de investigación estudia los esfuerzos que experimenta un recipiente a presión cilíndrico vertical, hecho de un material compuesto de matriz metálica de aluminio y fibras de boro, y se compara con un recipiente de acero. El material compuesto consta de tres capas, cada capa con una participación de un tercio, se diseñó empleando la teoría de mezclas serie/paralelo, una importante teoría que permite predecir el comportamiento del compuesto y obtener una matriz constitutiva del mismo. Se crearon dos modelos para calibración de parámetros, con la teoría de mezclas serie/paralelo se diseñó el material compuesto y se estimaron los esfuerzos teóricamente, que posteriormente se compararon con los resultados obtenidos en las herramientas de análisis por elementos finitos en APDL. Con la teoría de membrana en cáscaras, se estimaron teóricamente los esfuerzos tangenciales y longitudinales a una presión interna de 15 MPa, se contrastaron con los resultados del modelo en acero y el modelo en el material compuesto calibrado. De los resultados, se identificó mejor rendimiento del recipiente a presión en material compuesto frente al recipiente a presión de acero, se estimó una reducción del peso total en el modelo en material compuesto respecto al modelo en acero y adicionalmente se eliminó la vulnerabilidad a la corrosión. Finalmente, se concluye que, sí se cumplieron con los objetivos propuestos al inicio de la investigación, aportando una metodología de análisis que aplica teoría con modelado numérico en conjunto para el análisis y puede ser fácilmente replicada por otros estudios. (Texto tomado de la fuente)spa
dc.description.abstractAt an industrial level, pressure vessels are used to perform various services, from storing gases at high pressures, transporting liquids, heat exchangers, pipes, fuel tanks, fuselages, boilers, among others. The pressure applied to the container depends on the type of use, its geometry can be cylindrical or spherical, they are commonly made of alloy steel, despite the fact that this material is heavy and vulnerable to corrosion. At present, composite materials are being studied, which present high resistance, without corrosion problems and low weight. In a composite material, there is a simple material that is lighter and more resistant than acts as a matrix, and joins with fiber material of greater resistance, their combination gives rise to the composite. This research thesis studies the stresses experienced by a vertical cylindrical pressure vessel, made of a composite material of aluminum metal matrix and boron fibers, and compares it with a steel vessel. The composite material consists of three layers, each layer with a participation of one third, was designed using the series/parallel mixing theory, an important theory that allows predicting the behavior of the composite and obtaining a constitutive matrix of it. Two models were created for parameter calibration, with the theory of series/parallel mixtures, the composite material was designed and the efforts were estimated theoretically, which were later compared with the results obtained in the finite element analysis tools in APDL. With the shell membrane theory, the tangential and longitudinal stresses at an internal pressure of 15 MPa were theoretically estimated, contrasted with the results of the steel model and the model in the calibrated composite material. From the results, a better performance of the pressure vessel in composite material was identified compared to the steel pressure vessel, a reduction in total weight was estimated in the model in composite material compared to the model in steel and additionally the vulnerability to corrosion was eliminated. Finally, it is concluded that the objectives proposed at the beginning of the investigation were met, providing an analysis methodology that applies theory with numerical modeling together for the analysis and can be easily replicated by other studies.eng
dc.description.curricularareaIngeniería Civilspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.methodsLa metodología empleada para el desarrollo de esta tesis consistió en los siguientes pasos: I. Revisión bibliográfica concerniente a recipientes a presión, teoría membranal de cáscaras, ecuaciones constitutivas de materiales anisotrópicos, materiales compuestos, estudio de la teoría de mezclas serie/paralelo para el diseño de materiales compuestos y análisis por elementos finitos en APDL. II. Calibración del material compuesto de 3 capas con orientaciones de fibra a +37°, -18 °, -37°, empleando la teoría de mezclas serie/paralelo y validación usando un modelo numérico simple. III. Calibración de los resultados en el sistema de coordenadas cilíndricas usando el modelo numérico simple. IV. Modelación numérica del recipiente a presión cilíndrico con el material compuesto calibrado para comparación con modelo numérico de recipiente a presión cilíndrico hecho en material simple homogéneo.spa
dc.description.researchareaModelación numérica de materiales compuestos.spa
dc.format.extentxv, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82788
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesM. Maleki, G. H. Farrahi, B. Haghpanah Jahromi, and E. Hosseinian, “Residual stress analysis of autofrettaged thick-walled spherical pressure vessel,” Int. J. Press. Vessel. Pip., vol. 87, no. 7, pp. 396–401, 2010, doi: 10.1016/j.ijpvp.2010.04.002.spa
dc.relation.referencesM. D. Actis and J. P. Durruty, “Apunte - Estructuras IV - Análisis de Estructuras Cilindricas: Cilindros de Paredes Delgadas Sometidos a Compresión y Presión Interna.” Facultad de Ingeniería Universidad Nacional de La Plata, La Plata, pp. 20–30, 2009.spa
dc.relation.referencesE. L. E. Pennec and A. Rondeau, “Les Equipements Sous Pression ( ESP ),” 2018.spa
dc.relation.referencesP. Fernández Díez, “Diseño y Análisis Estructural de Recipientes a Presión,” Cent. Térmicas, pp. 1–32, 2008.spa
dc.relation.referencesAPI, “Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration,” Api 510, vol. 552, no. 1, p. iii, 2006.spa
dc.relation.referencesA. C. Ugural and S. K. Fenster, Advanced Mechanics of Materials and Applied Elasticity. Wesford: Pearson Education, 2012.spa
dc.relation.referencesA. Toudehdehghan and T. W. Hong, “A critical review and analysis of pressure vessel structures,” IOP Conf. Ser. Mater. Sci. Eng., vol. 469, no. 1, pp. 1–12, 2019, doi: 10.1088/1757-899X/469/1/012009.spa
dc.relation.referencesM. Kovář, “Numerical analysis for optimization of pressure vessel,” no. September, pp. 166–169, 2017.spa
dc.relation.referencesV. Shaterian-alghalandis and A. Paykani, “Finite Element Analysis of a Spherical Pressure Vessel under Simultaneous Thermal and Pressure Loadings,” Int. J. Eng. Appl. Sci., vol. 3, no. 4, pp. 43–55, 2011.spa
dc.relation.referencesJ. Zeman, F. Rauscher, and S. Schindler, Pressure Vessel Design: The Direct Route. San Diego: Elsevier, 2006.spa
dc.relation.referencesR. L. Cloud, S. S. Gill, S. Kendrick, and R. Kitching, The Stress Analysis of Pressure Vessels and Pressure Vessel Components, vol. 1. Hungary: Pergamon Press Ltd, 1970.spa
dc.relation.referencesD. R. Moss and M. Basic, Pressure Vessel Design Manual, 4th ed. Oxford: Elsevier, 2013.spa
dc.relation.referencesJ. I. Mantilla Daza and J. Padilla Sánchez, “Análisis y Estudio De Esfuerzos y Deformaciones En Recipientes Metálicos Cilíndricos De Pared Delgada Sometidos a Presión Utilizando Una Herramienta Computacional (Ansys 5.5),” Universidad Tecnológica de Bolívar, 2004.spa
dc.relation.referencesL. Wolf, M. S. Kazimi, and N. E. Todreas, “Engineering of Nuclear Reactors Note L . 4 ‘ Introduction To Structural Mechanics ,’” 2003, [Online]. Available: https://ocw.mit.edu/courses/nuclear-engineering/22-312-engineering-of-nuclear-reactors-fall-2015/readings-and-assignments/MIT22_312F15_note_L4.pdf.spa
dc.relation.referencesA. Kalnins, “Stress Classification in Pressure Vessels and Piping,” Press. Vessel. Pipping Syst., pp. 1–7, 2017.spa
dc.relation.referencesR. Eggers, Industrial High Pressure Applications: Processes, Equipment and Safety. Hamburg: Wiley, 2012.spa
dc.relation.referencesY. Murakami, Theory of elasticity and stress concentration, 1st ed. West Sussex, United Kingdom: John Wiley & Sons, Ltd, 2017.spa
dc.relation.referencesS. A. Peñaloza-Peña, C. Galvis G., and J. Quiroga M., “Failure detection in a pressure vessel using acoustic emissions technology,” Rev. UIS Ing., vol. 18, no. 4, pp. 147–156, 2019, doi: 10.18273/revuin.v18n4-2019014.spa
dc.relation.referencesH. Altenbach and V. Eremeyev, “Thin-walled structural elements: Classification, classical and advanced theories, new applications,” CISM Int. Cent. Mech. Sci. Courses Lect., vol. 572, pp. 1–62, 2017, doi: 10.1007/978-3-319-42277-0_1.spa
dc.relation.referencesS. V. Kailas, “Mechanical Properties of Metals,” Bangalore India, 2015. doi: 10.1115/1.3636604.spa
dc.relation.referencesW. KJ, “Constitutive models for engineering materials,” Encycl. Phys. Sci. Technol., vol. 3, no. Academic Press, pp. 603–633, 2002, [Online]. Available: http://civil.colorado.edu/~willam/matl01.pdf.spa
dc.relation.referencesJ. R. Rice, “Solid Mechanics,” Cambridge, MA, 2010. doi: 10.1007/978-94-007-2739-7_100588.spa
dc.relation.referencesN. Espinoza, “Constitutive equations,” 2021. https://dnicolasespinoza.github.io/node17.html (accessed Jan. 03, 2022).spa
dc.relation.referencesA. S. Frolov, I. V. Fedotov, and B. A. Gurovich, “Evaluation of the true-strength characteristics for isotropic materials using ring tensile test,” Nucl. Eng. Technol., vol. 53, no. 7, pp. 2323–2333, 2021, doi: 10.1016/j.net.2021.01.033.spa
dc.relation.referencesJ. R. Vinson, The behavior of Shells Composed of Isotropic and Composite Materials. Waterloo: Springer, 1993.spa
dc.relation.referencesP. Kelly, Solid Mechanics, University. Auckland, 2019.spa
dc.relation.referencesM. A. Savi, “Continuum Mechanics,” Dyn. Smart Syst. Struct. Concepts Appl., no. November 2017, 2016, doi: 10.1007/978-3-319-29982-2.spa
dc.relation.referencesP. Prat, Ecuaciones Constitutivas, Elasticidad y Plasticidad. Barcelona, 2006.spa
dc.relation.referencesR. L. Mott and J. A. Untener, Applied strength of materials, 6th ed., vol. 263, no. 5. Boca: CRC Press Taylor & Francis Group, 2017.spa
dc.relation.referencesA. Bertram and R. Glüge, Solid mechanics: Theory, modeling, and problems, 1st ed., no. Febrero. Berlin: Springer International Publishing, 2013.spa
dc.relation.referencesJ. N. Périé, H. Leclerc, S. Roux, and F. Hild, “Digital image correlation and biaxial test on composite material for anisotropic damage law identification,” Int. J. Solids Struct., vol. 46, no. 11–12, pp. 2388–2396, 2009, doi: 10.1016/j.ijsolstr.2009.01.025.spa
dc.relation.referencesK. K. Chawla, Composite Materials Science and Engineering, 3rd ed., no. EM74-118 Apr 29-May 3 974. Birmingham: Springer, 2013.spa
dc.relation.referencesJ. Massa and A. Giudici, “Capítulo 16. Recipientes de presión,” Compend. Cálculo Estructural II - FCEFyN-UNC, pp. 371–397, 2015, [Online]. Available: http://www.cat.calc_est_2_im.efn.uncor.edu/wp-content/uploads/2013/10/Cap-16_RECIPIENTES_Parte-1.pdf.spa
dc.relation.referencesN. Fantuzzi, P. Trovalusci, and S. Dharasura, “Mechanical Behavior of Anisotropic Composite Materials as Micropolar Continua,” Front. Mater., vol. 6, no. April, 2019, doi: 10.3389/fmats.2019.00059.spa
dc.relation.referencesS. Hess, Tensors for Physics, vol. 3. Berlin: Springer, 2015.spa
dc.relation.referencesJ. J. Skrzypek and A. W. Ganczarski, Mechanics of Anisotropic Materials. Switzerland: Springer, 2015.spa
dc.relation.referencesV. Šerifi, M. Tarić, D. Jevtić, A. Ristovski, and M. šahinagić Isović, “Historical Development of Composite Materials,” Ann. Oradea Univ. Fascicle Manag. Technol. Eng., vol. Volume XXV, no. 3, 2018, doi: 10.15660/auofmte.2018-3.3392.spa
dc.relation.referencesS. Rana and R. Fanguerio, Advanced Composite Materials for Aerospace Engineering: Processing, Properties, and Applications. Hampshire: Elsevier, 2016.spa
dc.relation.referencesR. Joachim, H. Harders, and M. Baeker, Mechanical Behaviour of Engineering Materials. Berlin: Servicio Geológico Colombiano, 2006.spa
dc.relation.referencesS. Czarnecki, T. Łukasiak, and L. Tomasz, “The Isotropic and Cubic Material Designs. Recovery of the Underlying Microstructures Appearing in the Least Compliant Continuum Bodies Sławomir,” MDPI, no. September, 2017, doi: 10.3390/ma10101137.spa
dc.relation.referencesR. Abeyaratne, Continuum Mechanics, vol. II, no. May. 2012.spa
dc.relation.referencesÇ. Dinçkal, “On The Properties of Anisotropic Engineering Materials Based upon Orthonormal Representations,” Int. J. Appl. Math., no. August, 2012.spa
dc.relation.referencesJ. Aboudi, S. Arnold, and B. Bednarcyk, Micromechanics of Composite Materials: A generalized multiscale analysis approach, 1st ed., no. July. Elsevier, 2013.spa
dc.relation.referencesR. F. Gibson, Priciples of Composite Material Mechanics, 3rd ed. Ohio: CRC Press Taylor & Francis Group, 2012.spa
dc.relation.referencesF. T. Pujol, “Análisis y Optimización de una Estructura Naval de Material Compuesto Mediante Cálculo Multiescala,” Universidad Politécnica de Cataluña, 2017.spa
dc.relation.referencesS. W. T sai, Introductionto Composite Materials, 1st ed. Westport: Tecnomic Publishing Company, 1980.spa
dc.relation.referencesE. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, 2nd ed. Boca Raton: CRC Press Taylor & Francis Group, 2014.spa
dc.relation.referencesG. F. Smith, Constitutive Equations for Anisotropic and Isotropic Materials, 3rd ed. Bethlehem: North Holland, 1994.spa
dc.relation.referencesA. N. Gastelum, M. S. Hernández, B. Gonzalez, Y. Vega, and I. M. Muñoz, “Análisis comparativo de las propiedades mecánicas de un material compuesto reforzado con fibras de carbono y las de su matriz polimérica de resina epóxica,” Matéria (Rio Janeiro), vol. 23, no. 2, 2018, doi: 10.1590/s1517-707620180002.0428.spa
dc.relation.referencesD. Kim, Solid Mechanics: Anisotropic elasticity. 2020.spa
dc.relation.referencesM. Würkner, H. Berger, and U. Gabbert, “On numerical evaluation of effective material properties for composite structures with rhombic arrangements,” Int. J. Eng. Sci., vol. 49, pp. 322–332, 2011.spa
dc.relation.referencesB. Liu, X. Feng, and S. M. Zhang, “The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect,” Compos. Sci. Technol., vol. 69, pp. 2198–2204, 2009.spa
dc.relation.referencesA. P. S. Selvadurai and H. Nikopour, “Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: Experiments, theory and computations,” Compos. Struct., vol. 94, no. 6, pp. 1973–1981, 2012, doi: 10.1016/j.compstruct.2012.01.019.spa
dc.relation.referencesC. T. Sun and R. S. Vaidya, “Prediction of composite properties from a representative volume element,” Compos. Sci. Technol., vol. 56, pp. 171–179, 1996.spa
dc.relation.referencesH. Gan, C. E. Orozco, and C. T. Herkovich, “A strain-compatible method for micromechanical analysis of multi-phase composites,” Solids Struct., vol. 37, pp. 2097–5122, 2000.spa
dc.relation.referencesC. P. Jiang, Y. L. Xu, Y. K. Chueng, and S. H. Lo, “A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application,” Mech. Mater., vol. 36, pp. 225–237, 2004, [Online]. Available: http://eprints.uanl.mx/5481/1/1020149995.PDF.spa
dc.relation.referencesS. G. Lekhnitskii, “Theory of Elasticity of an Anisotropic Body,” Mir Publishers. Moscow Russia, 1981.spa
dc.relation.referencesM. H. Sadd, Elasticity, Theory, Applications, and Numerics, 2nd ed. Oxford, 2009.spa
dc.relation.referencesX. Martinez, “Micro Mechanical Simulation of Composite Materials Using the Serial / Parallel Mixing Theory,” Universidad Politécnica de Cataluña, 2008.spa
dc.relation.referencesX. Martínez, S. Oller, and E. Barbero, “Study of delamination in composites by using the serial/parallel mixing theory and a damage formulation,” Comput. Methods Appl. Sci., vol. 10, no. September, pp. 119–140, 2008, doi: 10.1007/978-1-4020-8584-0_6.spa
dc.relation.referencesJ. Betten, Creep mechanics. Aachen: Springer, 2002.spa
dc.relation.referencesF. Rastellini, S. Oller, and E. Oñate, Modelización numérica de la no-linealidad constitutiva de laminados compuestos. Barcelona: Centro Internacional de Métodos Numéricos en Ingeniería, 2007.spa
dc.relation.referencesE. Car, S. Oller, and E. Oñate, Materiales Compuestos-Simulación del Comportamiento Anisótropo, no. CIMNE. Barcelona,España, 2002, pp. 96–144.spa
dc.relation.referencesX. Martinez, S. Oller, and E. Barbero, “Caracterización de la delaminación en materiales compuestos mediante la teoría de mezclas serie/paralelo,” Rev. Int. Metod. Numer. para Calc. y Disen. en Ing., vol. 27, no. 3, pp. 189–199, 2011, doi: 10.1016/j.rimni.2011.07.001.spa
dc.relation.referencesF. Otero Gruer, “Multiscale numerical modelling of microstructured reinforced composites,” Universidad Politécnica de Cataluña, 2015.spa
dc.relation.referencesF. Rastellini, S. Oller, O. Salomón, and E. Oñate, “Composite materials non-linear modelling for long fibre-reinforced laminates. Continuum basis, computational aspects and validations,” Comput. Struct., vol. 86, no. 9, pp. 879–896, 2008, doi: 10.1016/j.compstruc.2007.04.009.spa
dc.relation.references[67] M. Molina, J. J. Cruz, S. Oller, A. H. Barbat, and L. Gil, “Estudio de la Interfaz Hormigón-Epoxi-FRP de un Ensayo de Doble Cortante por Medio de la Teoría de Mezclas Serie/Paralelo,” Rev. Int. Ing. Estructuras, pp. 1–18, 2009, [Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/6480/RP_DE_U_%3D N ENSAYO DE DOBLE CORTANTE POR MEDIO DE LA TEORÍA DE MEZCLAS SERIEPARALELO .pdf.spa
dc.relation.referencesE. J. Barbero, Introduction to Composite Materials Design, 2nd ed. UP Catalunya: CRC Press Taylor & Francis Group, 2010.spa
dc.relation.referencesF. Otero, S. Oller, X. Martinez, and O. Salomón, “Numerical homogenization for composite materials analysis. Comparison with other micro mechanical formulations,” Compos. Struct., vol. 122, pp. 405–416, 2015, doi: 10.1016/j.compstruct.2014.11.041.spa
dc.relation.referencesJ. A. Paredes, “Modelización numérica del comportamiento constitutivo del daño local y global y su correlación con la evolución de las frecuencias naturales en estructuras de hormigón reforzado,” Universidad Politécnica de Cataluña, 2013.spa
dc.relation.referencesX. Martinez and S. Oller, “Numerical simulation of matrix reinforced composite materials subjected to compression loads,” Arch. Comput. Methods Eng., vol. 16, no. 4, pp. 357–397, 2009, doi: 10.1007/s11831-009-9036-3.spa
dc.relation.referencesF. Otero, S. Oller, X. Martínez, and O. Salomon, “Numerical modelling of behaviour of carbon nanotube-reinforced composites,” Comput. Plast. XI - Fundam. Appl. COMPLAS XI, no. January, pp. 941–952, 2011.spa
dc.relation.referencesB. Ren, J. Noda, and K. Goda, “Effects of fiber orientation angles and fluctuation on the stiffness and strength of sliver-based green composites,” J. Soc. Mater. Sci. Japan, vol. 59, no. 7, pp. 1–9, 2010, doi: 10.2472/jsms.59.567.spa
dc.relation.referencesF. Otero, “Rotación de Coordenadas,” pp. 1–14, 2010.spa
dc.relation.referencesF. Laranjeira de Oliveira, A. de la Fuente Antequera, A. Aguado De Cea, and C. Molins Borrell, “Nueva metodología para la evaluación de la orientación de las fibras,” V Congr. ACHE, no. March 2015, pp. 1–10, 2015, [Online]. Available: https://futur.upc.edu/8626535.spa
dc.relation.referencesT. Chandrupatla and A. D. Belegundu, Introduction to Finite Elements in Engineering, 3rd ed. Prentice Hall, 2002.spa
dc.relation.referencesE. Madenci and I. Guven, The Finite Element Method and Applications in Engineering Using ANSYS, 2nd ed. Richmond: Springer, 2015.spa
dc.relation.referencesE. M. Alawadhi, Finite Element Simulations Using ANSYS. Broken Sound Parkway: CRC Press Taylor & Francis Group, 2010.spa
dc.relation.referencesE. Oñate, Structural Analysis with the Finite: Linear Statics, vol. 1. Barcelona: Springer, CIMNE, 2009.spa
dc.relation.referencesJ. A. Paredes López, “Métodos Variacionales,” 2017.spa
dc.relation.referencesK. Bathe Jurgen, Finite Element Procedures, 2nd ed. Watertown: Prentice Hall Pearson Education Inc, 2014.spa
dc.relation.referencesE. I. Celis Imbajoa, “Comportamiento no lineal de losas compuestas por lámina colaborante, con y sin refuerzo convencional. Modelación experimental y númerica.,” Universidad Nacional de Colombia Sede Manizales, 2020.spa
dc.relation.referencesH. P. Langtangen, “Introduction to Finite Element Methods,” Oslo, 2014. doi: 10.1017/cbo9781139025508.005.spa
dc.relation.referencesANSYS, “ANSYS Mechanical APDL Element Reference,” 2010. [Online]. Available: http://inside.mines.edu/~apetrell/ENME442/Documents/SOLID187.pdf.spa
dc.relation.referencesANSYS, Theory Reference for the Mechanical APDL and Mechanical Applications, 12th ed., vol. 3304, no. April. Canonsburg: Ansys Icn, 2009.spa
dc.relation.referencesANSYS, ANSYS Mechanical APDL Basic Analysis Guide, vol. 15. 2013.spa
dc.relation.referencesAnsys inc., “Mechanical APDL Element Reference,” vol. 15317, no. November, p. 9, 2010, [Online]. Available: http://inside.mines.edu/~apetrell/ENME442/Documents/SOLID187.pdf.spa
dc.relation.referencesANSYS, ANSYS MECHANICAL APDL Introductory Tutorials, vol. 15. 2013.spa
dc.relation.referencesANSYS, Theory Reference for the Mechanical APDL and Mechanical Applications, vol. 12. 2018.spa
dc.relation.referencesY. Liu and G. Glass, “Effects of mesh density on finite element analysis,” SAE Tech. Pap., vol. 2, no. April 2013, pp. 2–8, 2013, doi: 10.4271/2013-01-1375.spa
dc.relation.referencesR. Saxena and A. Seth, “Methodology for Mesh Type and Mesh Density Selection,” Int. J. Aerosp. Mech. Eng., vol. 3, no. 2, pp. 26–29, 2016.spa
dc.relation.referencesANSYS, “ANSYS Modeling and Meshing Guide,” Canonsburg, 2004.spa
dc.relation.referencesO. C. Zienkiewicz, “The Finite Element Method: Its Basis and Fundamentals,” Finite Elem. Method its Basis Fundam., p. iii, 2013, doi: 10.1016/b978-1-85617-633-0.00020-4.spa
dc.relation.referencesANSYS, ANSYS APDL Verification Manual 2.0, vol. 15. Canonsburg, 2013.spa
dc.relation.referencesR. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applicacions of Finite Element Analysis, 4th ed. Hoboken: John Wiley & Sons, Inc, 2002.spa
dc.relation.referencesN. M. Abbasi, “EMA 471 Intermediate Problem Solving for Engineers,” Madison, 2019. doi: 10.1016/b978-0-12-373621-5.00021-0.spa
dc.relation.referencesF. Murillo Martínez, “Análisis mediante elementos finitos del comportamiento de perfiles combinados de estructuras de autobuses,” 2018.spa
dc.relation.referencesANSYS, Elements Reference ANSYS Release 11.0. Canonsburg, 2007.spa
dc.relation.referencesAir Liquide creative oxygen, “Catalogue Air Liquide Creative Oxigen,” Singapore, 2020. [Online]. Available: https://industry.airliquide.sg/sites/industry_sg/files/2020/05/04/alsg_product_catalogue_2020_v5.0.pdf.spa
dc.relation.referencesSolidWorks, “Introducción a Solidworks,” Massachusetts, 2015. [Online]. Available: https://my.solidworks.com/solidworks/guide/SOLIDWORKS_Introduction_ES.pdf.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembResistencia de materiales
dc.subject.proposalTeoría de mezclas serie paralelospa
dc.subject.proposalSeries parallel mixture theoryeng
dc.subject.proposalRecipientes a presiónspa
dc.subject.proposalPressure vesselseng
dc.subject.proposalMateriales compuestosspa
dc.subject.proposalComposite materialseng
dc.subject.proposalAnálisis por elementos finitosspa
dc.subject.proposalFinite element analysiseng
dc.subject.proposalBorospa
dc.subject.proposalBoroneng
dc.subject.proposalAluminiospa
dc.subject.proposalAluminumeng
dc.subject.proposalEsfuerzos principalesspa
dc.subject.proposalPrincipal stresseseng
dc.titleModelación numérica por elementos finitos de un recipiente a presión cilíndrico de material compuestospa
dc.title.translatedFinite element numerical modeling of a cylindrical composite pressure vesseleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060650985.2022.pdf
Tamaño:
3.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería – Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: