Detección electroquímica de α-Pirrolidinopentiofenona (α-PVP) Y 3,4-Metilendioximetanfetamina (MDMA) mediante un biosensor electroquímico basado en la isoenzima 2D6 del citocromo P450

dc.contributor.advisorMartínez Suárez, Jaime Fernandospa
dc.contributor.advisorChaves Silva, Diana Carolinaspa
dc.contributor.advisorQuevedo Buitrago, William Giovannispa
dc.contributor.authorLugo Vargas, Andrés Felipespa
dc.contributor.researchgroupSustancias Psicoactivasspa
dc.date.accessioned2022-02-23T20:53:03Z
dc.date.available2022-02-23T20:53:03Z
dc.date.issued2022-02
dc.descriptionilustraciones, gráficasspa
dc.description.abstractEn el presente estudio se exploró mediante la técnica de voltamperometría diferencial de pulsos (VDP) la respuesta electroquímica de α-pirrolidinopentiofenona (α-PVP) y 3,4-metilendioximetanfetamina (MDMA) frente a un biosensor electroquímico basado a en la isoforma CYP2D6 del citocromo P450 unida a través de enlace covalente a la superficie de carbono de electrodos serigrafiados (Electrodo de trabajo: C, electrodo auxiliar: C, electrodo de referencia: Ag/AgCl). El biosensor fue caracterizado mediante cupla ferro/ferricianuro de potasio y pruebas de inhibición con quinidina. Como resultado se evidenció una respuesta de los analitos frente al biosensor electroquímico relacionada con la actividad enzima-sustrato, con una respuesta directamente proporcional y con tendencia lineal entre la concentración del analito y la corriente de pico catódico; los límites de deteccion y cuantificación obtenidos para el analito MDMA fueron 0,0085 µM (1,64 ng/mL) y 0,028 µM (5,41 ng/mL) respectivamente, para el analito α-PVP los límites de detección y cuantificación fueron 0,0099 µM (2,2 ng/mL) y 0,033 µM (7,6 ng/mL), respectivamente. Finalmente se estudió la interferencia generada por otra especie diferente al analito de interés en matrices binarias (α-PVP +MDMA, α-PVP + cafeína y MDMA + cafeína) donde se observó que la detección de ambos analitos de interés en una misma matriz no fue posible, sin embargo, la presencia de cafeína no representó una interferencia para el análisis de MDMA. (Texto tomado de la fuente).spa
dc.description.abstractIn this study, the electrochemical response of α-Pyrrolidinopentiophenone (α-PVP) and 3,4-Methylenedioxymethamphetamine (MDMA) was explored using differential pulse voltammetry against an electrochemical biosensor based on the CYP2D6 isoform of cytochrome P450 bound via covalent bond to the carbon surface of screen-printed electrodes (Working electrode: C, auxiliary electrode: C, reference electrode: Ag/AgCl). The biosensor was characterized by potassium ferro/ferricyanide couple and quinidine inhibition tests. A response of the analytes to the electrochemical biosensor related to the enzyme-substrate activity could be evidenced, with a directly proportional response and with a linear trend between the concentration of the analyte and the cathodic peak current; the detection and quantification limits obtained for the MDMA analyte were 0.0085 μM (1,64 ng/mL) and 0.028 μM (5,41 ng/mL) respectively, for the α-PVP analyte the detection and quantification limits were 0.0099 μM (2,2 ng/mL) and 0.033 μM (7,6 ng/mL), respectively. Finally, the interference generated by another species different from the analyte of interest in binary matrices (α-PVP + MDMA, α-PVP + caffeine and MDMA + caffeine) was studied, where it was observed that the detection of both analytes of interest in the same matrix did not was possible, however, the presence of caffeine did not represent an interference for the analysis of MDMA.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Toxicologíaspa
dc.description.researchareaAnálisis toxicológico de laboratorio en sustancias psicoactivasspa
dc.format.extentxxi, 115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81049
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Toxicologíaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Toxicologíaspa
dc.relation.referencesUNODC. INFORME MUNDIAL SOBRE LAS DROGAS 2020 - RESUMEN EJECUTIVO. 2020. p. 1–14.spa
dc.relation.referencesMendoza-Valencia CY, Mariño Gaviria DJ, Patiño Reyes N, Lopez-Vallejo F, Sarmiento Gutiérrez ÁE, Trespalacios Rodríguez D. Mix of new substances psychoactive, NPS, found in blotters sold in two Colombian cities. Forensic Sci Int. 2019;304.spa
dc.relation.referencesFeng L, Battulga A, Han E, Chung H. New psychoactive substances of natural origin : A brief review. J food drug Anal. 2017;25:461–71.spa
dc.relation.referencesCruz SL, Teresa M, García R. Las nuevas drogas : origen , mecanismos de acción y efectos . Una revisión de la literatura. Rev int investig adicciones. 2015;52(55):68–76.spa
dc.relation.referencesJoão M, Paula V, Pinho G De. Khat and synthetic cathinones : a review. Arch Toxicol. 2014;88:15–45.spa
dc.relation.referencesCoppola M, Mondola R. Synthetic cathinones : Chemistry , pharmacology and toxicology of a new class of designer drugs of abuse marketed as “ bath salts ” or “ plant food .” Toxicol Lett. 2012;211(2):144–9.spa
dc.relation.referencesLugo-Vargas A, Chaves-Silva D, Quevedo-Buitrago W, Martínez-Suárez J. Catinonas sintéticas: una revisión del panorama actual y las estrategias de detección analítica. Rev toxicol. 2020;37:31–40.spa
dc.relation.referencesFelice LJ De, Glennon RA, Negus SS. Synthetic cathinones : Chemical phylogeny , physiology , and neuropharmacology. Life Sci. 2014;97(1):20–6.spa
dc.relation.referencesEspert R, Pérez J, Gadea M, Oltra-Cucharella J AM. Drogas emergentes: catinonas sintéticas (“sales de baño”). Rev Esp Drog. 2015;40(2):56–71.spa
dc.relation.referencesGraddy R, Buresh ME, Rastegar DA. New and Emerging Illicit Psychoactive Substances. Med Clin North Am. 2018;102(4):697–714.spa
dc.relation.referencesValento M, Lebin J. Emerging Drugs of Abuse: Synthetic Cannabinoids, Phenylethylamines (2C Drugs), and Synthetic Cathinones. Clin Pediatr Emerg Med. 2017;18(3):203–11.spa
dc.relation.referencesProsser JM, Nelson LS. The Toxicology of Bath Salts: A Review of Synthetic Cathinones. J Med Toxicol. 2012;8(1):33–42.spa
dc.relation.referencesRiley AL, Nelson KH, To P, López-arnau R, Xu P, Wang D, et al. Abuse potential and toxicity of the synthetic cathinones ( i . e ., “ Bath salts ”). Neurosci Biobehav Rev. 2018;(July):1–24.spa
dc.relation.referencesODC. Sistema de alertas tempranas: Aparición de nuevas sustancias psicoactivas en Colombia. Enero de 2017. 2017.spa
dc.relation.referencesBanks ML, Worst TJ, Rusyniak DE, Sprague JE. Synthetic cathinones (“Bath Salts”). J Emerg Med. 2014;46(5):632–42.spa
dc.relation.referencesFerreira C, Vaz AR, Florindo PR, Lopes Á, Brites D, Quintas A. Development of a high throughput methodology to screen cathinones’ toxicological impact. Forensic Sci Int. 2019;298:1–9.spa
dc.relation.referencesTremeau-Cayel L, Carnes S, Schanfield MS, Lurie IS. A comparison of single quadrupole mass detection and diode array ultraviolet detection interfaced to ultra-high performance supercritical chromatography for the quantitative analysis of synthetic cathinones. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1091(January):96–100.spa
dc.relation.referencesNóbrega L, Dinis-Oliveira RJ. The synthetic cathinone α-pyrrolidinovalerophenone (α-PVP): pharmacokinetic and pharmacodynamic clinical and forensic aspects. Drug Metab Rev. 2018;50(2):125–39.spa
dc.relation.referencesSimmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168(2):458–70.spa
dc.relation.referencesRickli A, Hoener MC, Liechti ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol. 2015;25(3):365–76.spa
dc.relation.referencesDargan PI, Sedefov R, Gallegos A, Wood DM. The pharmacology and toxicology of the synthetic cathinone mephedrone (4-methylmethcathinone). Drug Test Anal. 2011;3(7–8):454–63.spa
dc.relation.referencesMartínez Clemente J, López-Arnau R, Carbó M, Pubill D, Camarasa J, Escubedo E. Mephedrone pharmacokinetics after intravenous and oral administration in rats : relation to pharmacodynamics . Psychopharmacology (Berl). 2013;229(2):295–306.spa
dc.relation.referencesEllefsen KN, Concheiro M, Huestis MA. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev. 2016;48(2):237–65.spa
dc.relation.referencesPapaseit E, Pérez-Mañá C, Mateus JA, Pujadas M, Fonseca F, Torrens M, et al. Human pharmacology of mephedrone in comparison with MDMA. Neuropsychopharmacology. 2016;41(11):2704–13.spa
dc.relation.referencesVignali C, Moretti M, Groppi A, Osculati AMM, Tajana L, Morini L. Distribution of the synthetic cathinone α-pyrrolidinohexiophenone in biological specimens. J Anal Toxicol. 2019;43(1):E1–6.spa
dc.relation.referencesLópez-arnau R, Martínez-clemente J, Pubill D, Escubedo E, Camarasa J. Comparative neuropharmacology of three psychostimulant cathinone derivatives : butylone , mephedrone and methylone. Br J Pharmacol. 2012;167:407–20.spa
dc.relation.referencesMeyer MR, Maurer HH. Metabolism of Designer Drugs of Abuse : An Updated Review. Curr Drug Metab. 2010;11:468–82.spa
dc.relation.referencesSilva EA, Martínez JA. Antecedentes del estudio metabólico de MDPV y metilona . Propuesta de un modelo de biotransformación a través de hongos del género Cunninghamella. Rev Colomb Ciencias químico-farmacéuticas. 2016;45(3):484–502.spa
dc.relation.referencesManier SK, Richter LHJ, Schäper J, Maurer HH, Meyer MR. Different in vitro and in vivo tools for elucidating the human metabolism of alpha-cathinone-derived drugs of abuse. Vol. 10, Drug Testing and Analysis. 2018. 1119–1130 p.spa
dc.relation.referencesPedersen AJ, Petersen TH, Linnet K. In vitro metabolism and pharmacokinetic studies on methylone. Drug Metab Dispos. 2013;41(6):1247–55.spa
dc.relation.referencesCalinski DM, Kisor DF, Sprague JE. A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacology (Berl). 2019;236(3):881–90.spa
dc.relation.referencesOlesti E, Farré M, Carbó M, Papaseit E, Perez-Mañá C, Torrens M, et al. Dose-Response Pharmacological Study of Mephedrone and Its Metabolites: Pharmacokinetics, Serotoninergic Effects, and Impact of CYP2D6 Genetic Variation. Clin Pharmacol Ther. 2019;106(3).spa
dc.relation.referencesTyrkko E, Andersson M, Kronstrand R. The toxicology of new psychoactive substances: Synthetic cathinones and phenylethylamines. Ther Drug Monit. 2016;38(2):190–216.spa
dc.relation.referencesMeyer MR, Wilhelm J, Peters FT, Maurer HH. Beta-keto amphetamines : studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone , butylone , and methylone in urine using gas chromatography – mass spectrometry. Anal Bioanal Chem. 2010;397:1225–33.spa
dc.relation.referencesStrano-rossi S, Cadwallader AB, Torre X De, Botre F. Toxicological determination and in vitro metabolism of the designer drug methylenedioxypyrovalerone ( MPDV ) by gas chromatography / mass spectrometry and liquid chromatography / quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:2706–14.spa
dc.relation.referencesNamera A, Konuma K, Kawamura M, Saito T, Nakamoto A, Yahata M, et al. Time-course profile of urinary excretion of intravenously administered a -pyrrolidinovalerophenone and a -pyrrolidinobutiophenone in a human. Forensic Toxicol. 2013;32(1):68–74.spa
dc.relation.referencesGerman CL, Fleckenstein AE, Hanson GR. Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sci. 2014;97(1):2–8.spa
dc.relation.referencesCarvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, et al. Toxicity of amphetamines: An update. Arch Toxicol. 2012;86(8):1167–231.spa
dc.relation.referencesCunha-Oliveira T, Rego AC, Carvalho FA, Oliveira CR. Medical Toxicology of Drugs of Abuse. In: Principles of Addiction. 2013. p. 159–75.spa
dc.relation.referencesRasmussen N. Amphetamine-type stimulants: The early history of their medical and non-medical uses. 1st ed. Vol. 120, International Review of Neurobiology. Elsevier Inc.; 2015. 9–25 p.spa
dc.relation.referencesChen KK, Schmidt CF. The action of ephedrine, an alkaloid from Ma Huang. Proc Soc Exp Biol Med. 1924;21(6):351–4.spa
dc.relation.referencesChen KK, Schmidt CF. The action and clinical use of ephedrine: an alkaloid isolated from the chinese drug Ma Huang. JAMA. 1926;87(11):836–42.spa
dc.relation.referencesEdeleano L. Ueber einige Derivate der Phenylmethacrylsäure und der Phenylisobuttersäure. Berichte der Dtsch Chem Gesellschaft. 1887;20(1):616–22.spa
dc.relation.referencesStrohl MP. Bradley ’ s Benzedrine Studies on Children with Behavioral Disorders. Yale J Biol Med. 2011;84:27–33.spa
dc.relation.referencesHeal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine , past and present – a pharmacological and clinical perspective. J Psychopharmacol. 2013; 27(6):479-96.spa
dc.relation.referencesRoberts C, Andrés. Contribution to the study of the mechanisms of action and neuropsychopharmacological effects of MDMA and new β-ketoamphetamines. Universitat de Barcelona; 2016.spa
dc.relation.referencesDe La Torre R, Farré M, Roset PN, Pizarro N, Abanades S, Segura M, et al. Human Pharmacology of MDMA: Pharmacokinetics, Metabolism, and Disposition. Ther Drug Monit. 2004;26(2):137–44.spa
dc.relation.referencesYoung R, Glennon RA. MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its stereoisomers: Similarities and differences in behavioral effects in an automated activity apparatus in mice. Pharmacol Biochem Behav. 2008;88(3):318–31.spa
dc.relation.referencesJamali B, Torkamanian M, Badri N, Sheikholeslami B, Ardakani YH, Rouini MR. Assays for MDMA and Its Metabolites. Neuropathol Drug Addict Subst Misuse. 2016;2(November 2018):503–12.spa
dc.relation.referencesUNODC. World Drug Report 2019: Stimulants. 2019.spa
dc.relation.referencesUNODC. DRUG MARKET TRENDS : COCAINE AMPHETAMINE- TYPE STIMULANTS. 2021.spa
dc.relation.referencesODC. Sistema de alertas tempranas: Aparición de nuevas sustancias psicoactivas en Colombia. Septiembre de 2017.spa
dc.relation.referencesODC. Alerta informativa: comercialización de catinonas sintéticas como éxtasis bajo la presentación de polvo y cristales (Molly y MD). 2020.spa
dc.relation.referencesChau F, Leung AK. Application of Wavelet Transform in Electrochemical Studies. In: Walczak B, editor. Wavelets in Chemistry. Elsevier Science B.V.; 2000. p. 225–39.spa
dc.relation.referencesWang J. ANALYTICAL ELECTROCHEMISTRY. 3rd. ed. Hoboken, New Jersey: John Woley & Sons, Inc.; 2006. 1–3 p.spa
dc.relation.referencesPatel B. Electrochemistry for bioanalysis. 1st Editio. Nueva Delhi, India: Gayathri S; 2021.spa
dc.relation.referencesDawkins RC, Wen D, Hart JN, Vepsäläinen M. A screen-printed Ag/AgCl reference electrode with long-term stability for electroanalytical applications. Electrochim Acta. 2021;393:139-43.spa
dc.relation.referencesLi M, Li YT, Li DW, Long YT. Recent developments and applications of screen-printed electrodes in environmental assays-A review. Anal Chim Acta. 2012;734:31–44.spa
dc.relation.referencesGarcía-Miranda Ferrari A, Rowley-Neale SJ, Banks CE. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open. 2021;3(February):100032.spa
dc.relation.referencesSher M, Faheem A, Asghar W, Cinti S. Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. TrAC - Trends Anal Chem. 2021;143:116374.spa
dc.relation.referencesSimões FR, Xavier MG. Chapter 6 - Electrochemical Sensors. In: Micro and Nano Technologies. Elsevier Inc.; 2017. p. 155–78.spa
dc.relation.referencesRezaei B, Irannejad N. Electrochemical detection techniques in biosensor applications. Electrochemical Biosensors. Elsevier Inc.; 2019. 11–43 p.spa
dc.relation.referencesCompton RG, Banks CE. Understanding Voltammetry. 3rd. Ed. United Kingdom: World Scientific Europe Ltd.; 2018. 1–11 p.spa
dc.relation.referencesElgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ. 2017;acs.jchemed.7b00361.spa
dc.relation.referencesMartínez Suárez JF. COMPORTAMIENTO ELECTROQUÍMICO DE COLORANTES ANTRAQUINÓNICOS, AZUL DE METILENO, Y COMPUESTOS AFINES EN SOLUCIÓN DE SOLVENTES NO-ACUOSOS. Universidad Nacional de La Plata; 2017.spa
dc.relation.referencesMüller M, Agarwal N, Kim J. A cytochrome P450 3A4 biosensor based on generation 4.0 PAMAM dendrimers for the detection of caffeine. Biosensors. 2016;6(44).spa
dc.relation.referencesShumyantseva V V., Kuzikov A V., Masamrekh RA, Bulko T V., Archakov AI. From electrochemistry to enzyme kinetics of cytochrome P450. Biosens Bioelectron. 2018;121(August):192–204.spa
dc.relation.referencesYates ND, Fascione MA, Parkin A. Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chem A Eur J. 2018;24(47):12164–82.spa
dc.relation.referencesArribas LA. Development of electrochemical devices for the determination of drugs of abuse. Universidad de Burgos; 2014.spa
dc.relation.referencesGilardi G. Cytochromes P450 Redox Activity. Encyclopedia of Interfacial Chemistry. Elsevier; 2018. 90–109 p.spa
dc.relation.referencesGonzález-Rodríguez JC, Guerra-Rodeiro D. El sistema citocromo P450 y el metabolismo de xenobióticos. Rev Cuba Farm. 2014;48(2):495–507.spa
dc.relation.referencesEsteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on a Fascinating Enzyme Family. J Xenobiotics. 2021;11(3):94–114.spa
dc.relation.referencesNebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, et al. The P450 Gene Superfamily: Recommended Nomenclature. DNA. 1987;6(1):1–11.spa
dc.relation.referencesEnsafi AA. An introduction to sensors and biosensors. In: Electrochemical Biosensors. Elsevier Inc.; 2019. p. 1–10.spa
dc.relation.referencesThevenot D, Toth K, Durst R, Wilson G, Thevenot D, Toth K, et al. Electrochemical biosensors : Recommended definitions and classification. Biosens Bioelectron. 2001;16(1–2):121–31.spa
dc.relation.referencesZuccarello L, Barbosa C, Todorovic S, Silveira CM. Electrocatalysis by Heme Enzymes — Applications in Biosensing. Catalysts. 2021; 218 (11).spa
dc.relation.referencesNavaee A, Salimi A. Chapter 7 - Enzyme-based electrochemical biosensors. Electrochemical Biosensors. Elsevier Inc.; 2019. 167–211 p.spa
dc.relation.referencesMueller DM, Rentsch KM. Generation of metabolites by an automated online metabolism method using human liver microsomes with subsequent identification by LC-MS(n), and metabolism of 11 cathinones. Anal Bioanal Chem. 2012;402(6):2141–51.spa
dc.relation.referencesClark LC, Lyons C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann N Y Acad Sci. 1962;102(1):29–45.spa
dc.relation.referencesYáñez-Sedeño P, Campuzano S, Pingarrón JM. Integrated affinity biosensing platforms on screen-printed electrodes electrografted with diazonium salts. Sensors (Switzerland). 2018;18(2).spa
dc.relation.referencesBélanger D, Pinson J. Electrografting: A powerful method for surface modification. Chem Soc Rev. 2011;40(7):3995–4048.spa
dc.relation.referencesLebon F. Nano-composants à base de films minces organiques électrogreffés : Fabrication , caractérisation , étude du transport électronique et intégration Organic electrografted thin films based. l’Université Paris-Saclay. 2019.spa
dc.relation.referencesHetemi D, Noël V, Pinson J. Grafting of Diazonium Salts on Surfaces : Application to Biosensors. Biosensors. 2020;10(4).spa
dc.relation.referencesTehrani Z, Abbasi HY, Devadoss A, Evans JE, Guy OJ. Assessing surface coverage of aminophenyl bonding sites on diazotised glassy carbon electrodes for optimised electrochemical biosensor performance. Nanomaterials. 2021;11(2):1–14.spa
dc.relation.referencesGui AL, Liu G, Chockalingam M, le Saux G, Luais E, Harper JB, et al. A comparative study of electrochemical reduction of 4-nitrophenyl covalently grafted on gold and carbon. Electroanalysis. 2010;22(16):1824–30.spa
dc.relation.referencesBart J, Tiggelaar R, Yang M, Schlautmann S, Zuilhof H, Gardeniers H. Room-temperature intermediate layer bonding for microfluidic devices. Lab Chip. 2009;9(24):3481–8.spa
dc.relation.referencesSilva WP, Rocha RG, Arantes LC, Lima CD, Melo LMA, Munoz RAA, et al. Development of a simple and rapid screening method for the detection of 1-(3-chlorophenyl)piperazine in forensic samples. Talanta. 2021;233(June):122597.spa
dc.relation.referencesOiye ÉN, Figueiredo NB de, Andrade JF de, Tristão HM, Oliveira MF de. Voltammetric determination of cocaine in confiscated samples using a cobalt hexacyanoferrate film-modified electrode. Forensic Sci Int. 2009;192(1–3):94–7.spa
dc.relation.referencesOiye ÉN, Midori Toia Katayama J, Fernanda Muzetti Ribeiro M, de Oliveira MF. Electrochemical analysis of 25H-NBOMe by Square Wave Voltammetry. Forensic Chem. 2017;5:86–90.spa
dc.relation.referencesAsturias-Arribas L, Asunción Alonso-Lomillo M, Domínguez-Renedo O, Julia Arcos-Martínez M. Cytochrome P450 2D6 based electrochemical sensor for the determination of codeine. Talanta. 2014;129:315–9.spa
dc.relation.referencesAsturias-arribas L, Alonso-lomillo MA, Domínguez-renedo O, Arcos-martínez MJ. CYP450 biosensors based on screen-printed carbon electrodes for the determination of cocaine. Anal Chim Acta. 2011;685(1):15–20.spa
dc.relation.referencesAlonso-Lomillo MA, Yardimci C, Domínguez-Renedo O, Arcos-Martínez MJ. CYP450 2B4 covalently attached to carbon and gold screen printed electrodes by diazonium salt and thiols monolayers. Anal Chim Acta. 2009;633(1):51–6.spa
dc.relation.referencesDelamar M, Hitmi R, Pinson J, Savéant J. Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts. J Am Chem Soc. 1992;114(14):5883–4.spa
dc.relation.referencesDownard AJ. Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis. 2000;12(14):1085–96.spa
dc.relation.referencesDoppelt P, Hallais G, Pinson J, Podvorica F, Verneyre S. Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts. Chem Mater. 2007;19(18):4570–5.spa
dc.relation.referencesLacroix JC, Trippe-Allard G, Ghilane J, Martin P. Electrografting of conductive oligomers and polymers using diazonium electroreduction. Adv Nat Sci Nanosci Nanotechnol. 2014;5(1).spa
dc.relation.referencesPhal S, Shimizu K, Mwanza D, Mashazi P, Shchukarev A, Tesfalidet S. Electrografting of 4-carboxybenzenediazonium on glassy carbon electrode: The effect of concentration on the formation of mono and multilayers. Molecules. 2020;25(19):1–12.spa
dc.relation.referencesDragan AM, Truta FM, Tertis M, Florea A, Schram J, Cernat A, et al. Electrochemical Fingerprints of Illicit Drugs on Graphene and Multi-Walled Carbon Nanotubes. Front Chem. 2021;9(March):1–10.spa
dc.relation.referencesMcLaughlin LA, Paine MJI, Kemp CA, Maréchal JD, Flanagan JU, Ward CJ, et al. Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding. J Biol Chem. 2005;280(46):38617–24.spa
dc.relation.referencesBerka K, Anzenbacherová E, Hendrychová T, Lange R, Mašek V, Anzenbacher P, et al. Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site. J Inorg Biochem. 2012;110:46–50.spa
dc.relation.referencesIwuoha E, Ngece R, Klink M, Baker P. Amperometric responses of CYP2D6 drug metabolism nanobiosensor for sertraline: A selective serotonin reuptake inhibitor. IET Nanobiotechnology. 2007;1(4):62–7.spa
dc.relation.referencesFranke C, Ajayi RF, Uhuo O, Januarie K, Iwuoha E. Metallodendrimer-sensitised Cytochrome P450 3A4 Electrochemical Biosensor for TB Drugs. Electroanalysis. 2020;32(12):3075–85.spa
dc.relation.referencesMunyai Vukosi E. Recombinant expression of cytochrome P450-2D6 and its application in tamoxifen metabolism. UNIVERSITY OF WESTERN CAPE; 2018.spa
dc.relation.referencesIwuoha EI, Smyth MR. Reactivities of organic phase biosensors: 6. Square-wave and differential pulse studies of genetically engineered cytochrome P450cam (CYP101) bioelectrodes in selected solvents. Biosens Bioelectron. 2002;18(2–3):237–44.spa
dc.relation.referencesdos Santos PR. Development of oxidoreductase based electrochemical biosensors. Universidade Nova de Lisboa; 2013.spa
dc.relation.referencesCui D, Mi L, Xu X, Lu J, Qian J, Liu S. Nanocomposites of graphene and cytochrome P450 2D6 isozyme for electrochemical-driven tramadol metabolism. Langmuir. 2014;30(39):11833–40.spa
dc.relation.referencesShumyantseva V V., Bulko T V., Rudakov YO, Kuznetsova GP, Samenkova NF, Lisitsa A V., et al. Nanoelectrochemistry of cytochrome P450s: Direct electron transfer and electrocatalysis. Biomeditsinskaya Khimiya. 2006;52(5):458–68.spa
dc.relation.referencesMakhova AA, Shumyantseva V V., Shich E V., Bulko T V., Kukes VG, Sizova OS, et al. Electroanalysis of Cytochrome P450 3A4 Catalytic Properties with Nanostructured Electrodes: The Influence of Vitamin B Group on Diclofenac Metabolism. Bionanoscience. 2011;1(1–2):46–52.spa
dc.relation.referencesHuang H, Hu N, Zeng Y, Zhou G. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem. 2002;308(1):141–51.spa
dc.relation.referencesDe Groot MT, Merkx M, Koper MTM. Heme release in myoglobin-DDAB films and its role in electrochemical NO reduction. J Am Chem Soc. 2005;127(46):16224–32.spa
dc.relation.referencesRougée LRA, Mohutsky MA, Bedwell DW, Ruterbories KJ, Hall SD. The impact of the hepatocyte-to-plasma pH gradient on the prediction of hepatic clearance and drug-drug interactions for CYP2C9 and CYP3A4 substrates. Drug Metab Dispos. 2017;45(9):1008–18.spa
dc.relation.referencesIngelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5(1):6–13.spa
dc.relation.referencesde la Torre R, Yubero-Lahoz S, Pardo-Lozano R, Farré M. MDMA, methamphetamine, and CYP2D6 pharmacogenetics: What is clinically relevant? Front Genet. 2012;3(NOV):1–8.spa
dc.relation.referencesBanks ML, Sprague JE, Kisor DF, Czoty PW, Nichols DE, Nader MA. Ambient temperature effects on 3,4-methylenedioxymethamphetamine-induced thermodysregulation and pharmacokinetics in male monkeys. Drug Metab Dispos. 2007;35(10):1840–5.spa
dc.relation.referencesBaumann MH, Zolkowska D, Kim I, Scheidweiler KB, Rothman RB, Huestis MA. Effects of dose and route of administration on pharmacokinetics of (±)-3,4-methylenedioxymethamphetamine in the rat. Drug Metab Dispos. 2009;37(11):2163–70.spa
dc.relation.referencesShima N, Katagi M, Kamata H, Matsuta S, Sasaki K, Kamata T, et al. Metabolism of the newly encountered designer drug α- pyrrolidinovalerophenone in humans: Identification and quantitation of urinary metabolites. Forensic Toxicol. 2014;32(1):59–67.spa
dc.relation.referencesNegreira N, Erratico C, Kosjek T, van Nuijs ALN, Heath E, Neels H, et al. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Anal Bioanal Chem. 2015;407(19).spa
dc.relation.referencesKatselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S. α-PVP (“flakka”): a new synthetic cathinone invades the drug arena. Forensic Toxicol. 2016;34(1):41–50.spa
dc.relation.referencesLin LY, Di Stefano EW, Schmitz DA, Hsu L, Ellis SW, Lennard MS, et al. Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos. 1997;25(9):1059–64.spa
dc.relation.referencesCumba LR, Smith JP, Zuway KY, Sutcliffe OB, Do Carmo DR, Banks CE. Forensic electrochemistry: Simultaneous voltammetric detection of MDMA and its fatal counterpart “dr Death” (PMA). Anal Methods. 2016;8(1):142–52.spa
dc.relation.referencesKatayama JMT, Oiye EN, Ribeiro MFM, Ipólito AJ, De Andrade JF, De Oliveira MF. MDMA electrochemical determination in aqueous media containing illicit drugs and validation of a voltammetric methodology. Drug Anal Res. 2020;4(1):3–11.spa
dc.relation.referencesTeófilo KR, Arantes LC, Marinho PA, Macedo AA, Pimentel DM, Rocha DP, et al. Electrochemical detection of 3,4-methylenedioxymethamphetamine (ecstasy) using a boron-doped diamond electrode with differential pulse voltammetry: Simple and fast screening method for application in forensic analysis. Microchem J. 2020;157(April):105088.spa
dc.relation.referencesMurilo Alves G, Soares Castro A, McCord BR, de Oliveira MF. MDMA Electrochemical Determination and Behavior at Carbon Screen-printed Electrodes: Cheap Tools for Forensic Applications. Electroanalysis. 2021;33(3):635–42.spa
dc.relation.referencesSmith JP, Metters JP, Khreit OIG, Sutcliffe OB, Banks CE. Forensic electrochemistry applied to the sensing of new psychoactive substances: Electroanalytical sensing of synthetic cathinones and analytical validation in the quantification of seized street samples. Anal Chem. 2014;86(19):9985–92.spa
dc.relation.referencesElbardisy HM, García-Miranda Ferrari A, Foster CW, Sutcliffe OB, Brownson DAC, Belal TS, et al. Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites. ACS Omega. 2019;4(1):1947–54.spa
dc.relation.referencesLima CD, Couto RAS, Arantes LC, Marinho PA, Pimentel DM, Quinaz MB, et al. Electrochemical detection of the synthetic cathinone 3,4-methylenedioxypyrovalerone using carbon screen-printed electrodes: A fast, simple and sensitive screening method for forensic samples. Electrochim Acta. 2020;354:136728.spa
dc.relation.referencesZhang D, Peng Y, Qi H, Gao Q, Zhang C. Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers. Sensors Actuators, B Chem. 2009;136(1):113–21.spa
dc.relation.referencesFigueroa-Miranda G, Chen S, Neis M, Zhou L, Zhang Y, Lo Y, et al. Multi-target electrochemical malaria aptasensor on flexible multielectrode arrays for detection in malaria parasite blood samples. Sensors Actuators, B Chem. 2021;349(September):130812.spa
dc.relation.referencesScheel GL, de Oliveira FM, de Oliveira LLG, Medeiros RA, Nascentes CC, Tarley CRT. Feasibility study of ethylone determination in seized samples using boron-doped diamond electrode associated with solid phase extraction. Sensors Actuators, B Chem. 2018;259:1113–22.spa
dc.relation.referencesTassaneeyakul W, Birkett DJ, McManus ME, Tassaneeyakul W, Veronese ME, Andersson T, et al. Caffeine metabolism by human hepatic cytochromes p450: Contributions of 1A2, 2E1 and 3A isoforms. Biochem Pharmacol. 1994;47(10):1767–76.spa
dc.relation.referencesAranda J V., Beharry KD. Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Semin Fetal Neonatal Med. 2020;25(6):101183.spa
dc.relation.referencesLajin B, Schweighofer N, Goessler W, Obermayer-Pietsch B. The determination of the Paraxanthine/Caffeine ratio as a metabolic biomarker for CYP1A2 activity in various human matrices by UHPLC-ESIMS/MS. Talanta. 2021;234(June):122658.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.decsAmphetamineseng
dc.subject.decsAnfetaminasspa
dc.subject.decsToxicology/methodseng
dc.subject.decsToxicología/métodosspa
dc.subject.lembCytochromeseng
dc.subject.lembCitocromosspa
dc.subject.proposalTécnicas biosensiblesspa
dc.subject.proposalElectrochemistryeng
dc.subject.proposalStreet drugseng
dc.subject.proposalElectroquímicaspa
dc.subject.proposalAnálisis químicospa
dc.subject.proposalDrogas de callespa
dc.subject.proposalDrogas de diseñospa
dc.subject.proposalNarcóticosspa
dc.subject.proposalBiosensing techniqueseng
dc.subject.proposalChemical analysiseng
dc.subject.proposalDesigner drugseng
dc.subject.proposalNarcoticseng
dc.titleDetección electroquímica de α-Pirrolidinopentiofenona (α-PVP) Y 3,4-Metilendioximetanfetamina (MDMA) mediante un biosensor electroquímico basado en la isoenzima 2D6 del citocromo P450spa
dc.title.translatedElectrochemical detection of α-Pyrrolidinopentiophenone (α-PVP) and 3,4-Methylenedioxymethamphetamine (MDMA) using an electrochemical biosensor based on cytochrome P450 isoenzyme 2D6eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDETERMINACIÓN DE CATINONAS SINTETICAS EN MATERIAL INCAUTADO EN COLOMBIA MEDIANTE UN BIOSENSOR ELECTROQUÍMICO BASADO EN LA ENZIMA CYP2D6 (código Hermes 48279)spa
oaire.fundernameVicerrectoría de investigaciones de la sede Bogotá de la Universidad Nacional de Colombia en el marco de la convocatoria de apoyo a proyectos de investigación y creación artística de la sede Bogotá de la Universidad Nacional de Colombia (2019)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1117531447.2022.pdf
Tamaño:
3.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Toxicología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: