Caracterización del comportamiento al desgaste abrasivo de tres cuerpos en materiales fabricados aditivamente con fibras continuas de carbono
dc.contributor.advisor | Narváez Tovar, Carlos Alberto | spa |
dc.contributor.advisor | Espejo Mora, Edgar | spa |
dc.contributor.author | Rojas Cuellar, Steven | spa |
dc.contributor.researchgroup | Grupo de Innovación en procesos de manufactura e investigación en Materiales - IPMIM | spa |
dc.date.accessioned | 2025-03-31T20:55:46Z | |
dc.date.available | 2025-03-31T20:55:46Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El objetivo de esta tesis de maestría es caracterizar el comportamiento al desgaste abrasivo de tres cuerpos en materiales fabricados aditivamente con fibras continuas de carbono. Para ello, se utiliza un tribómetro de rueda de caucho y arena seca bajo la norma ASTM G65. Los materiales seleccionados incluyen Nylon y Onyx® reforzados con fibra continua de carbono, escogidos por sus propiedades mecánicas proporcionadas por el fabricante de la impresora Markforged y por su amplia aplicación en la industria. Se realiza un diseño de experimentos completamente al azar (DCA) para analizar los resultados de las pruebas de desgaste respecto a la orientación de las fibras de refuerzo (0°, 90°, 45°-135°, isotrópica y sin fibra). Se observa que la adición de fibras continuas de carbono mejora significativamente la resistencia al desgaste de las probetas reforzadas, independientemente de su orientación, lo que se corrobora mediante resultados de ANOVA y pruebas de medias de Tukey y T-test con corrección de Bonferroni. El estudio incluye una evaluación de la dureza de las probetas, donde se evidencia que las fibras de carbono contribuyen a la dureza del material, reduciendo la penetración de la punta del durómetro, mostrando una mayor resistencia al desgaste y menor deformación plástica. En términos de rugosidad superficial, se observa que el desgaste afecta principalmente las capas superficiales de Nylon, se evidencia que no hay diferencia entre la rugosidad de las probetas con fibra de refuerzo contra las probetas sin fibra de refuerzo. Los parámetros de impresión, como la altura de capa, el refuerzo de fibra continua de carbono, el relleno triangular al 37% de densidad y dos anillos de pared, demostraron ser un complemento estructural adecuado en la prueba de desgaste. La configuración utilizada en este estudio, con la densidad recomendada por el fabricante de la impresora y el relleno triangular, logró preservar la probeta en su integridad estructural sin necesidad de aumentar la densidad del patrón estructural. Las observaciones con microscopía electrónica de barrido (SEM) revelan mecanismos de abrasión típicos de desgaste a tres cuerpos, como desprendimiento de material causado por la fricción a tres cuerpos, generando agujeros por arrastre de material debido a las virutas generadas por micro grietas observadas a 5000X. Estos hallazgos son consistentes con estudios previos que muestran la importancia de la inclusión de las fibras en la resistencia al desgaste de materiales impresos 3D con tecnología CFF. (Texto tomado de la fuente). | spa |
dc.description.abstract | The objective of this master's thesis is to characterize the three-body abrasive wear behavior of additively manufactured materials reinforced with continuous carbon fibers. A rubber wheel dry sand tribometer was employed according to the ASTM G65 standard. The selected materials include Nylon and Onyx® reinforced with continuous carbon fibers, chosen for their mechanical properties provided by Markforged and for their broad application in the industry. A completely randomized design (CRD) is applied to analyze the wear test results based on the orientation of the reinforcement fibers (0°, 90°, 45°-135°, isotropic, and without fiber). It is observed that the addition of continuous carbon fibers significantly improves the wear resistance of the reinforced specimens, regardless of fiber orientation, which is confirmed by ANOVA results and mean comparison tests, such as Tukey’s test and T-test with Bonferroni correction. The study includes an evaluation of the hardness of the specimens, where it is evident that carbon fibers contribute to the material's hardness, reducing the penetration of the durometer tip and indicating higher wear resistance and less plastic deformation. In terms of surface roughness, it is observed that wear primarily affects the Nylon surface layers, and there is no difference in roughness between the reinforced and non-reinforced specimens. Printing parameters, such as layer height, continuous carbon fiber reinforcement, 37% triangular infill density, and two wall rings, proved to be a suitable structural complement in the wear test. The configuration used in this study, with the printer manufacturer’s recommended density and triangular infill, successfully maintained the specimen's structural integrity without increasing the structural pattern's density. Scanning electron microscopy (SEM) observations reveal typical three-body wear mechanisms, such as material detachment caused by three-body friction, resulting in drag holes due to chips generated by microcracks observed at 5000X magnification. These findings are consistent with previous studies showing the importance of fiber inclusion in the wear resistance of 3D-printed materials using CFF technology. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | spa |
dc.description.researcharea | Materiales cerámicos y compuestos | spa |
dc.format.extent | xix, 219 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87799 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de ingeniería Mecánica y Mecatrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.references | [1] 14:00-17:00, «ISO/ASTM 52900:2015», ISO. Accedido: 31 de mayo de 2024. [En línea]. Disponible en: https://www.iso.org/standard/69669.html | spa |
dc.relation.references | [2] A. Azarov, F. Antonov, M. Golubev, A. Khaziev, y S. Ushanov, «Composite 3D printing for the small size unmanned aerial vehicle structure», Compos. Part B Eng., vol. 169, abr. 2019, doi: 10.1016/j.compositesb.2019.03.073. | spa |
dc.relation.references | [3] V. Kovan, T. Tezel, H. Çamurlu, y E. Topal, «Effect of Printing Parameters on Mechanical Properties of 3D Printed PlaCarbon Fibre Composites», sep. 2018. | spa |
dc.relation.references | [4] «Cinco sectores que utilizan la impresión 3D». Accedido: 31 de mayo de 2024. [En línea]. Disponible en: https://markforged.com/es/resources/blog/five-industries-utilizing-3d-printing | spa |
dc.relation.references | [5] «Dana Incorporated + Markforged Customer Success Story». Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://markforged.com/es/resources/case-studies/dana-incorporated | spa |
dc.relation.references | [6] «Markforged Soft Jaws». Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://markforged.com/es/resources/application-spotlights/mf-precision-soft-jaws | spa |
dc.relation.references | [7] «Lean Machine CNC». Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://markforged.com/es/resources/application-spotlights/vise-soft-jaws | spa |
dc.relation.references | [8] G. Mitaľ, I. Gajdoš, E. Spišák, J. Majerníková, y T. Jezný, «An Analysis of Selected Technological Parameters’ Influences on the Tribological Properties of Products Manufactured Using the FFF Technique», Appl. Sci., vol. 12, n.o 8, p. 3853, abr. 2022, doi: 10.3390/app12083853. | spa |
dc.relation.references | [9] Z. Man, B. Wan, H. Wang, Q. Li, y L. Chang, «Experimental and numerical study on scratch performance of additively manufactured continuous carbon fibre reinforced polyamide 6 composites», Compos. Sci. Technol., vol. 230, p. 109314, nov. 2022, doi: 10.1016/j.compscitech.2022.109314. | spa |
dc.relation.references | [10] R. Srinivasan, N. Aravindkumar, S. Aravind Krishna, S. Aadhishwaran, y J. George, «Influence of fused deposition modelling process parameters on wear strength of carbon fibre PLA», Mater. Today Proc., vol. 27, pp. 1794-1800, 2020, doi: 10.1016/j.matpr.2020.03.738. | spa |
dc.relation.references | [11] V. Mahesh, J. P. George, V. Mahesh, H. Chakraborthy, S. Mukunda, y S. A. Ponnusami, «Dry-sliding wear properties of 3D printed PETG/SCF/OMMT nanocomposites: Experimentation and model predictions using artificial neural network», J. Reinf. Plast. Compos., vol. 43, n.o 11-12, pp. 682-693, jun. 2024, doi: 10.1177/07316844231188853. | spa |
dc.relation.references | [12] F. Dangnan, C. Espejo, T. Liskiewicz, M. Gester, y A. Neville, «Friction and wear of additive manufactured polymers in dry contact», J. Manuf. Process., vol. 59, pp. 238-247, nov. 2020, doi: 10.1016/j.jmapro.2020.09.051. | spa |
dc.relation.references | [13] I. Gibson, D. Rosen, B. Stucker, y M. Khorasani, Additive Manufacturing Technologies. Cham: Springer International Publishing, 2021. doi: 10.1007/978-3-030-56127-7. | spa |
dc.relation.references | [14] I. M. Hutchings, «Mechanisms of wear in powder technology: A review», Powder Technol., vol. 76, n.o 1, pp. 3-13, jul. 1993, doi: 10.1016/0032-5910(93)80035-9. | spa |
dc.relation.references | [15] K. Friedrich, Friction and Wear of Polymer Composites. Elsevier, 2012. | spa |
dc.relation.references | [16] K. Holmberg y A. Matthews, Coatings tribology: properties, mechanisms, techniques and applications in surface engineering, 2nd ed. en Tribology and interface engineering series, no. 56. Amsterdam ; Boston: Elsevier Science, 2009. | spa |
dc.relation.references | [17] «Home», Wohlers Associates. Accedido: 12 de agosto de 2024. [En línea]. Disponible en: https://wohlersassociates.com/ | spa |
dc.relation.references | [18] S. Xiong, «Materials, Application Status and Development Trends of Additive Manufacturing Technology», Mater. Trans., vol. 61, n.o 7, pp. 1191-1199, jul. 2020, doi: 10.2320/matertrans.MT-M2020023. | spa |
dc.relation.references | [19] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, y D. Hui, «Additive manufacturing (3D printing): A review of materials, methods, applications and challenges», Compos. Part B Eng., vol. 143, pp. 172-196, jun. 2018, doi: 10.1016/j.compositesb.2018.02.012. | spa |
dc.relation.references | [20] B. Berman, «3-D printing: The new industrial revolution», Bus. Horiz., vol. 55, n.o 2, pp. 155-162, mar. 2012, doi: 10.1016/j.bushor.2011.11.003. | spa |
dc.relation.references | [21] J. W. Stansbury y M. J. Idacavage, «3D printing with polymers: Challenges among expanding options and opportunities», Dent. Mater., vol. 32, n.o 1, pp. 54-64, ene. 2016, doi: 10.1016/j.dental.2015.09.018. | spa |
dc.relation.references | [22] J. Antić, Ž. Mišković, R. Mitrović, Z. Stamenić, y J. Antelj, «The Risk assessment of 3D printing FDM technology», Procedia Struct. Integr., vol. 48, pp. 274-279, 2023, doi: 10.1016/j.prostr.2023.07.132. | spa |
dc.relation.references | [23] S. M. F. Kabir, K. Mathur, y A.-F. M. Seyam, «A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties», Compos. Struct., vol. 232, p. 111476, ene. 2020, doi: 10.1016/j.compstruct.2019.111476. | spa |
dc.relation.references | [24] M. León y Á. Marcos-Fernández, «Impresión 3D con materiales elástoméricos», vol. 118, 2019. | spa |
dc.relation.references | [25] A. Gupta, I. Fidan, S. Hasanov, y A. Nasirov, «Processing, mechanical characterization, and micrography of 3D-printed short carbon fiber reinforced polycarbonate polymer matrix composite material», Int. J. Adv. Manuf. Technol., vol. 107, n.o 7-8, pp. 3185-3205, abr. 2020, doi: 10.1007/s00170-020-05195-z. | spa |
dc.relation.references | [26] Markforged, «Guía de diseño para impresión 3D con compuestos». | spa |
dc.relation.references | [27] «Onyx: impresión digital en materiales compuestos». Accedido: 3 de junio de 2024. [En línea]. Disponible en: https://markforged.com/es/materials/plastics/onyx | spa |
dc.relation.references | [28] M. Galati, M. Viccica, y P. Minetola, «A finite element approach for the prediction of the mechanical behaviour of layered composites produced by Continuous Filament Fabrication (CFF)», Polym. Test., vol. 98, p. 107181, jun. 2021, doi: 10.1016/j.polymertesting.2021.107181. | spa |
dc.relation.references | [29] «Datasheets». Accedido: 13 de agosto de 2024. [En línea]. Disponible en: https://markforged.com/es/datasheets | spa |
dc.relation.references | [30] M. A. Caminero, J. M. Chacón, I. García-Moreno, y J. M. Reverte, «Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling», Polym. Test., vol. 68, pp. 415-423, jul. 2018, doi: 10.1016/j.polymertesting.2018.04.038. | spa |
dc.relation.references | [31] «Impresora 3D Anisoprint ProM IS 500: Buy or Lease at Top3DShop», Tienda de fabricación digital Top 3D Shop. Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://top3dshop.com/es-es/product/anisoprint-prom-is-500-3d-printer | spa |
dc.relation.references | [32] «Materiales de impresión 3D | Markforged». Accedido: 3 de junio de 2024. [En línea]. Disponible en: https://markforged.com/es/materials | spa |
dc.relation.references | [33] S. Park, W. Shou, L. Makatura, W. Matusik, y K. (Kelvin) Fu, «3D printing of polymer composites: Materials, processes, and applications», Matter, vol. 5, n.o 1, pp. 43-76, ene. 2022, doi: 10.1016/j.matt.2021.10.018. | spa |
dc.relation.references | [34] Rafael Robayo y F. Delgado, «MATERIALES COMPUESTOS Clasificación, procesamiento y aplicaciones». Editorial Universidad Tecnológica de Pereira, 2021. [En línea].PDF | spa |
dc.relation.references | [35] A. V. Pocius, Adhesion and Adhesives Technology: An Introduction, 3.a ed. München: Carl Hanser Verlag GmbH & Co. KG, 2012. doi: 10.3139/9783446431775. | spa |
dc.relation.references | [36] J. M. Margolis, Ed., Engineering plastics handbook: thermoplatsics, properties, and applications; chemitsry, properties, and processes; products and designs; new applications and markets. en McGraw-Hill handbooks. New York: McGraw-Hill, 2006. | spa |
dc.relation.references | [37] I. T. Lee, Y. Q. Wang, Y. Ochi, S. I. Bae, K. S. Han, y J. I. Song, «Effect of Short Fiber Reinforcement on the Fracture Toughness of Metal Matrix Composites», Adv. Compos. Mater., vol. 19, n.o 1, pp. 41-53, ene. 2010, doi: 10.1163/156855109X434801. | spa |
dc.relation.references | [38] A. K. Kaw, Mechanics of composite materials, 2nd ed. en Mechanical engineering, no. v. 29. Boca Raton, FL: Taylor & Francis, 2006. | spa |
dc.relation.references | [39] E. Forlerer, S. Calderón, y M. Barreiro, «RESISTENCIA AL DESGASTE EN DOS MATERIALES COMPUESTOS DE MATRIZ POLIMERICA». | spa |
dc.relation.references | [40] Plastico, «Manufactura Aditiva: Innovación y Eficiencia en la Fabricación 3D», Plastico. Accedido: 31 de mayo de 2024. [En línea]. Disponible en: https://www.plastico.com/es/noticias/manufactura-aditiva-como-proceso-productivo-una-realidad | spa |
dc.relation.references | [41] F. Ning, W. Cong, J. Qiu, J. Wei, y S. Wang, «Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling», Compos. Part B Eng., vol. 80, pp. 369-378, oct. 2015, doi: 10.1016/j.compositesb.2015.06.013. | spa |
dc.relation.references | [42] A. Abdelbary, «Polymer tribology», en Wear of Polymers and Composites, Elsevier, 2014, pp. 1-36. doi: 10.1533/9781782421788.1. | spa |
dc.relation.references | [43] W. Brostow, J.-L. Deborde, y M. Jaklewicz, «TRIBOLOGÍA CON ÉNFASIS EN POLÍMEROS: FRICCIÓN, RESISTENCIA AL RAYADO Y AL DESGASTE». | spa |
dc.relation.references | [44] «The abrasive wear behaviour of continuous fibre polymer composites». | spa |
dc.relation.references | [45] A. Zureick y A. Nettles, Composite Materials: Testing, Design, and Acceptance Criteria. ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 2002. doi: 10.1520/STP1416-EB. | spa |
dc.relation.references | [46] «G40 Standard Terminology Relating to Wear and Erosion». Accedido: 3 de junio de 2024. [En línea]. Disponible en: https://www.astm.org/g0040-22.html | spa |
dc.relation.references | [47] W. Brostow, J.-L. Deborde, M. Jaklewicz, y P. Olszynski, «Tribología con énfasis en polímeros: fricción, resistencia al rayado y al desgaste», J. Mater. Educ., vol. 25, pp. 119-132, ene. 2003. | spa |
dc.relation.references | [48] «Physical Measurement Standards - Standards Products - Standards & Publications - Products & Services». Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://www.astm.org/products-services/standards-and-publications/standards/physical-measurement-standards. | spa |
dc.relation.references | [49] «Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus». Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://www.astm.org/g0099-17.html | spa |
dc.relation.references | [50] «Standard Test Method for Wear Testing with a Crossed-Cylinder Apparatus (Withdrawn 2005)». Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://www.astm.org/g0083-96.html | spa |
dc.relation.references | [51] «Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test». Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://www.astm.org/g0077-17.html | spa |
dc.relation.references | [52] «Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus». Accedido: 2 de junio de 2024. [En línea]. Disponible en: https://www.astm.org/g0065-16r21.html | spa |
dc.relation.references | [53] P. J. Blau, T. Grejtak, y J. Qu, «The characterization of wear-causing particles and silica sand in particular», Wear, vol. 530-531, p. 204872, oct. 2023, doi: 10.1016/j.wear.2023.204872. | spa |
dc.relation.references | [54] P. Zhang, H. He, C. Chen, C. Xiao, L. Chen, y L. Qian, «Effect of abrasive particle size on tribochemical wear of monocrystalline silicon», Tribol. Int., vol. 109, pp. 222-228, may 2017, doi: 10.1016/j.triboint.2016.12.050. | spa |
dc.relation.references | [55] H. Unal, U. Sen, y A. Mimaroglu, «Abrasive wear behaviour of polymeric materials», Mater. Des., vol. 26, n.o 8, pp. 705-710, ene. 2005, doi: 10.1016/j.matdes.2004.09.004. | spa |
dc.relation.references | [56] D11 Committee, Test Method for Rubber Property--Durometer Hardness. doi: 10.1520/D2240-15. | spa |
dc.relation.references | [57] A. P. Harsha, U. S. Tewari, y B. Venkatraman, «Three-body abrasive wear behaviour of polyaryletherketone composites», Wear, vol. 254, n.o 7-8, pp. 680-692, abr. 2003, doi: 10.1016/S0043-1648(03)00142-X. | spa |
dc.relation.references | [58] S. Basavarajappa, A. G. Joshi, K. V. Arun, A. P. Kumar, y M. P. Kumar, «Three-Body Abrasive Wear Behaviour of Polymer Matrix Composites Filled with SiC Particles», | spa |
dc.relation.references | [59] J. Bijwe, «Composites as friction materials: Recent developments in non‐asbestos fiber reinforced friction materials—a review», Polym. Compos., vol. 18, n.o 3, pp. 378-396, jun. 1997, doi: 10.1002/pc.10289. | spa |
dc.relation.references | [60] 14:00-17:00, «ISO 21920-2:2021», ISO. Accedido: 27 de agosto de 2024. [En línea]. Disponible en: https://www.iso.org/standard/72226.html | spa |
dc.relation.references | [61] C. J. Barr, L. Wang, J. K. Coffey, y F. Daver, «Influence of surface texturing on scratch/mar visibility for polymeric materials: a review», J. Mater. Sci., vol. 52, n.o 3, pp. 1221-1234, feb. 2017, doi: 10.1007/s10853-016-0423-5. | spa |
dc.relation.references | [62] Z. Man, H. Wang, Q. He, D.-E. Kim, y L. Chang, «Friction and wear behaviour of additively manufactured continuous carbon fibre reinforced PA6 composites», Compos. Part B Eng., vol. 226, p. 109332, dic. 2021, doi: 10.1016/j.compositesb.2021.109332. | spa |
dc.relation.references | [63] M. Naik, D. G. Thakur, S. Chandel, S. Salunkhe, y H. M. A. Hussein, «Effect of Load and Fiber Orientation on Wear Properties of Additively Manufactured Continuous CFRP Composites under Dry Sliding Conditions», Crystals, vol. 12, n.o 10, p. 1481, oct. 2022, doi: 10.3390/cryst12101481. | spa |
dc.relation.references | [64] R. Jojith, M. Sam, y N. Radhika, «Recent advances in tribological behavior of functionally graded composites: A review», Eng. Sci. Technol. Int. J., vol. 25, p. 100999, ene. 2022, doi: 10.1016/j.jestch.2021.05.003. | spa |
dc.relation.references | [65] Q. Carrillo, L. Jesús, N. M. Muñoz, T. B. Vitoria, y O. Á. F. Gimeno, «Balart Gimeno, Rafael Antonio». | spa |
dc.relation.references | [66] J. R. C. Dizon, A. H. Espera, Q. Chen, y R. C. Advincula, «Mechanical characterization of 3D-printed polymers», Addit. Manuf., vol. 20, pp. 44-67, mar. 2018, doi: 10.1016/j.addma.2017.12.002. | spa |
dc.relation.references | [67] «Ajustes de impresión 3D que afectan a la resistencia de las piezas». Accedido: 6 de junio de 2024. [En línea]. Disponible en: https://markforged.com/es/resources/learn/design-for-additive-manufacturing-plastics-composites/understanding-3d-printing-strength/3d-printing-settings-impacting-part-strength | spa |
dc.relation.references | [68] O. Melo y L. López, Diseño de Experimentos Métodos y Aplicaciones, Segunda edicion. Bogotá: Universidad Nacional de Colombia, 2020. | spa |
dc.relation.references | [69] D. C. Montgomery, Design and analysis of experiments, 8. ed. Hoboken, NJ: Wiley, 2013. | spa |
dc.relation.references | [70] «Kastenbaum M A & Bowman K 0. Tables for determining the statistical significance of mutation frequencies. Mutat. Res. 9:527-49, 1970.». | spa |
dc.relation.references | [71] M. E. Paxtian-Treviño, V. M. Sánchez-Ramírez, S. J. Meza-Gómez, Y. N. Aguilar-Moreno, E. Bravo-González, y Y. A. León-Nataret, «Fabricación de un dispositivo wearable usando óxido de grafeno reducido», Pädi Bol. Científico Cienc. Básicas E Ing. ICBI, vol. 11, n.o Especial5, pp. 76-82, dic. 2023, doi: 10.29057/icbi.v11iEspecial5.11739. | spa |
dc.relation.references | [72] R. Silverstein, Spectrometric identification of organic compounds, vol. 39, 11 vols. Journal of chemical education, 1962. | spa |
dc.relation.references | [73] K. Akhtar, S. A. Khan, S. B. Khan, y A. M. Asiri, «Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization», en Handbook of Materials Characterization, S. K. Sharma, Ed., Cham: Springer International Publishing, 2018, pp. 113-145. doi: 10.1007/978-3-319-92955-2_4. | spa |
dc.relation.references | [74] A. K. Singh, Siddhartha, y Deepak, «Assessment of mechanical and three-body abrasive wear peculiarity of TiO2- and ZnO-filled bi-directional E-glass fibre-based polyester composites», Bull. Mater. Sci., vol. 39, n.o 4, pp. 971-988, ago. 2016, doi: 10.1007/s12034-016-1237-4. | spa |
dc.relation.references | [75] P. Mandal, D. K. Jesthi, D. Das, A. K. Rout, y R. K. Nayak, «Three-body abrasion wear performance of glass/carbon fiber reinforced polymer hybrid composites», Mater. Today Proc., vol. 5, n.o 9, pp. 20777-20784, 2018, doi: 10.1016/j.matpr.2018.09.046. | spa |
dc.relation.references | [76] D. Muhammad y M. Asaduzzaman, «Friction and Wear of Polymer and Composites», en Composites and Their Properties, N. Hu, Ed., InTech, 2012. doi: 10.5772/48246. | spa |
dc.relation.references | [77] Z. Man, B. Wan, H. Wang, Q. Li, y L. Chang, «Experimental and numerical study on scratch performance of additively manufactured continuous carbon fibre reinforced polyamide 6 composites», Compos. Sci. Technol., vol. 230, p. 109314, nov. 2022, doi: 10.1016/j.compscitech.2022.109314. | spa |
dc.relation.references | [78] A. K. Singh, Siddhartha, y Deepak, «Assessment of mechanical and three-body abrasive wear peculiarity of TiO2- and ZnO-filled bi-directional E-glass fibre-based polyester composites», Bull. Mater. Sci., vol. 39, n.o 4, pp. 971-988, ago. 2016, doi: 10.1007/s12034-016-1237-4. | spa |
dc.relation.references | [79] P. Mandal, D. K. Jesthi, D. Das, A. K. Rout, y R. K. Nayak, «Three-body abrasion wear performance of glass/carbon fiber reinforced polymer hybrid composites», Mater. Today Proc., vol. 5, n.o 9, pp. 20777-20784, 2018, doi: 10.1016/j.matpr.2018.09.046. | spa |
dc.relation.references | [80] D. Muhammad y M. Asaduzzaman, «Friction and Wear of Polymer and Composites», en Composites and Their Properties, N. Hu, Ed., InTech, 2012. doi: 10.5772/48246. | spa |
dc.relation.references | [81] Z. Man, B. Wan, H. Wang, Q. Li, y L. Chang, «Experimental and numerical study on scratch performance of additively manufactured continuous carbon fibre reinforced polyamide 6 composites», Compos. Sci. Technol., vol. 230, p. 109314, nov. 2022, doi: 10.1016/j.compscitech.2022.109314. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.proposal | Compuestos poliméricos reforzados con fibra de carbono continua | spa |
dc.subject.proposal | Impresión 3D CFF | spa |
dc.subject.proposal | ASTM G65 | spa |
dc.subject.proposal | Desgaste abrasivo | spa |
dc.subject.proposal | Continuous carbon fiber reinforced polymer composites | eng |
dc.subject.proposal | CFF 3D printing | eng |
dc.subject.proposal | ASTM G65 | eng |
dc.subject.proposal | Abrasive wear | eng |
dc.subject.wikidata | resistencia de materiales | spa |
dc.subject.wikidata | strength of materials | eng |
dc.subject.wikidata | fibra de carbono | spa |
dc.subject.wikidata | carbon fibers | eng |
dc.subject.wikidata | abrasión | spa |
dc.subject.wikidata | abrasion | eng |
dc.title | Caracterización del comportamiento al desgaste abrasivo de tres cuerpos en materiales fabricados aditivamente con fibras continuas de carbono | spa |
dc.title.translated | Characterization of three-body abrasive wear behavior in additively manufactured materials reinforced with continuous carbon fibers | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 79970114.2025.pdf
- Tamaño:
- 10.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: