Radiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRI

dc.contributor.advisorRomero Castro, Edgar Eduardo
dc.contributor.authorMúnera Garzón, Nicolás
dc.contributor.researchgroupCIM@LABspa
dc.date.accessioned2021-10-12T21:57:18Z
dc.date.available2021-10-12T21:57:18Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractRadiomics is a research field in which features from radiological images are extracted to provide non-invasive but reliable quantification with potential usage in personalized medicine. One of its applications is the extraction of sub-visual patterns, which are not commonly analyzed but have high correlation with pathology and require a specific representation to appear. As so, the state of the art has demonstrated the use of higher order transforms a.k.a the frequency domain to obtain such patterns. For this thesis work two use cases that benefited from the use of the frequency domain for radiomic analysis are presented, these are, characterization of prostate cancer and autism spectrum disorder (ASD) from prostate and brain MRI respectively. In both cases gold standard diagnosis protocols do not involve the use of MRI but could benefit from it, as in the case of Prostate Cancer an effective characterization could help to triage prior to a biopsy procedure with tasks like tumor segmentation, classification of normal vs cancerous tissue or automatic tumor staging. Additionally, for ASD an effective characterization from MRI could help to contribute in the study of different manifestations of the spectrum. As a result three contributions in this matter were done: The first one is an adaptive frequency saliency model (AFSM) that sparsely learns a bank of filters in the frequency domain and was used as a preprocessing strategy prior to a transfer learning scheme which classifies cancerous vs healthy tissue in prostate MRI, this method obtains an accuracy of 0.792 ± 0.016 which yields better performance than a baseline experiment without preprocessing that scores 0.776 ± 0.036. The second one is a preliminary study that uses Fourier transform's phase space to study the spatial support of prostate cancerous versus non cancerous tissue. This strategy consisted in a random selection of one subject per class, then, the dataset is preprocessed by replacing the phase of each image by the one of the random selected subject obtaining different preprocessed datasets, and, finally transfer learning models are obtained. Results from this study suggested how spatial support is important for model training. Additionally, a classification improvement was observed when a healthy subject was used for preprocessing obtaining sensitivity and specificity of 0.77 and 0.80 respectively, against a baseline that obtains 0.69 and 0.80 for both metrics. As a third contribution of this thesis, two characterization strategies to differentiate between ASD and control subjects are proposed, these are: Zernike moments and Curvelet Transform under a region-wise analysis. Anatomical brain regions were repersented by a 2D multi slice mapping to analyze first and second order relationships. Both characterization strategies were evaluated under a 10 fold cross validation scheme with children cohorts from the heterogeneous datasets ABIDE I and II. Top performance regions for area under the reciever-operating curve (AUC) were: Left supramarginal gyrus (0.77), Right occipital fusiform cortex (0.76), Right supramarginal gyrus - anterior division (0.75) and Left superior temporal gyrus anterior division (0.77). Additionally the Curvelet approach presented generalizability as a hold out experiment was able to yield an AUC of 0.69 for the Right parahippocampal gyrus - posterior division. This representation also showed no correlation with other state of the art techniques representing a contribution to ASD characterization with structural MRI.eng
dc.description.abstractRadiómica es un área de investigación en la que se extraen patrones de imágenes radiológicas con el objetivo de lograr una cuantificación no invasiva y confiable con usos potenciales en medicina personalizada. Una aplicación común es la extracción de patrones sub-visuales; éstos, no son fáciles de apreciar o analizar en campo y requieren de un cambio de dominio para poderlos apreciar. El estado del arte en el área ha demostrado cómo el uso de transformaciones de alto orden también nombradas en la literatura como representaciones frecuenciales son aptas para obtener patrones sub-visuales, de manera que éste trabajo de tesis se enfocó en la aplicación de radiómica utilizando el dominio de la frecuencia para dos casos de estudio: caracterización de cancer de próstata y trastorno del espectro autista (TEA) a partir de imágenes de resonancia magnética estructural de próstata y cerebro. El protocolo estándar de diagnóstico para ambos casos no incluye la toma de resonancia magnética, sin embargo una caracterización adecuada de esta fuente de información no invasiva puede traer ventajas sustanciales como por ejemplo en el caso de cancer de próstata, servir de triage antes de un procedimiento de biopsia transrectal realizando tareas como segmentación de tumores, clasificación de tejido sano vs cáncer o detección de la agresividad del cáncer en tejido. Mientras que en el caso del TEA esta caracterización contribuye al estudio de diferentes manifestaciones del espectro autista. Como resultado tres contribuciones se realizaron: La primera es un método adaptativo de saliencia en el dominio de la frecuencia (AFSM) que de manera sparse aprende un banco de filtros en el dominio de la frecuencia y se utilizó como estrategia de preprocesamiento previo a la clasificación via transfer learning entre tejido sano y cancer. Este método obtiene un accuracy de 0.792 ± 0.016 superando una línea de base que obtiene 0.776 ± 0.036 . La segunda contribución es un estudio preliminar que utiliza el espacio de fase de la transformada de Fourier para para estudiar el soporte espacial de tejido canceroso y no canceroso en resonancia de próstata. Esta estrategia consiste en la selección de un sujeto aleatorio por clase, luego, la base de datos se preprocesa reemplazando la fase de todos los sujetos por la de cada sujeto escogido de manera aleatoria, obteniendo versiones modificadas de la base de datos que son sometidas a un esquema de clasificación utilizando transfer learning. Los resultados de este trabajo sugieren cómo el soporte espacial es importante en el entranamiento de cualquier modelo. Adicionalmente, se observó una mejora en clasificación cuando se utilizó tejido sano en el preprocesamiento, es decir, mejora de una línea de base con sensibilidad y especificidad de 0.69 y 0.80 respectivamente, a 0.77 0.80 en las imágenes preprocesadas. Como última contribución, se propusieron dos estrategias de caracterización para diferencias entre sujetos con TEA y control en imagen de resonancia, estas fueron: momentos de Zernike y transformada Curvelet. Ambas estrategias se realizaron bajo una representación 2D de cada región cerebral y fueron evaluadas utilizando validación cruzada 10 fold en dos cohortes infantiles de las bases de datos ABIDE I y II. Las regiones con mejor rendimiento en la métrica Área bajo la curva ROC (AUC) fueron: giro supramarginal izquierdo (0.77), corteza fusiforme occipital derecha (0.76), giro supramarginal derecho - división anterior (0.75) y giro temporal superior izquierdo - divisón anterior (0.77). Adicional a esto, el enfoque con la transformada Curvelet presentó generalización obteniendo un AUC de 0.69 para un experimento hold out en la región: giro parahipocampal derecho - división posterior. Además, esta repesentación no mostró ningún tipo de correlación con otras técnicas del estado del arte, representando una contribución al estado del arte en el área. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.notesIncluye anexosspa
dc.description.researchareaRadiómicaspa
dc.format.extentxvii, 88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80526
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.references9287, S. (Ed.). (2015). Morphometry-based comparison of relevant brain regions for Alzheimer’s disease detection (Vol. 928706).eng
dc.relation.referencesAfshar, P., Mohammadi, A., Plataniotis, K. N., Oikonomou, A., & Benali, H. (2019). From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine, 36(4), 132–160. https://doi.org/10.1109/MSP.2019.2900993eng
dc.relation.referencesAggarwal, S., & Angus, B. (2015). Misdiagnosis versus missed diagnosis: diagnosing autism spectrum disorder in adolescents. Australasian Psychiatry, 23(2), 120–123.eng
dc.relation.referencesAghdam, M. A., Sharifi, A., & Pedram, M. M. (2018). Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network. Journal of Digital Imaging, 31(6), 895–903. https://doi.org/10.1007/s10278-018-0093-8eng
dc.relation.referencesAlexeeff, S. E., Yau, V., Qian, Y., Davignon, M., Lynch, F., Crawford, P., Davis, R., & Croen, L. A. (2017). Medical Conditions in the First Years of Life Associated with Future Diagnosis of ASD in Children. Journal of Autism and Developmental Disorders, 47(7), 2067–2079.eng
dc.relation.referencesAlred, G. J., Brusaw, C. T., & Oliu, W. E. (2015 (eleventh edition)). Handbook of Technical Writing. St. Martin’s.eng
dc.relation.referencesAlvarez-Jimenez, C., Barrera, C., Munera, N., Viswanath, S. E., & Romero, E. (2019). Differentiating Cancerous and Non-cancerous Prostate Tissue Using Multi-scale Texture Analysis on MRI. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2695–2698.eng
dc.relation.referencesAlvarez-Jimenez, C., Múnera-Garzón, N., Zuluaga, M. A., Velasco, N. F., & Romero, E. (2020). Autism spectrum disorder characterization in children by capturing local-regional brain changes in MRI. Medical Physics, 47(1), 119–131.eng
dc.relation.referencesAmaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.eng
dc.relation.referencesAmerican Psychiatric Association, & others. (2013). Diagnostic and statistical manual of mental disorders (DSM-5). American Psychiatric Pub.eng
dc.relation.referencesAndersson, J. L., Jenkinson, M., Smith, S., & others. (2007). Non-linear registration, aka Spatial Normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford, 2, 1–21.eng
dc.relation.referencesArmato, S. G., Huisman, H., Drukker, K., Hadjiiski, L., Kirby, J. S., Petrick, N., Redmond, G., Giger, M. L., Cha, K., Mamonov, A., & others. (2018). PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. Journal of Medical Imaging, 5(4), 044501.eng
dc.relation.referencesAuzias, G., Viellard, M., Takerkart, S., Villeneuve, N., Poinso, F., Fonséca, D. D., Girard, N., & Deruelle, C. (2014). Atypical sulcal anatomy in young children with autism spectrum disorder. NeuroImage: Clinical, 4, 593–603. https://doi.org/10.1016/j.nicl.2014.03.008eng
dc.relation.referencesBabaian, R. J., Toi, A., Kamoi, K., Troncoso, P., Sweet, J., Evans, R., Johnston, D., & Chen, M. (2000). A comparative analysis of sextant and an extended 11-core multisite directed biopsy strategy. The Journal of Urology, 163(1), 152–157.eng
dc.relation.referencesBaio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., Kurzius-Spencer, M., Zahorodny, W., Rosenberg, C. R., White, T., & others. (2018). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 67(6), 1.eng
dc.relation.referencesBastiaansen, J. A., Thioux, M., Nanetti, L., van der Gaag, C., Ketelaars, C., Minderaa, R., & Keysers, C. (2011). Age-Related Increase in Inferior Frontal Gyrus Activity and Social Functioning in Autism Spectrum Disorder. Biological Psychiatry, 69(9), 832–838. https://doi.org/10.1016/j.biopsych.2010.11.007eng
dc.relation.referencesBauman, M. L., & Kemper, T. L. (2005a). Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience, 23(2), 183–187. https://doi.org/https://doi.org/10.1016/j.ijdevneu.2004.09.006eng
dc.relation.referencesBauman, M. L., & Kemper, T. L. (2005b). Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience, 23(2–3), 183–187. https://doi.org/10.1016/j.ijdevneu.2004.09.006eng
dc.relation.referencesBeig, N., Khorrami, M., Alilou, M., Prasanna, P., Braman, N., Orooji, M., Rakshit, S., Bera, K., Rajiah, P., Ginsberg, J., & et al. (2019). Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology, 290(3), 783–792. https://doi.org/10.1148/radiol.2018180910eng
dc.relation.referencesBigler, E. D., Mortensen, S., Neeley, E. S., Ozonoff, S., Krasny, L., Johnson, M., Lu, J., Provencal, S. L., McMahon, W., & Lainhart, J. E. (2007). Superior Temporal Gyrus, Language Function, and Autism. Developmental Neuropsychology, 31(2), 217–238. https://doi.org/10.1080/87565640701190841eng
dc.relation.referencesBlatt, G. J., & Fatemi, S. H. (2011). Alterations in GABAergic Biomarkers in the Autism Brain: Research Findings and Clinical Implications. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(10), 1646–1652. https://doi.org/10.1002/ar.21252eng
dc.relation.referencesBrambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., & Barale, F. (2003). Brain anatomy and development in autism: review of structural MRI studies. Brain Research Bulletin, 61(6), 557–569.eng
dc.relation.referencesBray, F., Ferlay, J., Soerjomataram, I., & others. (2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin.eng
dc.relation.referencesCameron, A., Khalvati, F., Haider, M. A., & Wong, A. (2016). MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Transactions on Biomedical Engineering, 63(6), 1145–1156.eng
dc.relation.referencesCandes, E., Demanet, L., Donoho, D., & Ying, L. (2006). Fast Discrete Curvelet Transforms. Multiscale Modeling & Simulation, 5(3), 861–899. https://doi.org/10.1137/05064182xeng
dc.relation.referencesCandes, E. J., & Donoho, D. L. (2000). Curvelets: A surprisingly effective nonadaptive representation for objects with edges [Techreport]. Stanford Univ Ca Dept of Statistics.eng
dc.relation.referencesCasanova, M. F., El-Baz, A. S., Kamat, S. S., Dombroski, B. A., Khalifa, F., Elnakib, A., Soliman, A., Allison-McNutt, A., & Switala, A. E. (2013). Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathologica Communications, 1(1), 67. https://doi.org/10.1186/2051-5960-1-67eng
dc.relation.referencesCastillo T, J. M., Arif, M., Niessen, W. J., Schoots, I. G., Veenland, J. F., & others. (2020). Automated classification of significant prostate cancer on MRI: A systematic review on the performance of machine learning applications. Cancers, 12(6), 1606.eng
dc.relation.referencesChaddad, A., Daniel, P., & Niazi, T. (2018). Radiomics evaluation of histological heterogeneity using multiscale textures derived from 3D wavelet transformation of multispectral images. Frontiers in Oncology, 8, 96.eng
dc.relation.referencesChaddad, A., Desrosiers, C., Hassan, L., & Tanougast, C. (2017). Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neuroscience, 18(1), 1–12.eng
dc.relation.referencesChaddad, A., Desrosiers, C., & Toews, M. (2017a). Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Scientific Reports, 7(1), 1–17.eng
dc.relation.referencesChaddad, A., Desrosiers, C., & Toews, M. (2017b). Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Scientific Reports, 7(1). https://doi.org/10.1038/srep45639eng
dc.relation.referencesChang, C. C., & Lin, C. J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199eng
dc.relation.referencesChung, A. G., Khalvati, F., Shafiee, M. J., Haider, M. A., & Wong, A. (2015). Prostate cancer detection via a quantitative radiomics-driven conditional random field framework. Ieee Access, 3, 2531–2541.eng
dc.relation.referencesCorino, V. D., Montin, E., Messina, A., Casali, P. G., Gronchi, A., Marchianò, A., & Mainardi, L. T. (2018). Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions. Journal of Magnetic Resonance Imaging, 47(3), 829–840.eng
dc.relation.referencesCortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.eng
dc.relation.referencesCourchesne, E., Campbell, K., & Solso, S. (2011). Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Research, 1380, 138–145.eng
dc.relation.referencesCourchesne, E., Karns, C., Davis, H., Ziccardi, R., Carper, R., Tigue, Z., Chisum, H., Moses, P., Pierce, K., Lord, C., & others. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57(2), 245–254.eng
dc.relation.referencesCuocolo, R., Stanzione, A., Castaldo, A., De Lucia, D. R., & Imbriaco, M. (2021). Quality control and whole-gland, zonal and lesion annotations for the PROSTATEx challenge public dataset. European Journal of Radiology, 109647.eng
dc.relation.referencesCuocolo, R., Stanzione, A., Ponsiglione, A., Romeo, V., Verde, F., Creta, M., La Rocca, R., Longo, N., Pace, L., & Imbriaco, M. (2019). Clinically significant prostate cancer detection on MRI: A radiomic shape features study. European Journal of Radiology, 116, 144–149. https://doi.org/https://doi.org/10.1016/j.ejrad.2019.05.006eng
dc.relation.referencesDager, S. R., Wang, L., Friedman, S., Shaw, D., Constantino, J., Artru, A., Dawson, G., & Csernansky, J. (2007). Shape mapping of the hippocampus in young children with autism spectrum disorder. American Journal of Neuroradiology, 28(4), 672–677.eng
dc.relation.referencesDavis, P. J. (1959). Leonhard Euler’s integral: A historical profile of the Gamma function: In memoriam: Milton Abramowitz. The American Mathematical Monthly, 66(10), 849–869.eng
dc.relation.referencesDe Fossé, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S., McGrath, L., Steele, S., Ziegler, D. A., Herbert, M. R., Frazier, J. A., & others. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56(6), 757–766.eng
dc.relation.referencesde la Salud, O. M. (2013). Medidas integrales y coordinadas para gestionar los trastornos del espectro autista. Organización Mundial de la Salud. http://apps.who.int/gb/ebwha/pdf_files/EB133/B133_4-sp.pdfeng
dc.relation.referencesDesikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., & others. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.eng
dc.relation.referencesDespotović, I., Goossens, B., & Philips, W. (2015). MRI segmentation of the human brain: challenges, methods, and applications. Computational and Mathematical Methods in Medicine, 2015.eng
dc.relation.referencesDi Martino, A., O’connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, L., Beggiato, A., Bernaerts, S., & others. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4(1), 1–15.eng
dc.relation.referencesDi Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., Balsters, J. H., Baxter, L., Beggiato, A., Bernaerts, S., & others. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4, 170010.eng
dc.relation.referencesDi Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., & others. (2014a). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.eng
dc.relation.referencesDi Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., & others. (2014b). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.eng
dc.relation.referencesDice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.eng
dc.relation.referencesDichter, G. S., Felder, J. N., & Bodfish, J. W. (2009). Autism is characterized by dorsal anterior cingulate hyperactivation during social target detection. Social Cognitive and Affective Neuroscience, 4(3), 215–226.eng
dc.relation.referencesDo, M. N., & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 11(2), 146–158. https://doi.org/10.1109/83.982822eng
dc.relation.referencesEcker, C., Marquand, A., Mourão-Miranda, J., Johnston, P., Daly, E. M., Brammer, M. J., Maltezos, S., Murphy, C. M., Robertson, D., Williams, S. C., & others. (2010). Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. The Journal of Neuroscience, 30(32), 10612–10623.eng
dc.relation.referencesEichler, K., Hempel, S., Wilby, J., & others. (2006). Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol, 175(5), 1605–1612.eng
dc.relation.referencesEpstein, J. I. (2010). An update of the Gleason grading system. J Urol, 183(2), 433–440.eng
dc.relation.referencesEpstein, J. I., Zelefsky, M. J., Sjoberg, D. D., & others. (2016). A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol, 69(3), 428–435.eng
dc.relation.referencesFalkmer T., F. M., Anderson K., & C., H. (2013). Diagnostic procedures in autism spectrum disorders: a systematic literature review. Eur Child Adolesc Psychiatry, 22(10), 329–340.eng
dc.relation.referencesFang, Y., Wang, J., Narwaria, M., Le Callet, P., & Lin, W. (2014). Saliency detection for stereoscopic images. IEEE Transactions on Image Processing, 23(6), 2625–2636.eng
dc.relation.referencesFatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., & Merz, A. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cellular and Molecular Neurobiology, 22(2), 171–175.eng
dc.relation.referencesFehr, D., Veeraraghavan, H., Wibmer, A., & others. (2015). Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proceedings of the National Academy of Sciences, 112(46), E6265–E6273.eng
dc.relation.referencesFei, B. (2017). Computer-aided diagnosis of prostate cancer with MRI. Current Opinion in Biomedical Engineering, 3, 20–27.eng
dc.relation.referencesFischl, B. (2004). Automatically Parcellating the Human Cerebral Cortex. Cerebral Cortex, 14(1), 11–22. https://doi.org/10.1093/cercor/bhg087eng
dc.relation.referencesFischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055. https://doi.org/10.1073/pnas.200033797eng
dc.relation.referencesfor Cancer (UK, N. C. C., & others. (2008). Prostate cancer: diagnosis and treatment.eng
dc.relation.referencesFu, H., Cao, X., & Tu, Z. (2013). Cluster-based co-saliency detection. IEEE Transactions on Image Processing, 22(10), 3766–3778.eng
dc.relation.referencesGarzón, N. M., Alvarez-Jimenez, C., Gonzalez, F., & Romero, E. (2020). Adaptive frequency saliency model based on convolutional neural networks: a case study for prostate cancer MRI. 15th International Symposium on Medical Information Processing and Analysis, 11330, 113300B.eng
dc.relation.referencesGiedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021(1), 77–85.eng
dc.relation.referencesGillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563–577. https://doi.org/10.1148/radiol.2015151169eng
dc.relation.referencesGinn, N. C., Clionsky, L. N., Eyberg, S. M., Warner-Metzger, C., & Abner, J.-P. (2017). Child-directed interaction training for young children with autism spectrum disorders: Parent and child outcomes. Journal of Clinical Child & Adolescent Psychology, 46(1), 101–109.eng
dc.relation.referencesGiuliano, A., Gori, I., Muratori, F., Saviozzi, I., Oliva, P., Tancredi, R., Cosenza, A., Tosetti, M., Calderoni, S., & Retico, A. (2016). Machine learning techniques implemented ON structural MRI features at different spatial scales for preschoolers with autism spectrum disorders. Physica Medica, 32, 128. https://doi.org/10.1016/j.ejmp.2016.01.443eng
dc.relation.referencesGómez, F., & Romero, E. (2011). Rotation invariant texture characterization using a curvelet based descriptor. Pattern Recognition Letters, 32(16), 2178–2186. https://doi.org/10.1016/j.patrec.2011.09.029eng
dc.relation.referencesGonzalez, P. (2007). Neurobiología del autismo: estudio de neuropatología y neuroimagen. Actas Especialistas Psiquiatricas, 35(4), 271–276.eng
dc.relation.referencesGoossens, M., Mittelbach, F., & Rahtz, S. (1997). The LaTeX Companion. Addison-Wesley.eng
dc.relation.referencesGull, S. F. (1989). Developments in maximum-entropy data analysis. In J. Skilling (Ed.), Maximum Entropy and Bayesian Methods (pp. 53–71). Kluwer Academic.eng
dc.relation.referencesGuo, F., Wang, W., Shen, J., Shao, L., Yang, J., Tao, D., & Tang, Y. Y. (2017). Video saliency detection using object proposals. IEEE Transactions on Cybernetics, 48(11), 3159–3170.eng
dc.relation.referencesHadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16(9), 1276–1282.eng
dc.relation.referencesHaffner, J., Lemaitre, L., Puech, P., Haber, G.-P., Leroy, X., Jones, J. S., & Villers, A. (2011). Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU International, 108(8b), E171–E178.eng
dc.relation.referencesHan, Y., Yang, Y., sheng Zhe-Shi, ding An-Zhang, feng Lin-Yan, chuan Yu-Hu, lan Lan-Feng, Ma, J., Wang, W., & bin Guang-Cui. (2021). Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. European Journal of Radiology, 134, 109467. https://doi.org/https://doi.org/10.1016/j.ejrad.2020.109467eng
dc.relation.referencesHanson, K. M. (1993). Introduction to Bayesian image analysis. In M. \ H. Loew (Ed.), Medical Imaging:\ Image Processing (Vol. 1898, pp. 716–731).eng
dc.relation.referencesHaralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804. https://doi.org/10.1109/PROC.1979.11328eng
dc.relation.referencesHazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., Elison, J. T., Swanson, M. R., Zhu, H., Botteron, K. N., & others. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348–351.eng
dc.relation.referencesHectors, S. J., Wagner, M., Bane, O., Besa, C., Lewis, S., Remark, R., Chen, N., Fiel, M. I., Zhu, H., Gnjatic, S., & others. (2017). Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Scientific Reports, 7(1), 1–12.eng
dc.relation.referencesHedley, D., Brewer, N., Nevill, R., Uljarević, M., Butter, E., & Mulick, J. A. (2016). The relationship between clinicians’ confidence and accuracy, and the influence of child characteristics, in the screening of autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(7), 2340–2348.eng
dc.relation.referencesHerbert, M. R., Harris, G. J., Adrien, K. T., Ziegler, D. A., Makris, N., Kennedy, D. N., Lange, N. T., Chabris, C. F., Bakardjiev, A., Hodgson, J., & others. (2002). Abnormal asymmetry in language association cortex in autism. Annals of Neurology, 52(5), 588–596.eng
dc.relation.referencesHirai, T., & Jones, E. (1989). A new parcellation of the human thalamus on the basis of histochemical staining. Brain Research Reviews, 14(1), 1–34.eng
dc.relation.referencesIandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., & Keutzer, K. (2014). Densenet: Implementing efficient convnet descriptor pyramids. ArXiv Preprint ArXiv:1404.1869.eng
dc.relation.referencesIsmail, M. M. T., Keynton, R. S., Mostapha, M. M. M. O., ElTanboly, A. H., Casanova, M. F., Gimel’farb, G. L., & El-Baz, A. (2016). Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00211eng
dc.relation.referencesItti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 11, 1254–1259.eng
dc.relation.referencesJenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002a). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.eng
dc.relation.referencesJenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002b). Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 17(2), 825–841. https://doi.org/10.1006/nimg.2002.1132eng
dc.relation.referencesJenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782–790.eng
dc.relation.referencesJiao, Y., Chen, R., Ke, X., Chu, K., Lu, Z., & Herskovits, E. H. (2010). Predictive models of autism spectrum disorder based on brain regional cortical thickness. NeuroImage, 50(2), 589–599. https://doi.org/10.1016/j.neuroimage.2009.12.047eng
dc.relation.referencesJiao Y, Z. L., Kangkang Chu. (2010). Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage., 50(2)(10.1016), 589–599.eng
dc.relation.referencesJin, J., Zhang, L., Leng, E., & others. (2018). Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate. Statis Med, 37(22), 3214–3229. https://doi.org/10.1002/sim.7810eng
dc.relation.referencesKarthik, R., Menaka, R., & Chellamuthu, C. (2015). A comprehensive framework for classification of brain tumour images using SVM and curvelet transform. International Journal of Biomedical Engineering and Technology, 17(2), 168–177.eng
dc.relation.referencesKatuwal, G. J., Cahill, N. D., Baum, S. A., & Michael, A. M. (2015). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4270–4273. https://doi.org/10.1109/EMBC.2015.7319338eng
dc.relation.referencesKatuwal, Gajendra J., Baum, S. A., Cahill, N. D., & Michael, A. M. (2016). Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry. PLOS ONE, 11(4), e0153331. https://doi.org/10.1371/journal.pone.0153331eng
dc.relation.referencesKatuwal, Gajendra J., Cahill, N. D., Baum, S. A., & Michael, A. M. (2015, August). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/embc.2015.7319338eng
dc.relation.referencesKatuwal, Gajendra J, Cahill, N. D., Baum, S. A., & Michael, A. M. (2015). The predictive power of structural MRI in Autism diagnosis. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4270–4273.eng
dc.relation.referencesKemper, T. L., & Bauman, M. L. (1993). The contribution of neuropathologic studies to the understanding of autism. Neurologic Clinics, 11(1), 175–187.eng
dc.relation.referencesKim, H. L., Puymon, M. R., Qin, M., & others. (2013). NCCN Clinical practice guidelines in oncology™.eng
dc.relation.referencesKNAUS, T. A., SILVER, A. M., LINDGREN, K. A., HADJIKHANI, N., & TAGER-FLUSBERG, H. (2008). fMRI activation during a language task in adolescents with ASD. Journal of the International Neuropsychological Society, 14(6), 967–979. https://doi.org/10.1017/s1355617708081216eng
dc.relation.referencesKnopf, A. (2020). Autism prevalence increases from 1 in 60 to 1 in 54: CDC. The Brown University Child and Adolescent Behavior Letter, 36(6), 4–4.eng
dc.relation.referencesKong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., & Liu, J. (2019). Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing, 324, 63–68.eng
dc.relation.referencesKoshy, S. M., Anil Prahladan, D., EDiR, D. K. K., & others. (2017). Role of Multiparametric MRI Prostate as A Screening Tool for Cancer Detection. J Med Sci Clin Research, 5(2), 18162–18176. https://doi.org/10.18535/jmscr/v5i2.151eng
dc.relation.referencesKringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews Neuroscience, 6(9), 691.eng
dc.relation.referencesKumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J., Dekker, A., Fenstermacher, D., & others. (2012). Radiomics: the process and the challenges. Magnetic Resonance Imaging, 30(9), 1234–1248.eng
dc.relation.referencesLabate, D., Lim, W.-Q., Kutyniok, G., & Weiss, G. (2005). Sparse multidimensional representation using shearlets. Wavelets XI, 5914, 59140U.eng
dc.relation.referencesLamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure and Function, 214(5–6), 579–591. https://doi.org/10.1007/s00429-010-0251-3eng
dc.relation.referencesLamport, L. (1994). LaTeX: A Document Preparation System. Addison-Wesley.eng
dc.relation.referencesLarson, D. R., Massopust, P., Nashed, Z., Nguyen, M. C., Papadakis, M., & Zayed, A. (Eds.). (2008). Frames and Operator Theory in Analysis and Signal Processing. American Mathematical Society. https://doi.org/10.1090/conm/451eng
dc.relation.referencesLauvin, M.-A., Martineau, J., Destrieux, C., Andersson, F., Bonnet-Brilhault, F., Gomot, M., El-Hage, W., & Cottier, J.-P. (2012). Functional morphological imaging of autism spectrum disorders: Current position and theories proposed . Diagnostic and Interventional Imaging , 93(3), 139–147. https://doi.org/http://dx.doi.org/10.1016/j.diii.2012.01.007eng
dc.relation.referencesLawrence, Y., Kemper, T., Bauman, M., & Blatt, G. (2010). Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurologica Scandinavica, 121(2), 99–108.eng
dc.relation.referencesLees-Miller, J. D. (n.d.). Free and Interactive Online Introduction to LaTeX. Overleaf, 26 February 2015 https://www.overleaf.com/latex/learn/free-online-introduction-to-latex-part-1.eng
dc.relation.referencesLehaire, J., Flamary, R., Rouvière, O., & Lartizien, C. (2014). Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification. Image Processing (ICIP), 2014 IEEE International Conference On, 2251–2255.eng
dc.relation.referencesLemaı̂tre, G., Martı́, R., Freixenet, J., & others. (2015). Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Computers in Biology and Medicine, 60, 8–31.eng
dc.relation.referencesLewis, S., Hectors, S., & Taouli, B. (2020). Radiomics of hepatocellular carcinoma. Abdominal Radiology, 1–13.eng
dc.relation.referencesLi, Hailong, Parikh, N. A., & He, L. (2018). A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00491eng
dc.relation.referencesLi, Hongliang, & Ngan, K. N. (2011). A co-saliency model of image pairs. IEEE Transactions on Image Processing, 20(12), 3365–3375.eng
dc.relation.referencesLi, Jia, Duan, L.-Y., Chen, X., Huang, T., & Tian, Y. (2015). Finding the secret of image saliency in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(12), 2428–2440.eng
dc.relation.referencesLi, Jian, Levine, M. D., An, X., Xu, X., & He, H. (2012). Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4), 996–1010.eng
dc.relation.referencesLiang, Z.-P., & Lauterbur, P. C. (2000). Principles of magnetic resonance imaging: a signal processing perspective. SPIE Optical Engineering Press.eng
dc.relation.referencesLICA. (2013). Comunicado Liga Colombiana de Autismo. http://www.ligautismo.org/. http://www.ligautismo.org/eng
dc.relation.referencesLitjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2014). Computer-Aided Detection of Prostate Cancer in MRI. IEEE Transactions on Medical Imaging, 33(5), 1083–1092. https://doi.org/10.1109/tmi.2014.2303821eng
dc.relation.referencesLitjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2017). SPIE-AAPM PROSTATEx Challenge Data. The Cancer Imaging Archive. https://doi.org/10.7937/K9TCIA.2017.MURS5CLeng
dc.relation.referencesLiu, J., Yao, L., Zhang, W., Xiao, Y., Liu, L., Gao, X., Shah, C., Li, S., Tao, B., Gong, Q., & others. (2017). Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping. European Child & Adolescent Psychiatry, 26(8), 933–945.eng
dc.relation.referencesLiu, Maofu, He, Y., & Ye, B. (2007). Image zernike moments shape feature evaluation based on image reconstruction. Geo-Spatial Information Science, 10(3), 191–195.eng
dc.relation.referencesLiu, Mingxia, Zhang, J., Adeli, E., & Shen, D. (2018). Landmark-based deep multi-instance learning for brain disease diagnosis. Medical Image Analysis, 43, 157–168. https://doi.org/10.1016/j.media.2017.10.005eng
dc.relation.referencesLiu, Mingxia, Zhang, J., Nie, D., Yap, P.-T., & Shen, D. (2018). Anatomical Landmark Based Deep Feature Representation for MR Images in Brain Disease Diagnosis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1476–1485. https://doi.org/10.1109/jbhi.2018.2791863eng
dc.relation.referencesLiu, Z., Zou, W., Li, L., Shen, L., & Le Meur, O. (2013). Co-saliency detection based on hierarchical segmentation. IEEE Signal Processing Letters, 21(1), 88–92.eng
dc.relation.referencesLord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.eng
dc.relation.referencesLord, C., Rutter, M., DiLavore, P. C., & others. (1999). Autism Diagnostic Observation Schedule–Generic. Dissertation Abstracts International Section A: Humanities and Social Sciences.eng
dc.relation.referencesLord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.eng
dc.relation.referencesMakris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S., Faraone, S. V., Tsuang, M. T., & Seidman, L. J. (2006a). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83(2), 155–171.eng
dc.relation.referencesMakris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S., Faraone, S. V., Tsuang, M. T., & Seidman, L. J. (2006b). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83(2–3), 155–171. https://doi.org/10.1016/j.schres.2005.11.020eng
dc.relation.referencesMartino, A. D., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., Lord, C., Castellanos, F. X., & Milham, M. P. (2011). Aberrant Striatal Functional Connectivity in Children with Autism. Biological Psychiatry, 69(9), 847–856. https://doi.org/10.1016/j.biopsych.2010.10.029eng
dc.relation.referencesMayerhoefer, M. E., Materka, A., Langs, G., Häggström, I., Szczypiński, P., Gibbs, P., & Cook, G. (2020). Introduction to radiomics. Journal of Nuclear Medicine, 61(4), 488–495.eng
dc.relation.referencesMazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: Theory and rationale for its development: The international consortium for brain mapping (icbm). Neuroimage, 2(2), 89–101.eng
dc.relation.referencesMeselhy Eltoukhy, M., Faye, I., & Belhaouari Samir, B. (2010). A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Computers in Biology and Medicine, 40(4), 384–391. https://doi.org/https://doi.org/10.1016/j.compbiomed.2010.02.002eng
dc.relation.referencesMetropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. J. Chem. Phys., 21, 1087–1091.eng
dc.relation.referencesMittelbach, F., Goossens, M., Braams, J., & Carlisle, D. (2004). The LaTeX Companion (second). Addison-Wesley.eng
dc.relation.referencesMorrison, J. (2015). DSM-5® Guı́a para el diagnóstico clı́nico. Editorial El Manual Moderno.eng
dc.relation.referencesMúnera, N., Almeida, J., Álvarez, C., Velasco, N., & Romero, E. (2018). Autism Spectrum Disorders (ASD) Characterization in Children by Decomposing MRI Brain Regions with Zernike Moments. Sipaim–Miccai Biomedical Workshop, 42–53.eng
dc.relation.referencesMurphy, G., Haider, M., Ghai, S., & Sreeharsha, B. (2013). The expanding role of MRI in prostate cancer. American Journal of Roentgenology, 201(6), 1229–1238.eng
dc.relation.referencesMwangi, B., Tian, T. S., & Soares, J. C. (2014). A review of feature reduction techniques in neuroimaging. Neuroinformatics, 12(2), 229–244.eng
dc.relation.referencesNelson, A. W., Harvey, R. C., Parker, R. A., & others. (2013). Repeat prostate biopsy strategies after initial negative biopsy: meta-regression comparing cancer detection of transperineal, transrectal saturation and MRI guided biopsy. PloS One, 8(2), e57480.eng
dc.relation.referencesNiederhuber, J. E., Armitage, J. O., Doroshow, J. H., & others. (2015). Abeloff’s Clinical Oncology. Bangkok Med J, 10.eng
dc.relation.referencesNiu, Y., Geng, Y., Li, X., & Liu, F. (2012). Leveraging stereopsis for saliency analysis. 2012 IEEE Conference on Computer Vision and Pattern Recognition, 454–461.eng
dc.relation.referencesNketiah, G., Elschot, M., Kim, E., Teruel, J. R., Scheenen, T. W., Bathen, T. F., & Selnæs, K. M. (2017). T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. European Radiology, 27(7), 3050–3059.eng
dc.relation.referencesOkuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Tanji, K., Suzuki, K., Kawashima, R., Fukuda, H., Itoh, M., & Yamadori, A. (2003). Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. NeuroImage, 19(4), 1369–1380. https://doi.org/10.1016/s1053-8119(03)00179-4eng
dc.relation.referencesOppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals. Proceedings of the IEEE, 69(5), 529–541.eng
dc.relation.referencesOzonoff, S., Iosif, A.-M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., Rogers, S. J., Rozga, A., Sangha, S., Sigman, M., Steinfeld, M. B., & Young, G. S. (2010). A Prospective Study of the Emergence of Early Behavioral Signs of Autism. Journal of the American Academy of Child & Adolescent Psychiatry, 49(3), 256-266.e2. https://doi.org/10.1016/j.jaac.2009.11.009eng
dc.relation.referencesParisot, S., Ktena, S. I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., & Rueckert, D. (2018). Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease. Medical Image Analysis, 48, 117–130. https://doi.org/10.1016/j.media.2018.06.001eng
dc.relation.referencesPatro, B. N., Lunayach, M., & Namboodiri, V. P. (2021). Uncertainty Class Activation Map (U-CAM) Using Gradient Certainty Method. IEEE Transactions on Image Processing, 30, 1910–1924.eng
dc.relation.referencesPerelman, L. C., Paradis, J., & Barrett, E. (1997). Mayfield Handbook of Technical and Scientific Writing. Mountain View.eng
dc.relation.referencesPloussard, G., Nicolaiew, N., Marchand, C., & others. (2013). Risk of repeat biopsy and prostate cancer detection after an initial extended negative biopsy: longitudinal follow-up from a prospective trial. BJU International, 111(6), 988–996.eng
dc.relation.referencesPosada De la Paz, M., Ferrari Arroyo, M., Touriño Aguilera, E., & Boada Muñoz, L. (2005). Investigación epidemiológica en el autismo: una visión integradora. Rev. Neurol.(Ed. Impr.), s191-198.eng
dc.relation.referencesPratt, H., Williams, B., Coenen, F., & Zheng, Y. (2017). Fcnn: Fourier convolutional neural networks. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 786–798.eng
dc.relation.referencesPuzzo, I., Cooper, N. R., Vetter, P., & Russo, R. (2010). EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism. Brain Research, 1342, 104–110. https://doi.org/10.1016/j.brainres.2010.04.060eng
dc.relation.referencesRetico, A., Gori, I., Giuliano, A., Muratori, F., & Calderoni, S. (2016a). One-class support vector machines identify the language and default mode regions as common patterns of structural alterations in young children with autism spectrum disorders. Frontiers in Neuroscience, 10, 306.eng
dc.relation.referencesRetico, A., Gori, I., Giuliano, A., Muratori, F., & Calderoni, S. (2016b). One-Class Support Vector Machines Identify the Language and Default Mode Regions As Common Patterns of Structural Alterations in Young Children with Autism Spectrum Disorders. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00306eng
dc.relation.referencesRiddle, K., Cascio, C. J., & Woodward, N. D. (2016). Brain structure in autism: a voxel-based morphometry analysis of the Autism Brain Imaging Database Exchange (ABIDE). Brain Imaging and Behavior, 1–11.eng
dc.relation.referencesRobinson, M. D., Toth, C. A., Lo, J. Y., & Farsiu, S. (2010). Efficient Fourier-wavelet super-resolution. IEEE Transactions on Image Processing, 19(10), 2669–2681.eng
dc.relation.referencesRodríguez-Barrionuevo, A., & Rodríguez-V., M. (2002). Diagnóstico clínico del autismo. Revista de Neurología, 34(1), 72–77.eng
dc.relation.referencesRöthke, M., Blondin, D., Schlemmer, H., & Franiel, T. (2013). PI-RADS classification: structured reporting for MRI of the prostate. Rofo, 185(3), 253–261.eng
dc.relation.referencesRutter, M., Le Couteur, A., Lord, C., & others. (2003). Autism diagnostic interview-revised. Los Angeles, CA: Western Psychological Services, 29(2003), 30.eng
dc.relation.referencesSaki, F., Tahmasbi, A., Soltanian-Zadeh, H., & Shokouhi, S. B. (2013). Fast opposite weight learning rules with application in breast cancer diagnosis. Computers in Biology and Medicine, 43(1), 32–41.eng
dc.relation.referencesSALUD, M. D. S. Y. P. S. I. D. E. T. E. (2015). PROTOCOLO CLINICO PARA EL DIAGNOSTICO, TRATAMIENTO Y RUTA DE ATENCION INTEGRAL DE NINOS Y NINAS CON TRASTORNOS DEL ESPECTRO AUTISTA. Institucion de evaluacion tecnolOgica en salud.eng
dc.relation.referencesSato, W., Kochiyama, T., Uono, S., Yoshimura, S., Kubota, Y., Sawada, R., Sakihama, M., & Toichi, M. (2017). Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00395eng
dc.relation.referencesSchumann, C. M., & Nordahl, C. W. (2011). Bridging the gap between MRI and postmortem research in autism. Brain Research, 1380, 175–186. https://doi.org/https://doi.org/10.1016/j.brainres.2010.09.061eng
dc.relation.referencesSears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., & Piven, J. (1999). An MRI study of the basal ganglia in autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 23(4), 613–624. https://doi.org/10.1016/s0278-5846(99)00020-2eng
dc.relation.referencesSen, B., Borle, N. C., Greiner, R., & Brown, M. R. (2018). A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PloS One, 13(4), e0194856.eng
dc.relation.referencesSerefoglu, E. C., Altinova, S., Ugras, N. S., Akincioglu, E., Asil, E., & Balbay, D. (2012). How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Canadian Urological Association Journal, 6(2). https://doi.org/10.5489/cuaj.11224eng
dc.relation.referencesSerefoglu, E. C., Altinova, S., Ugras, N. S., Akincioglu, E., Asil, E., & Balbay, M. D. (2013). How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Canadian Urological Association Journal, 7(5–6), E293.eng
dc.relation.referencesShen, M. D., Nordahl, C. W., Li, D. D., Lee, A., Angkustsiri, K., Emerson, R. W., Rogers, S. J., Ozonoff, S., & Amaral, D. G. (2018). Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study. The Lancet Psychiatry, 5(11), 895–904.eng
dc.relation.referencesShmilovici, A. (2009). Support vector machines. In Data mining and knowledge discovery handbook (pp. 231–247). Springer.eng
dc.relation.referencesSmith, S. M. (2002a). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.eng
dc.relation.referencesSmith, S. M. (2002b). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062eng
dc.relation.referencesSnoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 2951–2959.eng
dc.relation.referencesSomerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9(8), 1007–1008. https://doi.org/10.1038/nn1728eng
dc.relation.referencesSparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., Maravilla, K. R., Giedd, J. N., Munson, J., Dawson, G., & Dager, S. R. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184–192. https://doi.org/10.1212/wnl.59.2.184eng
dc.relation.referencesSzegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826eng
dc.relation.referencesTahmasbi, A., Saki, F., & Shokouhi, S. B. (2011). Classification of benign and malignant masses based on Zernike moments. Computers in Biology and Medicine, 41(8), 726–735.eng
dc.relation.referencesTancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. ArXiv Preprint ArXiv:2006.10739.eng
dc.relation.referencesVaccarino, F. M., & Smith, K. M. (2009). Increased Brain Size in Autism—What It Will Take to Solve a Mystery. Biological Psychiatry, 66(4), 313–315. https://doi.org/10.1016/j.biopsych.2009.06.013eng
dc.relation.referencesVila T., M. (2004). Rendimiento del estudio diagnóstico del autismo. La aportación de La neuroimagen, las pruebas metabólicas y los estudios genéticos. Revista de Neurología, 38(1), 15–20.eng
dc.relation.referencesViswanath, S. E., Bloch, N. B., Chappelow, J. C., & others. (2012). Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery. Journal of Magnetic Resonance Imaging, 36(1), 213–224.eng
dc.relation.referencesVos, P., Barentsz, J., Karssemeijer, N., & Huisman, H. (2012). Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Physics in Medicine & Biology, 57(6), 1527.eng
dc.relation.referencesWang, Haibo, Viswanath, S., & Madabhushi, A. (2017). Discriminative Scale Learning (DiScrn): Applications to Prostate Cancer Detection from MRI and Needle Biopsies. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12569-zeng
dc.relation.referencesWang, Haofan, Du, M., Yang, F., & Zhang, Z. (2019). Score-cam: Improved visual explanations via score-weighted class activation mapping. ArXiv Preprint ArXiv:1910.01279.eng
dc.relation.referencesWang, L., Wee, C. Y., Tang, X., Yap, P. T., & Shen, D. (2015). Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder. Brain Imaging and Behavior, 10(1), 33–40. https://doi.org/10.1007/s11682-015-9360-1eng
dc.relation.referencesWang, Y., Zheng, B., Gao, D., & Wang, J. (2018). Fully convolutional neural networks for prostate cancer detection using multi-parametric magnetic resonance images: an initial investigation. 2018 24th International Conference on Pattern Recognition (ICPR), 3814–3819. https://doi.org/10.1109/ICPR.2018.8545754eng
dc.relation.referencesWeaver, J. B., Xu, Y., Healy Jr, D., & Cromwell, L. (1991). Filtering noise from images with wavelet transforms. Magnetic Resonance in Medicine, 21(2), 288–295.eng
dc.relation.referencesWhitney, E. R., Kemper, T. L., Bauman, M. L., Rosene, D. L., & Blatt, G. J. (2008). Cerebellar Purkinje Cells are Reduced in a Subpopulation of Autistic Brains: A Stereological Experiment Using Calbindin-D28k. The Cerebellum, 7(3), 406–416. https://doi.org/10.1007/s12311-008-0043-yeng
dc.relation.referencesWhitney, E. R., Kemper, T. L., Rosene, D. L., Bauman, M. L., & Blatt, G. J. (2009). Density of cerebellar basket and stellate cells in autism: Evidence for a late developmental loss of Purkinje cells. Journal of Neuroscience Research, 87(10), 2245–2254. https://doi.org/10.1002/jnr.22056eng
dc.relation.referencesWibmer, A., Hricak, H., Gondo, T., Matsumoto, K., Veeraraghavan, H., Fehr, D., Zheng, J., Goldman, D., Moskowitz, C., Fine, S. W., & others. (2015). Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. European Radiology, 25(10), 2840–2850.eng
dc.relation.referencesWoolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., & Smith, S. M. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage, 45(1), S173–S186.eng
dc.relation.referencesYang, X., Liu, C., Wang, Z., & others. (2017). Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Medical Image Analysis, 42, 212–227.eng
dc.relation.referencesYasuhara, A. (2010). Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain and Development, 32(10), 791–798. https://doi.org/10.1016/j.braindev.2010.08.010eng
dc.relation.referencesYe, W., Yao, J., Xue, H., & Li, Y. (2020). Weakly Supervised Lesion Localization With Probabilistic-CAM Pooling. ArXiv Preprint ArXiv:2005.14480.eng
dc.relation.referencesYip, S. S. F., & Aerts, H. J. W. L. (2016). Applications and limitations of radiomics. Physics in Medicine and Biology, 61(13), R150–R166. https://doi.org/10.1088/0031-9155/61/13/r150eng
dc.relation.referencesZhang, B., Chang, K., Ramkissoon, S., Tanguturi, S., Bi, W. L., Reardon, D. A., Ligon, K. L., Alexander, B. M., Wen, P. Y., & Huang, R. Y. (2017). Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-Oncology, 19(1), 109–117.eng
dc.relation.referencesZhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57. https://doi.org/10.1109/42.906424eng
dc.relation.referencesZhong, L., Cho, S., Metaxas, D., Paris, S., & Wang, J. (2013). Handling noise in single image deblurring using directional filters. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 612–619.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.decsProcesamiento de Imagen Asistido por Computadorspa
dc.subject.decsImage Processing, Computer-Assistedeng
dc.subject.decsTrastorno Autísticospa
dc.subject.decsTranstorno Autísticospa
dc.subject.decsArtificial Intelligenceeng
dc.subject.decsInteligencia Artificialspa
dc.subject.proposalRadiómicaspa
dc.subject.proposalCáncer de próstataspa
dc.subject.proposalDominio de la frecuenciaspa
dc.subject.proposalTrastorno del espectro autistaspa
dc.subject.proposalResonancia magnéticaspa
dc.subject.proposalTransformada Curveletspa
dc.subject.proposalMomentos de Zernikespa
dc.subject.proposalTransformada de Fourierspa
dc.subject.proposalRadiomicseng
dc.subject.proposalProstate cancereng
dc.subject.proposalAutism spectrum disordereng
dc.subject.proposalConvolutional neural networkseng
dc.subject.proposalFrequency domaineng
dc.subject.proposalCurvelet transformeng
dc.subject.proposalFourier transformeng
dc.subject.proposalRedes neuronales convolucionalesspa
dc.subject.proposalDeep learningeng
dc.subject.proposalZernike momentseng
dc.titleRadiomics using frequency representations, cases of study: autism spectrum disorder and cancer characterization through MRIeng
dc.title.translatedRadiómica utilizando representaciones frecuenciales, casos de estudio: caracterización de trastorno del espectro autista y cáncer de próstata utilizando MRIspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030638756.2021.pdf
Tamaño:
6.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: