Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)

dc.contributor.advisorGaleano, Carlos Humberto
dc.contributor.authorGonzalez Arango, Luis Miguel
dc.date.accessioned2023-01-26T15:26:42Z
dc.date.available2023-01-26T15:26:42Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractEl presente trabajo describe y evalúa un modelo numérico desarrollado para la simulación del comportamiento termomecánico presente durante el proceso de soldadura de fricción rotativa de control directo (RFWDD). A nivel térmico el modelo considera de forma transitoria en el tiempo los fenómenos de generación de calor por fricción y transferencia de calor sobre las barras que intervienen en el proceso. Adicionalmente, se acopló un modelo mecánico que permite estudiar el comportamiento plástico de la junta al actualizar en el tiempo el esfuerzo de fluencia del material acorde con la evolución del perfil de temperaturas. Además, el modelo mecánico enriquece el modelo de generación de calor y permite considerar el calor generado por deformación. Para validar el modelo construido se simularon tres condiciones de proceso diferentes y se compararon con resultados experimentales reportados en la literatura. Los procesos de validación corresponden a una condición de RFWDD símil de baja deformación, RFWDD símil de alta deformación y RFWDD disímil entre cobre y hierro. (Texto tomado de la fuente)spa
dc.description.abstractThis research describes and evaluates a numerical model developed for the simulation of the thermomechanical behavior present during the Rotary Friction Welding process operate in Direct-Drive (RFWDD). At a thermal level, the model considers the phenomena of heat generation by friction and heat transfer on the bars that involved in the process in a transitory way over time. Additionally, a mechanical model was used to study the plastic behavior of the joint by updating the yield stress of the material over time according to the evolution of the temperature profile Furthermore, the mechanical model enriches the heat generation model and allows considering the heat generated by deformation. To validate the built model, three different process conditions were simulated and compared with experimental results reported in the literature. The validation processes correspond to a condition of RFWDD-similar low strain, RFWDD-similar high strain and RFWDD-dissimilar between copper and iron.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Mecánicaspa
dc.description.methodsLa metodología llevada a cabo fue la siguiente: primero se realizó una identificación de los fenómenos físicos que intervienen en el proceso de soldadura, luego se plantearon las respectivas ecuaciones que gobiernan el comportamiento termomecánico de las piezas a soldar. Posteriormente, se construyó un modelo FEM termomecánico acoplado que permitió describir y relacionar los fenómenos de generación de calor, transferencia de calor y deformación plástica. Este modelo se validó de forma secuencial empezando por una simulación símil de baja deformación donde se evaluaron diferentes estrategias para describir el comportamiento del esfuerzo de fluencia a diferentes temperaturas. Luego se validó el modelo con un caso símil de alta deformación. Posteriormente se realizó un análisis paramétrico que relacionó las variables de proceso de velocidad angular y presión axial, con las características macroscópicas de la junta. Finalmente se validó el modelo con un caso disímil de alta deformación entre cobre y hierro a diferentes condiciones de presión de fricción.spa
dc.description.researchareaModelado matemático de sistemasspa
dc.format.extentxiv, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83141
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesInternational Energy Agency, “World Energy Outlook 2013,” National Energy Information Center, 2013.spa
dc.relation.referencesGrupo de las Naciones Unidas para el Desarrollo (UNDG), Desafíos y estrategias para el Desarrollo Sostenible en América Latina y el Caribe. 2018.spa
dc.relation.referencesONU, “Objetivos de desarrollo sustentable,” ExpoKnews, 2015. [Online]. Available: http://www.expoknews.com/20­ejemplos­de­empresas­que­trabajan­por­los­objetiv os­de­desarrollo­sostenible/.spa
dc.relation.referencesREN21, Renewables 2015-Global status report, vol. 4, no. 3. 2015.spa
dc.relation.referencesD. Baffari, G. Buffa, D. Campanella, L. Fratini, and F. Micari, “Friction based solid state welding techniques for transportation industry applications,” Procedia CIRP, vol. 18, pp. 162–167, 2014, doi: 10.1016/j.procir.2014.06.125.spa
dc.relation.referencesM. M. ATTALLAH and M. Preuss, Welding and Joining of Aerospace Materials - 2 – Inertia friction welding (IFW) for aerospace applications. Woodhead Publishing Limited, 2012.spa
dc.relation.referencesA. W. Society, Welding Handbook, vol. 3. 2007.spa
dc.relation.referencesE. T. Akinlabi, A. Andrews, and S. A. Akinlabi, “Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper", Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 5, pp. 1323–1330, 2014, doi: 10.1016/S1003-6326(14)63195-2.spa
dc.relation.referencesG. Qin, P. Geng, J. Zhou, and Z. Zou, “Modeling of thermo-mechanical coupling in linear friction welding of Ni-based superalloy,” Mater. Des., vol. 172, p. 107766, 2019, doi: 10.1016/j.matdes.2019.107766.spa
dc.relation.referencesM. KIMURA, H. INOUE, M. KUSAKA, K. KAIZU, and A. FUJI, “Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding,” J. Solid Mech. Mater. Eng., vol. 4, no. 3, pp. 401–413, 2010, doi: 10.1299/jmmp.4.401.spa
dc.relation.referencesM. Maalekian, “Friction welding - Critical assessment of literature,” Sci. Technol. Weld. Join., vol. 12, no. 8, pp. 738–759, 2007, doi: 10.1179/174329307X249333.spa
dc.relation.referencesSander, “Power and heating in the friction welding of t h i ck - walled steel pipes,” Weld. J. (Miami, Fla), pp. 53–61, 1959.spa
dc.relation.referencesA. Słuzalec, “Thermal effects in friction welding,” Int. J. Mech. Sci., vol. 32, no. 6, pp. 467–478, 1990, doi: 10.1016/0020-7403(90)90153-A.spa
dc.relation.referencesW. Li and F. Wang, “Modeling of continuous drive friction welding of mild steel,” Mater. Sci. Eng. A, vol. 528, no. 18, pp. 5921–5926, 2011, doi: 10.1016/j.msea.2011.04.001.spa
dc.relation.referencesS. De Ji, J. G. Liu, Y. M. Yue, Z. Lü, and L. Fu, “3D numerical analysis of material flow behavior and flash formation of 45# steel in continuous drive friction welding,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. SUPPL.2, pp. 528–533, 2012, doi: 10.1016/S1003-6326(12)61756-7.spa
dc.relation.referencesM. Asif. M, K. A. Shrikrishana, and P. Sathiya, “Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints,” Eng. Sci. Technol. an Int. J., 2015, doi: 10.1016/j.jestch.2015.05.002.spa
dc.relation.referencesL. Donati, E. Troiani, P. Proli, and L. Tomesani, FEM Analysis and Experimental Validation of Friction Welding Process of 6xxx Alloys for the Prediction of Welding Quality, vol. 2, no. 10. Elsevier Ltd., 2015.spa
dc.relation.referencesK. Fraser, L. I. Kiss, L. St-Georges, and D. Drolet, “Optimization of friction stir weld joint quality using a meshfree fully-coupled thermo-mechanics approach,” Metals (Basel)., vol. 8, no. 2, 2018, doi: 10.3390/met8020101.spa
dc.relation.referencesD. Schmicker, K. Naumenko, and J. Strackeljan, “A robust simulation of Direct Drive Friction Welding with a modified Carreau fluid constitutive model,” Comput. Methods Appl. Mech. Eng., vol. 265, pp. 186–194, 2013, doi: 10.1016/j.cma.2013.06.007.spa
dc.relation.referencesD. Schmicker, K. Naumenko, and J. Strackeljan, “A holistic Approach on the Simulation of Rotary-Friction-Welding,” vol. 27, no. Thaut 2014, pp. 148–150, 2016.spa
dc.relation.referencesW. Liu, F. Wang, X. Yang, and W. Li, “Upset prediction in friction welding using radial basis function neural network,” Adv. Mater. Sci. Eng., vol. 2013, 2013, doi: 10.1155/2013/196382.spa
dc.relation.referencesS. A. A. A. Mousavi and A. R. Kelishami, “Experimental and numerical analysis of the friction welding process for the 4340 steel and mild steel combinations,” Weld. J. (Miami, Fla), vol. 87, no. 7, 2008.spa
dc.relation.referencesJ. Zimmerman, W. Wlosinski, and Z. R. Lindemann, “Thermo-mechanical and diffusion modelling in the process of ceramic-metal friction welding,” J. Mater. Process. Technol., vol. 209, no. 4, pp. 1644–1653, 2009, doi: 10.1016/j.jmatprotec.2008.04.012.spa
dc.relation.referencesJ. Leśniewski and A. Ambroziak, “Modelling the friction welding of titanium and tungsten pseudoalloy,” Arch. Civ. Mech. Eng., vol. 15, no. 1, pp. 142–150, 2015, doi: 10.1016/j.acme.2014.06.008.spa
dc.relation.referencesA. Kurt, I. Uygur, and U. Paylasan, “Effect of friction welding parameters on mechanical and microstructural properties of dissimilar AISI 1010-ASTM B22 joints,” Weld. J., vol. 90, no. 5, pp. 102–106, 2011.spa
dc.relation.referencesM. B. Uday, M. N. A. Fauzi, H. Zuhailawati, and A. B. Ismail, “Advances in friction welding process: A review,” Sci. Technol. Weld. Join., vol. 15, no. 7, pp. 534–558, 2010, doi: 10.1179/136217110X12785889550064.spa
dc.relation.referencesV. T. Gaikwad, M. K. Mishra, V. D. Hiwarkar, and R. K. P. Singh, “Microstructure and mechanical properties of friction welded carbon steel (EN24) and nickel-based superalloy (IN718),” Int. J. Miner. Metall. Mater., vol. 28, no. 1, pp. 111–119, 2021, doi: 10.1007/s12613-020-2008-1.spa
dc.relation.referencesJ. A. James and R. Sudhish, “Study on Effect of Interlayer in Friction Welding for Dissimilar Steels: SS 304 and AISI 1040,” Procedia Technol., vol. 25, pp. 1191–1198, 2016, doi: 10.1016/j.protcy.2016.08.238.spa
dc.relation.referencesE. oualid Bouarroudj, S. Chikh, S. Abdi, and D. Miroud, “Thermal analysis during a rotational friction welding,” Appl. Therm. Eng., vol. 110, pp. 1543–1553, 2017, doi: 10.1016/j.applthermaleng.2016.09.067.spa
dc.relation.referencesL. MTI Welding Technologies, “Direct Drive Friction Welding,” 2019. [Online]. Available: http://www.mtiwelding.co.uk/products/direct-drive.spa
dc.relation.referencesM. Kimura, K. Ohara, M. Kusaka, K. Kaizu, and K. Hayashida, “Effects of tensile strength on friction welding condition and weld faying surface properties of friction welded joints between pure copper and austenitic stainless steel,” J. Adv. Join. Process., vol. 2, no. July, p. 100028, 2020, doi: 10.1016/j.jajp.2020.100028.spa
dc.relation.referencesA. Goedecke and F. A. Creep, Transient Effects in Friction: Fractal Asperity Creep. 2011.spa
dc.relation.referencesV. L. Popov, Contact Mechanics and Friction: Physical Principles and Applications, Segunda Ed. 2017.spa
dc.relation.referencesCOMSOL Multiphysics®, Structural Mechanics Module. Estocolmo, 2018.spa
dc.relation.referencesL. Qinghua, L. Fuguo, L. Miaoquan, W. Qiong, and F. Li, “Finite element simulation of deformation behavior in friction welding of Al-Cu-Mg alloy,” J. Mater. Eng. Perform., vol. 15, no. 6, pp. 627–631, 2006, doi: 10.1361/105994906X150821.spa
dc.relation.referencesA. W. Society, Friction Welding of Metals. 1962.spa
dc.relation.referencesF. F. Wang, W. Y. Li, J. L. Li, and A. Vairis, “Process parameter analysis of inertia friction welding nickel-based superalloy,” Int. J. Adv. Manuf. Technol., vol. 71, no. 9–12, pp. 1909–1918, 2014, doi: 10.1007/s00170-013-5569-6.spa
dc.relation.referencesH. Seli, A. I. M. Ismail, E. Rachman, and Z. A. Ahmad, “Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium,” J. Mater. Process. Technol., vol. 210, no. 9, pp. 1209–1216, 2010, doi: 10.1016/j.jmatprotec.2010.03.007.spa
dc.relation.referencesK. Fraser, “ROBUST AND EFFICIENT MESHFREE SOLID THERMO-MECHANICS SIMULATION OF FRICTION STIR WELDING,” Université du Québec à Chicoutimi (UQAC), 2017.spa
dc.relation.referencesX. Yang et al., “Finite element modeling of the linear friction welding of GH4169 superalloy,” Mater. Des., vol. 87, pp. 215–230, 2015, doi: 10.1016/j.matdes.2015.08.036.spa
dc.relation.referencesG. Ravichandran, A. J. Rosakis, J. Hodowany, and P. Rosakis, “ON THE CONVERSION OF PLASTIC WORK INTO HEAT DURING HIGH-STRAIN-RATE DEFORMATION,” 2001.spa
dc.relation.referencesCOMSOL Multiphysics, “Heat Transfer Module,” Manual, pp. 1–222, 2015.spa
dc.relation.referencesA. Foley, “Thermal contact resistance simulation.” [Online]. Available: https://www.comsol.com/blogs/thermal-contact-resistance-simulation/.spa
dc.relation.referencesX. Oliver and C. Agelet De Saracíbar, Mecánica de medios continuos para ingenieros. 2010.spa
dc.relation.referencesJ. M. Gere and B. J. Goodno, Mecánica de materiales, 7ma ed. .spa
dc.relation.referencesJ. F. Shakelford, Introducción a la ciencia de materiales para ingenieros, 4ta ed. .spa
dc.relation.referencesG. E. Dieter, “Mechanical metallurgy.,” Mechanical metallurgy. 1988, doi: 10.5962/bhl.title.35895.spa
dc.relation.referencesP. Prat, Ecuaciones Constitutivas, ELASTICIDAD y PLASTICIDAD. Barcelona: Universitat Politécnica de Catalunya, 2006.spa
dc.relation.referencesR. Hill, “A VARIATIONAL PRINCIPLE OF MAXIMUM PLASTIC WORK IN CLASSICAL PLASTICITY,” Q. J. Mech. Appl. Math., vol. 1, no. October, pp. 18–28, 1947.spa
dc.relation.referencesB. Zhu, The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering, 1st ed. 2018.spa
dc.relation.referencesL. Yang, “Modelling of the Inertia Welding of Inconel 718,” University of Birmingham, United Kingdom, 2010.spa
dc.relation.referencesComsol, “Elastoplastic Material Models.” [Online]. Available: https://doc.comsol.com/5.5/doc/com.comsol.help.sme/sme_ug_theory.06.29.html.spa
dc.relation.referencesG. R. Johnson and W. H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985, doi: 10.1016/0013-7944(85)90052-9.spa
dc.relation.referencesA. Iturbe et al., “Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment,” Mater. Sci. Eng. A, vol. 682, pp. 441–453, 2017, doi: 10.1016/j.msea.2016.11.054.spa
dc.relation.referencesA. Iturbe et al., “Corrigendum to ‘Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment,’” Mater. Sci. Eng. A, vol. 756, no. April, pp. 562–563, 2019, doi: 10.1016/j.msea.2019.02.026.spa
dc.relation.referencesS. Rolshoven and M. Jirasek, Introduction to the mechanics of a continuous medium. 1969.spa
dc.relation.referencesC. Garcia, “Mecánica de medios continuos-15904 Esfuerzo,” 2010.spa
dc.relation.referencesW. B. Castello, “Análisis numérico de sólidos bidimensionales en grandes deformaciones elasto-viscoplásticas con acoplamiento termomecánico,” 2012.spa
dc.relation.referencesJ. Aboudi, “The effect of evolving damage on the finite strain response of inelastic and viscoelastic composites.” 2009.spa
dc.relation.referencesWANG KK and NAGAPPAN P, “Transient Temperature Distribution in Inertia Welding of Steels,” Weld J, vol. 49, no. 9, pp. 419–426, 1970.spa
dc.relation.referencesE. Bouarroudj, “Thermal analysis during a rotational friction welding,” Appl. Therm. Eng., vol. 110, no. 7, pp. 2543–2553, 2017, doi: 10.1016/S1359-4311(02)00018-2spa
dc.relation.referencesN. T.C. and W. D.C., “A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 37, no. 2, pp. 275–292, 2006.spa
dc.relation.referencesV. Balasubramanian et al., “New friction law for the modelling of continuous drive friction welding: Applications to 1045 steel welds,” Mater. Manuf. Process., vol. 14, no. 6, pp. 845–860, 1999, doi: 10.1080/10426919908914877.spa
dc.relation.referencesM. Maalekian, E. Kozeschnik, H. P. Brantner, and H. Cerjak, “Comparative analysis of heat generation in friction welding of steel bars,” Acta Mater., vol. 56, no. 12, pp. 2843–2855, 2008, doi: 10.1016/j.actamat.2008.02.016.spa
dc.relation.referencesW. Li, S. Shi, F. Wang, Z. Zhang, T. Ma, and J. Li, “Numerical simulation of friction welding processes based on ABAQUS environment,” J. Eng. Sci. Technol. Rev., vol. 5, no. 3, pp. 10–19, 2012.spa
dc.relation.referencesA. Can, M. Sahin, and M. Kucuk, “Modelling of Friction Welding,” Unitech 10, pp. 135–142, 2010.spa
dc.relation.referencesA. Can, M. Sahin, and M. Kucuk, “Thermically evaluation and modelling of friction welding,” Strojarstvo, vol. 51, no. 1, pp. 5–13, 2009.spa
dc.relation.referencesH. Seli, M. Awang, A. I. M. Ismail, E. Rachman, and Z. A. Ahmad, “Evaluation of properties and FEM model of the friction welded mild steel-Al6061-alumina,” Mater. Res., vol. 16, no. 2, pp. 453–467, 2013, doi: 10.1590/S1516-14392012005000178.spa
dc.relation.referencesA. B. Dawood, S. I. Butt, G. Hussain, M. A. Siddiqui, A. Maqsood, and F. Zhang, “Thermal model of rotary friction welding for similar and dissimilar metals,” Metals (Basel)., vol. 7, no. 6, 2017, doi: 10.3390/met7060224.spa
dc.relation.referencesA. Vairis, G. Papazafeiropoulos, and A. M. Tsainis, “A comparison between friction stir welding, linear friction welding and rotary friction welding,” Adv. Manuf., vol. 4, no. 4, pp. 296–304, 2016, doi: 10.1007/s40436-016-0163-4.spa
dc.relation.referencesR. P. Turner, D. Howe, B. Thota, R. M. Ward, H. C. Basoalto, and J. W. Brooks, “Calculating the energy required to undergo the conditioning phase of a titanium alloy inertia friction weld,” J. Manuf. Process., vol. 24, pp. 186–194, 2016, doi: 10.1016/j.jmapro.2016.09.008.spa
dc.relation.referencesC. Bennett, “Finite element modelling of the inertia friction welding of a CrMoV alloy steel including the effects of solid-state phase transformations,” J. Manuf. Process., vol. 18, pp. 84–91, 2015, doi: 10.1016/j.jmapro.2015.01.003.spa
dc.relation.referencesC. J. Bennett, T. H. Hyde, and E. J. Williams, “Modelling and simulation of the inertia friction welding of shafts,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 221, no. 4, pp. 275–284, 2007, doi: 10.1243/14644207JMDA154.spa
dc.relation.referencesA. Moal and E. Massoni, “Finite element simulation of the inertia welding of two similar parts,” Eng. Comput., vol. 12, p. 6, 1995.spa
dc.relation.referencesL. D’Alvise, E. Massoni, and S. J. Walloe, “Finite element modelling of the inertia friction welding process between dissimilar materials,” J. Mater. Process. Technol., vol. 125–126, pp. 387–391, 2002, doi: 10.1016/S0924-0136(02)00349-7.spa
dc.relation.referencesP. Geng, G. Qin, J. Zhou, and Z. Zou, “Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process,” J. Manuf. Process., vol. 32, pp. 469–481, 2018, doi: 10.1016/j.jmapro.2018.03.017.spa
dc.relation.referencesM. Asif. M, K. A. Shrikrishana, and P. Sathiya, “Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints,” Eng. Sci. Technol. an Int. J., vol. 18, no. 4, pp. 704–712, 2015, doi: 10.1016/j.jestch.2015.05.002.spa
dc.relation.referencesQ. Z. Zhang, L. W. Zhang, W. W. Liu, X. G. Zhang, W. H. Zhu, and S. Qu, “3D rigid viscoplastic FE modelling of continuous drive friction welding process,” Sci. Technol. Weld. Join., vol. 11, no. 6, pp. 737–743, 2006, doi: 10.1179/174329306X153222.spa
dc.relation.referencesP. Geng, G. Qin, L. Chen, J. Zhou, and Z. Zou, “Simulation of plastic flow driven by periodically alternating pressure and related deformation mechanism in linear friction welding,” Mater. Des., vol. 178, p. 107863, 2019, doi: 10.1016/j.matdes.2019.107863.spa
dc.relation.referencesE. P. Alves, F. P. Neto, and C. Y. An, “Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process,” J. Aerosp. Technol. Manag., vol. 2, no. 3, pp. 301–306, 2010, doi: 10.5028/jatm.2010.02037110.spa
dc.relation.referencesCOMSOL Multiphysics, “AutoRemesh.” [Online]. Available: https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_api_solver.42.18.html#4838671.spa
dc.relation.referencesX. Nan et al., “Modeling of rotary friction welding process based on maximum entropy production principle,” J. Manuf. Process., vol. 37, no. April 2018, pp. 21–27, 2019, doi: 10.1016/j.jmapro.2018.11.016.spa
dc.relation.referencesL. W. Zhang et al., “The coupled fem analysis of the transient temperature field during inertia friction welding of GH4169 alloy,” Acta Metall. Sin. (English Lett., vol. 20, no. 4, pp. 301–306, 2007, doi: 10.1016/S1006-7191(07)60043-X.spa
dc.relation.referencesS. Tabaie, “Linear Friction Welding of AD730 TM Ni-Based Superalloy to Additively Manufactured Inconel 718 by,” 2021.spa
dc.relation.referencesK. Yuan, W. Guo, P. Li, Y. Zhang, X. Li, and X. Lin, “Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling,” Mech. Mater., vol. 135, no. April, pp. 13–25, 2019, doi: 10.1016/j.mechmat.2019.04.024.spa
dc.relation.referencesM. S. Lewandowski and R. A. Overfelt, “High temperature deformation behavior of solid and semi-solid alloy 718,” Acta Mater., vol. 47, no. 18, pp. 4695–4710, 1999, doi: 10.1016/S1359-6454(99)00252-9.spa
dc.relation.referencesR. P. Turner, B. Perumal, Y. Lu, R. M. Ward, H. C. Basoalto, and J. W. Brooks, “Modeling of the Heat-Affected and Thermomechanically Affected Zones in a Ti-6Al-4V Inertia Friction Weld,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 50, no. 2, pp. 1000–1011, 2019, doi: 10.1007/s11663-018-1489-z.spa
dc.relation.referencesS. I. Okeke, N. Harrison, and M. Tong, “Thermomechanical modelling for the linear friction welding process of Ni-based superalloy and verification,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 234, no. 5, pp. 796–815, 2020, doi: 10.1177/1464420719900780.spa
dc.relation.referencesC. Slama, “Aging of the Inconel 718 alloy between 500 and 750 ±C,” J. Mater. Res., vol. 235, no. 4784, pp. 2298–2316, 1997, doi: 10.1126/science.235.4784.9.spa
dc.relation.referencesY. Wei and F. Sun, “Microstructures and Mechanical Properties of Al/Fe and Cu/Fe Joints by Continuous Drive Friction Welding,” Adv. Mater. Sci. Eng., vol. 2018, 2018, doi: 10.1155/2018/2809356.spa
dc.relation.referencesS. Jimenez and C. Rativa, “Determinación experimental del coeficiente de transferencia de calor por convección natural en la superficie de un esfera de cobre,” pp. 19–30, 2014.spa
dc.relation.referencesJ. Rojas, “DETERMINACIÓN EXPERIMENTAL DEL COEFICIENTE DE TRANSFERENCIA DE CALOR CONVECTIVO EN LA SUPERFICIE DE UNA ESFERA DE COBRE,” Rev. Electrónica, vol. 11, no. 11, pp. 33–43, 2009.spa
dc.relation.referencesR. Bhadra, P. Pankaj, and P. Biswas, “Thermo ‑ Mechanical Analysis of ­ CO 2 Laser Butt Welding on AISI 304 Steel Thin Plates,” Int. J. Steel Struct., no. 2010, 2018, doi: 10.1007/s13296-018-0085-z.spa
dc.relation.referencesS. Works, “Solidworks Help 2011,” 2011. [Online]. Available: http://help.solidworks.com/2011/english/solidworks/cworks/legacyhelp/simulation/analysisbackground/thermalanalysis/thermal_contact_resistance.htm.spa
dc.relation.referencesS. H. Huang, S. X. Chai, X. S. Xia, Q. Chen, and D. Y. Shu, “Compression Deformation Behavior and Processing Map of Pure Copper,” Strength Mater., vol. 48, no. 1, pp. 98–106, 2016, doi: 10.1007/s11223-016-9743-6.spa
dc.relation.referencesJ. Y. Yang and W. J. Kim, “Examination of high-temperature mechanisms and behavior under compression and processing maps of pure copper,” J. Mater. Res. Technol., vol. 9, no. 1, pp. 960–968, 2020, doi: 10.1016/j.jmrt.2019.11.036.spa
dc.relation.referencesB. Banerjee and N. Zealand, “An evaluation of plastic flow stress models for the simulation of high-temperature and high-strain-rate deformation of metals,” no. February, 2014, doi: 10.13140/RG.2.1.4289.9285.spa
dc.relation.referencesJ. Croteau, E. Cantergiani, N. Jacques, A. E. M. Malki, and G. Mazars, “Mechanical characterization of OFE-Cu at low and high strain rates for SRF cavity fabrication by electro-hydraulic forming Résumé : Abstract :,” pp. 1–12, 2019.spa
dc.relation.referencesI. Iliuc, “Tribology of thin layer,” 1980, pp. 81–103.spa
dc.relation.referencesJ. Jellison, R. Predmore, and C. L. Staugaitis, “Sliding friction of copper alloys in vacuum,” ASLE Trans., vol. 12, no. 2, pp. 171–182, 1968, doi: 10.1080/05698196908972259.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primariosspa
dc.subject.lembMETODO DE ELEMENTOS FINITOSspa
dc.subject.lembFinite element methodeng
dc.subject.lembSOLDADURAspa
dc.subject.lembWeldingeng
dc.subject.proposalSoldadura por fricción rotacionalspa
dc.subject.proposalFricciónspa
dc.subject.proposalDeformación plásticaspa
dc.subject.proposalElementos finitosspa
dc.subject.proposalRotational friction weldingeng
dc.subject.proposalFrictioneng
dc.subject.proposalPlastic deformationeng
dc.subject.proposalFinite elementseng
dc.titleConstrucción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)spa
dc.title.translatedConstruction of a finite element model to study the thermomechanical behavior of a joint during the Rotary Friction Welding process by Direct Drive (RFWDD)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015423661.2022.pdf
Tamaño:
2.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: