Evaluación de la inclusión de Limosilactobacillus reuteri microencapsulado en panela granulada con propiedades probióticas

dc.contributor.advisorSepúlveda Valencia, José Uriel
dc.contributor.advisorJurado Gámez, Henry
dc.contributor.authorCeron Cordoba, Jhon Fredy
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000187181
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=PZEYBQsAAAAJ&hl=es
dc.contributor.orcidCeron Cordoba, Jhon Fredy [0009-0000-5933-1574]
dc.contributor.orcidSepúlveda Valencia, José Uriel [0000-0001-5660-4514]
dc.contributor.orcidJurado Gámez, Henry [0000-0003-2118-7997]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Jhon-Ceron-Cordoba
dc.contributor.researchgroupGrupo de Investigación en Ciencias y Tecnología de Alimentos -Gicta-
dc.contributor.researchgroupProcesos Biotecnológicos Aplicados a la Producción Animal, Forrajes y apicultura - PROBIOTEC-FORAPIS
dc.coverage.countryColombia
dc.date.accessioned2025-08-26T20:02:41Z
dc.date.available2025-08-26T20:02:41Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractEl secado por aspersión es una estrategia que permite la preservación y conducción de compuestos bioactivos mediante la formación de una matriz protectora, con alta viabilidad de población bacteriana y de costo accesible. Por otro lado, la producción panelera forma parte de la economía campesina familiar Nariñense y la transformación contribuye en los ingresos monetarios. En el estudio, se evaluó la inclusión de Limosilactobacillus reuteri microencapsulado en panela granulada en el tiempo. Para conseguirlo, se optimizó el secado por aspersión, luego, se caracterizó por: Microscopia Electrónica de Barrido (MEB), eficiencia de microencapsulación, estudio de supervivencia y estabilidad (64 días). Se determinó la estabilidad del probiótico microencapsulado bajo condiciones gastrointestinales in-vitro. Finalmente, se evaluó la viabilidad en almacenamiento (45 días) en la inclusión de una formulación de panela granulada con L. reuteri microencapsulado. Como resultado, los parámetros para el L. reuteri microencapsulado se establecieron a 130 °C de temperatura de entrada, 10% de maltodextrina y 10 % de inulina. En la caracterización del material encapsulado se observaron partículas esféricas con superficie lisa de 6.085±0.621 μm, EE 96.122±0.245 %, viabilidad 8.781±0.178 Log UFC/g, humedad 3.120±0.057 y aW 0.255±0.003. La viabilidad de L. reuteri microencapsulado bajo condiciones gastrointestinales fue mayor a 8.118±0.434 Log UFC/g. Finalmente, se desarrolló una formulación de panela granulada con la inclusión de L. reuteri microencapsulado con viabilidad de 10.658±0.867 Log UFC/g, humedad (2.088±0.093 - 5.032±0.065) y aW (0.394±0.002 - 0.601±0.002). Estos resultados, indican que la formulación es viable en términos de viabilidad, aW, humedad, composición nutricional y aceptación sensorial. (Tomado de la fuente)spa
dc.description.abstractSpray drying constitutes an effective approach for preserving and delivering bioactive compounds by forming a protective matrix that ensures high bacterial viability at a relatively low cost. Moreover, panela production is integral to the family-scale peasant economy of Nariño, with value-added processing contributing to household incomes. This study investigated the temporal inclusion of microencapsulated Limosilactobacillus reuteri in granulated panela. To achieve this, the spray‐drying process was optimized, and the resulting powder was characterized by Scanning Electron Microscopy (SEM), encapsulation efficiency (EE), survival and stability assays over 64 days, and in-vitro gastrointestinal simulation. Finally, probiotic viability was assessed during 45 days of storage in a formulated granulated panela containing microencapsulated L. reuteri. Optimal microencapsulation conditions were established at a 130 °C inlet temperature with 10% maltodextrin and 10% inulin. SEM revealed spherical, smooth-surfaced microcapsules averaging 6.085±0.621 μm in diameter; EE was 96.122±0.245%, viability reached 8.781±0.178 Log CFU/g, moisture content was 3.120±0.057%, and water activity (aW) was 0.255±0.003. Under simulated gastrointestinal conditions, microencapsulated L. reuteri viability exceeded 8.118±0.434 Log CFU/g. The granulated panela formulation maintained a viability of 10.658±0.867 Log CFU/g, moisture between 2.088±0.093% and 5.032±0.065%, and aW between 0.394±0.002 and 0.601 ± 0.002. These results demonstrate that the formulated product is viable with respect to probiotic viability, aW, moisture content, nutritional composition, and sensory acceptance.eng
dc.description.curricularareaAgro Ingeniería Y Alimentos.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentos
dc.description.researchareaDesarrollo de Productos Alimenticios
dc.format.extent174 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88474
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.relation.indexedLaReferencia
dc.relation.referencesAbd-Talib, N., Hamidah Mohd-Setapar, S., Kamal Khamis, A., Nian-Yian, L., & Aziz, R. (2013). Survival of encapsulated probiotics through spray drying and non-refrigerated storage for animal feeds application. Agricultural Sciences, 04(05), 78–83. https://doi.org/10.4236/as.2013.45B015
dc.relation.referencesAhmad, W., Nasir, A., Sattar, F., Ashfaq, I., Chen, M. H., Hayat, A., Rehman, M. ur, Zhao, S., Khaliq, S., Ghauri, M. A., & Anwar, M. A. (2022). Production of bimodal molecular weight levan by a Lactobacillus reuteri isolate from fish gut. Folia Microbiologica, 67(1), 21–31. https://doi.org/10.1007/S12223-021-00913-W/METRICS
dc.relation.referencesAkbarbaglu, Z., Peighambardoust, S. H., Sarabandi, K., & Jafari, S. M. (2021). Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. In Food Chemistry (Vol. 359). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2021.129965
dc.relation.referencesAlarcón, Á. L., Orjuela, A., Narváez, P. C., & Camacho, E. C. (2020). Thermal and Rheological Properties of Juices and Syrups during Non-centrifugal Sugar Cane (Jaggery) Production. Food and Bioproducts Processing, 121, 76–90. https://doi.org/10.1016/j.fbp.2020.01.016
dc.relation.referencesAlgaithi, M., Mudgil, P., Hamdi, M., Redha, A. A., Ramachandran, T., Hamed, F., & Maqsood, S. (2022). Lactobacillus reuteri-fortified camel milk infant formula: Effects of encapsulation, in vitro digestion, and storage conditions on probiotic cell viability and physicochemical characteristics of infant formula. J Dairy Sci, 105(11), 8621–8637. https://doi.org/10.3168/jds.2022-22008
dc.relation.referencesAnandharamakrishnan, C. ., & Ishwarya, S. Padma. (2015). Spray drying techniques for food ingredient encapsulation. Wiley-Blackwell, IFT Press
dc.relation.referencesAngnunavuri, P. N., Attiogbe, F., & Mensah, B. (2022). Effect of storage on the levels of phthalates in high-density polyethylene (HDPE) film-packaged drinking water. Science of The Total Environment, 845, 157347. https://doi.org/10.1016/j.scitotenv.2022.157347
dc.relation.referencesAOAC. (1990). OFFICIAL METHODS OF ANALYSIS (Fifteenth).
dc.relation.referencesAponte, D. J. (2020). Elaboración y evaluación sensorial de un yogur probiotico tipo batido, endulcorado con panela granulada orgánica y aromatizado con concentrado de café orgánico. Universidad Catolica sedes Sapientiae.
dc.relation.referencesArenales, I. M. (2019). Control de pH interno de microcápsulas para la proteccion de probioticos ante condiciones gastrointestinales simuladas. Universidad Autónoma de Chapingo
dc.relation.referencesArepally, D., Sudharshan Reddy, R., Coorey, R., & Goswami, T. K. (2023). Modelling inactivation kinetics of free and encapsulated probiotic cells in millet biscuit under different baking conditions. Food Res Int, 174, 113573. https://doi.org/10.1016/j.foodres.2023.113573
dc.relation.referencesAsfaq, & Chand, K. (2020). Effect of Moisture Absorber and High-Density Polyethylene Bags on Shelf Life of Edible Coated Jaggery Cubes During Storage. Sugar Tech, 22(6), 1130–1137. https://doi.org/10.1007/s12355-020-00849-4
dc.relation.referencesAsfaq, Chand, K., Nasir, G., Hussain, A., Bisht, B., upadhyay, S., Ahmad, S., & Kumar, S. (2023). Numerical optimization of process parameters and quality stability of active edible coated jaggery cubes during storage. Journal of Agriculture and Food Research, 14(June). https://doi.org/10.1016/j.jafr.2023.100790
dc.relation.referencesAydın, A., Yüceer, M., Ulugergerli, E., & Caner, C. (2024). Improving food security as disaster relief using intermediate moisture foods and active packaging technologies. Applied Food Research, 4(1). https://doi.org/10.1016/j.afres.2023.100378
dc.relation.referencesBadin, R., Gaiani, C., Desobry, S., Prakash, S., Bhandari, B., & Burgain, J. (2023). Food Hydrocolloids Dynamic investigation of maltodextrins surface properties by environmental atomic force microscopy. 145(July). https://doi.org/10.1016/j.foodhyd.2023.109081
dc.relation.referencesBarajas-Álvarez, P., González-Ávila, M., & Espinosa-Andrews, H. (2022). Microencapsulation of Lactobacillus rhamnosus HN001 by spray drying and its evaluation under gastrointestinal and storage conditions. LWT - Food Science and Technology, 153, 112485. https://doi.org/10.1016/j.lwt.2021.112485
dc.relation.referencesBarbosa-Cánovas, G. V, Board, A., Hartel, R. W., Peleg, M., Rahman, S., University, Q., & Rao, O. M. A. (2021). Food Powders Properties and Characterization (E. Ermiş, Ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-48908-3
dc.relation.referencesBarrera, C., Betoret, N., & Seguí, L. (2024). Potential of vacuum impregnation and osmotic dehydration techniques in producing jaggery-fortified apple snacks. Sustainable Food Technology, 2(4), 1041–1051. https://doi.org/10.1039/d3fb00255a
dc.relation.referencesBehboudi-jobbehdar, S., Soukoulis, C., Yonekura, L., Fisk, I., Soukoulis, C., Yonekura, L., Fisk, I., Jobbehdar, S. B., Yonekura, L., Fisk, I., Behboudi-jobbehdar, S., Soukoulis, C., Yonekura, L., & Fisk, I. (2013). Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated L . acidophilus NCIMB 701748 Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated. 3937. https://doi.org/10.1080/07373937.2013.788509
dc.relation.referencesBello, D., Carrera, E., & Díaz, Y. (2006). Determinación de azúcares reductores totales en jugos mezclados de caña de azúcar utilizando el método del ácido 3,5 dinitrosalicílico. Sobre Los Derivados de La Caña de Azúcar, 2, 45–50. https://doi.org/https://www.redalyc.org/articulo.oa?id=223120664006
dc.relation.referencesBeltrán Martínez, C. (2020a). EVALUACIÓN DE TÉCNICAS PARA GESTIÓN DE LOS RESIDUOS DE LA PRODUCCIÓN PANELERA (CACHAZA) EN LA VEREDA NACEDEROS MUNICIPIO DE QUEBRADANEGRA-CUNDINAMARCA. www.ucundinamarca.edu.co
dc.relation.referencesBhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of food powders (B. Bhandari, N. Bansal, M. Zhang, & P. Schuck, Eds.; 1st ed.). Woodhead Publishing. www.woodheadpublishing.com
dc.relation.referencesBhola, J., & Bhadekar, R. (2024). Prebiotic effect of daily dietary polyphenols and oligosaccharides on lactobacillus species. Bioactive Carbohydrates and Dietary Fibre, 31, 100407. https://doi.org/10.1016/j.bcdf.2024.100407
dc.relation.referencesBian, L., Molan, A.-L., Maddox, I., & Shu, Q. (2011). Antimicrobial activity of Lactobacillus reuteri DPC16 supernatants against selected food borne pathogens. World Journal of Microbiology and Biotechnology, 27(4), 991–998. https://doi.org/10.1007/s11274-010-0543-z
dc.relation.referencesBilodeau, M., Bouin, M., & Ghia, J.-E. (2022). The Digestive System: From Basic Sciences to Clinical Practice. In P. Poitras & M. Bouin (Eds.), The Digestive System: from Basic Sciences to Clinical Practice (0th ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-98381-9
dc.relation.referencesBolaños-Cardona, L. C., Briñez-Javela, I. A., & Ramírez-Navas, J. S. (2018). Evaluación termodinámica de variables críticas en la Estabilidad de la panela de caña de azúcar. Revista Facultad de Ciencias Básicas, 14(2), 100–110. https://doi.org/10.18359/rfcb.3167
dc.relation.referencesBrodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991–1014. https://doi.org/10.1038/s41596-018-0119-1
dc.relation.referencesCai, Y., Puangpen, S., Premsuda, S., & Benno, Y. (1999). Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. The Journal of General and Applied Microbiology, 45(4), 177–184. https://doi.org/10.2323/JGAM.45.177
dc.relation.referencesCano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003
dc.relation.referencesCeballos, A. M., Giraldo, G. I., & Orrego, C. E. (2012). Effect of freezing rate on quality parameters of freeze dried soursop fruit pulp. J Food Eng, 111(2), 360–365. https://doi.org/10.1016/J.JFOODENG.2012.02.010
dc.relation.referencesChand, K., Verma, A. K., Kumar, A., & Shahi, N. C. (2014). Effect of Edible Coating on Quality Parameters of Jaggery During Storage. Sugar Tech, 16(1), 80–85. https://doi.org/10.1007/s12355-013-0244-7
dc.relation.referencesCHARM SCIENCES INC. (2021). Charm ® Peel Plate ® Microbial Tests Family Brochure "Charm Peel Plate Microbial. https://www.charm.com/wp-content/uploads/2022/09/MRK-1052_email.pdf
dc.relation.referencesChen, G., & Chen, J. (2013). A novel cell modification method used in biotransformation of glycerol to 3-HPA by Lactobacillus reuteri. Applied Microbiology and Biotechnology, 97(10), 4325–4332. https://doi.org/10.1007/s00253-013-4723-2
dc.relation.referencesCiville, G. V., & Carr, B. T. (2015). Sensory Evaluation Techniques. CRC Press. https://doi.org/10.1201/b19493
dc.relation.referencesCrueger, W., & Crueger, A. (1993). Industrial microbiology manual. Acribia.
dc.relation.referencesDahl, T. A., Midden, W. R., & Hartman, P. E. (1989). Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. Journal of Bacteriology, 171(4), 2188–2194. https://doi.org/10.1128/jb.171.4.2188-2194.1989
dc.relation.referencesDelgado, P., & Bañón, S. (2018). Effects of replacing starch by inulin on the physicochemical, texture and sensory characteristics of gummy jellies. CyTA - Journal of Food, 16(1), 1–10. https://doi.org/10.1080/19476337.2017.1327462
dc.relation.referencesDivyashree, S., Ramu, R., & Sreenivasa, M. Y. (2024). Evaluation of new candidate probiotic lactobacillus strains isolated from a traditional fermented food- multigrain-millet dosa batter. Food Biosci, 57(December 2023), 103450. https://doi.org/10.1016/j.fbio.2023.103450
dc.relation.referencesEl-Enshasy, H. A., & Yang, S.-T. (2021). Probiotics, the Natural Microbiota in Living Organisms. In Probiotics, the Natural Microbiota in Living Organisms (1st ed.). CRC Press. https://doi.org/10.1201/9781351027540
dc.relation.referencesEssa, M. M., Bishir, M., Bhat, A., Saravana, C., Al-Balushi, B., Hamdan, H., Govindarajan, N., Freidland, R., & Walid Qoronfleh, M. (2023a). Functional foods and their impact on health. Journal of Food Science and Technology, 60(3). https://doi.org/10.1007/s13197-021-05193-3
dc.relation.referencesFAO & OMS. (2018). DOCUMENTO DE DEBATE SOBRE LAS DIRECTRICES ARMONIZADAS SOBRE EL USO DE PROBIÓTICOS EN ALIMENTOS Y COMPLEMENTOS ALIMENTICIOS. In Comisión del Codex Alimentarius. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/ar/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-720-40%252FWD%252Fnf40_12s.pdf
dc.relation.referencesFEDEPANELA. (2022, May 31). Estas son las marcas locales que le están dando una nueva vida a la tradicional panela. https://fedepanela.org.co/gremio/estas-son-las-marcas-locales-que-le-estan-dando-una-nueva-vida-a-la-tradicional-panela/
dc.relation.referencesFennema, O., Damodaran, S., & Parkin, K. (2017). Fennema´s Food Chemistry (Fifth). Taylor & Francis Group. https://lccn.loc.gov/2016027062
dc.relation.referencesFloch, M., Ringel, Y., & Walker, A. (2017). The Microbiota in Gastrointestinal Pathophysiology (1st ed.). Elsevier.
dc.relation.referencesFredes, C., Becerra, C., Parada, J., & Robert, P. (2018). The Microencapsulation of Maqui (Aristotelia chilensis (Mol.) Stuntz) Juice by Spray-Drying and Freeze-Drying Produces Powders with Similar Anthocyanin Stability and Bioaccessibility. Molecules, 23(5), 1227. https://doi.org/10.3390/molecules23051227
dc.relation.referencesFreire, T. T., Silva, A. L. T. e, Ferreira, B. K. O., & Santos, T. M. dos. (2021). Lactic acid bacteria its characteristics and importance: review. Research, Society and Development, 10(11), e513101119964–e513101119964. https://doi.org/10.33448/RSD-V10I11.19964
dc.relation.referencesFreudig, B., Hogekamp, S., & Schubert, H. (1999). Dispersion of powders in liquids in a stirred vessel. Chemical Engineering & Processing: Process Intensification, 4–6(38), 525–532. https://www.infona.pl//resource/bwmeta1.element.elsevier-33e81bfd-56c5-3670-897d-8ebf9cea4cb8
dc.relation.referencesFritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res Int, 45(1), 306–312. https://doi.org/10.1016/J.FOODRES.2011.09.020
dc.relation.referencesGharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. In Food Research International (Vol. 40, Issue 9, pp. 1107–1121). https://doi.org/10.1016/j.foodres.2007.07.004
dc.relation.referencesGibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
dc.relation.referencesGichau, A. W., Okoth, J. K., & Makokha, A. (2020). Moisture sorption isotherm and shelf life prediction of complementary food based on amaranth–sorghum grains. Journal of Food Science and Technology, 57(3), 962–970. https://doi.org/10.1007/s13197-019-04129-2
dc.relation.referencesGojiya, D., Gohil, V., Dabhi, M., & Dhamsaniya, N. (2024). Storage stability of jaggery based sesame spread: A comprehensive study. Journal of Stored Products Research, 107. https://doi.org/10.1016/j.jspr.2024.102350
dc.relation.referencesGonzales-Cuello, R., Perez-Mendoza, J., & Morón-Alcazar, L. (2015). Efecto de la Microencapsulación sobre la Viabilidad de Lactobacillus delbrueckii sometido a Jugos Gástricos Simulados. Información Tecnológica, 26(5), 11–16. https://doi.org/10.4067/S0718-0764201500050000
dc.relation.referencesGonzález, E., Gómez-Caravaca, A. M., Giménez, B., Cebrián, R., Maqueda, M., Parada, J., Martínez-Férez, A., Segura-Carretero, A., & Robert, P. (2020). Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chem, 310, 125976. https://doi.org/10.1016/J.FOODCHEM.2019.125976
dc.relation.referencesGoranov, B., Denkova-Kostova, R., Denkova, Z., & Kostov, G. (2023). Growth kinetics of probiotic lactobacilli strains cultivated in a laboratory bioreactor with stirring. BIO Web of Conferences, 58, 3–7. https://doi.org/10.1051/bioconf/20235802003
dc.relation.referencesGuarner, F., Ellen Sanders, M., Eliakim, R., Fedorak, R., Gangl, A., Garisch, J., Kaufmann, P., Karakan, T., Khan, A. G., Kim, N., Andrés De Paula, J., Ramakrishna, B., Shanahan, F., Szajewska, H., Thomson, A., & Le Mair, A. (2017). Probióticos y prebióticos. In Guías Mundiales de la Organización Mundial de Gastroenterología Probióticos y prebióticos
dc.relation.referencesGuerrero, M., Guzmán S, S., Yandar B, N., & Pazos M, A. (2002). Efecto inhibitorio de Lactobacillus Acidophilus SOBRE EL ENTEROPATOGENO Vibrio Cholerae 01 OGAWA, in vitro. Universidad y Salud, 1(3), 8–14. https://revistas.udenar.edu.co/index.php/usalud/article/view/314/pdf
dc.relation.referencesGupta, E., Mishra, P., Mishra, N., Singh, P., & Sheikh, A. (2023). Topic: Utilization of fruit peel for the development of functional fruit peel bar. Food Chemistry Adv, 2(June 2022), 0–5. https://doi.org/10.1016/j.focha.2023.100310
dc.relation.referencesGutiérrez, L. F., Arias, S., Garzón, D., López Velasco, D. M., & Osorio Alturo, A. (2014). Transición vítrea en alimentos: sistemas binarios agua-carbohidratos. Revista Vector, 9, 21–28. http://vector.ucaldas.edu.co/downloads/Vector9_4.pdf
dc.relation.referencesHadinia, N., Edalatian Dovom, M. R., & Yavarmanesh, M. (2022). The effect of fermentation conditions (temperature, salt concentration, and pH) with lactobacillus strains for producing Short Chain Fatty Acids. LWT - Food Science and Technology, 165(June), 113709. https://doi.org/10.1016/j.lwt.2022.113709
dc.relation.referencesHasler, C. M., & Brown, A. C. (2009). Position of the American Dietetic Association: functional foods. Journal of the American Dietetic Association, 109(4), 735–746. https://doi.org/10.1016/j.jada.2009.02.023
dc.relation.referencesHutkins, R. (2019). Microbiology and Technology of Fermented Food (Wiley Blac, Vol. 2). John Wiley & Sons, Inc
dc.relation.referencesICONTEC. (2009). Productos Agrícolas Panela. In Instituto Colombiano de Normas Técnicas y Certificación (NTC 1311).
dc.relation.referencesJackson, P. P., Wijeyesekera, A., Theis, S., van Harsselaar, J., & Rastall, A. R. (2022). Food for thought! Inulin-type fructans: Does the food matrix matter? J Funct Foods, 90(January), 104987. https://doi.org/10.1016/j.jff.2022.104987
dc.relation.referencesJia, J., Zhang, X., Jia, X., Duan, J., Wu, Z., Deng, X., & Ge, J. (2025). Lactic acid fermentation improves rehydration and emulsifying properties of spray-dried egg yolk powder. Food Chemistry, 463(September 2024). https://doi.org/10.1016/j.foodchem.2024.141352
dc.relation.referencesJiang, A., & Westland, S. (2024). Colour Measurement (pp. 33–48). https://doi.org/10.1007/978-3-031-70920-3_3
dc.relation.referencesJu, J. H., Jeon, S. G., Heo, S. Y., Kim, J. S., Jo, M. H., Kim, M. S., Kim, C. H., & Oh, B. R. (2023). Synbiotics production using Lactobacillus reuteri EC01, a strain that produces alternan-type exopolysaccharide. LWT - Food Science and Technology, 182(April), 114814. https://doi.org/10.1016/j.lwt.2023.114814
dc.relation.referencesJurado-Gámez, H. A., Cerón-Córdoba, J. F., & Bolaños-Bolaños, J. (2023). Effect of microencapsulated Lactobacillus reuteri under simulated gastric conditions and its inhibition on Listeria monocytogenes. Revista de Ciencias Agrícolas, 40(1), e1202. https://doi.org/10.22267/rcia.20234001.202
dc.relation.referencesJurado-Gámez, H., Ramírez, C., & Aguirre, D. (2013). Cinética de fermentación de Lactobacillus plantarum en un medio de cultivo enriquecido como potencial probiótico. Veterinaria y Zootecnía, 7(2), 37–53.
dc.relation.referencesKanauchi, M. (2019). Lactic Acid Bacteria: Methods and Protocols (Vol. 1887).
dc.relation.referencesKarasawa, M. M. G., & Mohan, C. (2018a). Fruits as Prospective Reserves of bioactive Compounds: A Review. Natural Products and Bioprospecting, 8(5), 335–346. https://doi.org/10.1007/s13659-018-0186-6
dc.relation.referencesKarasawa, M. M. G., & Mohan, C. (2018b). Fruits as Prospective Reserves of bioactive Compounds: A Review. Natural Products and Bioprospecting, 8(5), 335–346. https://doi.org/10.1007/s13659-018-0186-6
dc.relation.referencesKawai, K., Fukami, K., Thanatuksorn, P., Viriyarattanasak, C., & Kajiwara, K. (2011). Effects of moisture content, molecular weight, and crystallinity on the glass transition temperature of inulin. Carbohydrate Polymers, 83(2), 934–939. https://doi.org/10.1016/j.carbpol.2010.09.001
dc.relation.referencesKent, R. M., & Doherty, S. B. (2014). Probiotic bacteria in infant formula and follow-up formula: Microencapsulation using milk and pea proteins to improve microbiological quality. FRIN, 64, 567–576. https://doi.org/10.1016/j.foodres.2014.07.029
dc.relation.referencesKheto, A., Bist, Y., Awana, A., Kaur, S., Kumar, Y., & Sehrawat, R. (2023). Utilization of inulin as a functional ingredient in food : Processing , physicochemical characteristics , food applications , and future research directions. Food Chemistry Adv, 3(March), 100443. https://doi.org/10.1016/j.focha.2023.100443
dc.relation.referencesKingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., & Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT, 62(1), 847–853. https://doi.org/10.1016/j.lwt.2014.12.007
dc.relation.referencesKong, X. P., Yang, Q., Wang, Q. L., & Chen, H. Q. (2024). Effects of ball milling treated wheat flour and maltodextrin on the texture and oil absorption properties of fried batter-coated cashews and almonds. Food Chemistry, 460, 140627. https://doi.org/10.1016/j.foodchem.2024.140627
dc.relation.referencesKontogiorgos, V. (2024). Colour Chemistry. In Introduction to Food Chemistry (pp. 131–146). Springer International Publishing. https://doi.org/10.1007/978-3-031-53558-1_7
dc.relation.referencesKumar, A., & Singh, S. (2020). The benefit of Indian jaggery over sugar on human health. Dietary Sugar, Salt and Fat in Human Health, 347–359. https://doi.org/10.1016/B978-0-12-816918-6.00016-0
dc.relation.referencesKurozawa, L. E., Park, K. J., & Hubinger, M. D. (2009). Effect of carrier agents on the physicochemical properties of a spray dried chicken meat protein hydrolysate. Journal of Food Engineering, 94(3–4), 326–333. https://doi.org/10.1016/j.jfoodeng.2009.03.025
dc.relation.referencesLacerda, E. C. Q., Calado, V. M. D. A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/J.CARBPOL.2016.05.093
dc.relation.referencesLarrea, V., Morell, P., Quiles, A., & Hernando, I. (2023). Alimentos funcionales: probióticos, prebióticos y simbióticos. Universidad Politecnica de Valencia.
dc.relation.referencesLaureanti, E. J. G., Paiva, T. S., de Matos Jorge, L. M., & Jorge, R. M. M. (2023). Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. International Journal of Biological Macromolecules, 253(September), 126969. https://doi.org/10.1016/j.ijbiomac.2023.126969
dc.relation.referencesLawless, H. T., & Heymann, H. (2010). Sensory Evaluation of Food (Second Edition). Springer New York. https://doi.org/10.1007/978-1-4419-6488-5
dc.relation.referencesLee, J. S., Ramalingam, S., Jo, I. G., Kwon, Y. S., Bahuguna, A., Oh, Y. S., Kwon, O. J., & Kim, M. (2018). Comparative study of the physicochemical, nutritional, and antioxidant properties of some commercial refined and non-centrifugal sugars. Food Res Int, 109, 614–625. https://doi.org/10.1016/j.foodres.2018.04.047
dc.relation.referencesLepsien, A., Jüptner, A., Scherließ, R., & Schaum, A. (2024). Control oriented modeling for particle size distributions in a spray drying process. IFAC-PapersOnLine, 58(15), 438–443. https://doi.org/10.1016/j.ifacol.2024.08.568
dc.relation.referencesLiu, Z., Liu, M., Meng, J., Wang, L., & Chen, M. (2024). A review of the interaction between diet composition and gut microbiota and its impact on associated disease. Journal of Future Foods, 4(3), 221–232. https://doi.org/10.1016/j.jfutfo.2023.07.004
dc.relation.referencesLorenzoni, G., Araújo, M. De, José, A., Queiroz, L., Jacob, E., Smanioto, J., Marlon, É., Flores, D. M., Bona, C. De, Ragagnin, C., & Menezes, D. (2018). Inulin, hi-maize , and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT - Food Science and Technology, 89(May 2017), 128–133.
dc.relation.referencesLuo, Y., De Souza, C., Ramachandran, M., Wang, S., Yi, H., Ma, Z., Zhang, L., & Lin, K. (2022). Precise oral delivery systems for probiotics: A review. In Journal of Controlled Release (Vol. 352, pp. 371–384). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2022.10.030
dc.relation.referencesLuzzi, A., Briata, I. M., Di Napoli, I., Giugliano, S., Di Sabatino, A., Rescigno, M., & Cena, H. (2024). Prebiotics, probiotics, synbiotics and postbiotics to adolescents in metabolic syndrome. Clin Nutr, 43(6), 1433–1446. https://doi.org/10.1016/j.clnu.2024.04.032
dc.relation.referencesMahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105(1), 57–62. https://doi.org/10.1016/j.carbpol.2014.01.042
dc.relation.referencesMarcial-Coba, M. S., Saaby, L., Knøchel, S., & Nielsen, D. S. (2019). Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei . FEMS Microbiology Letters, 366(2). https://doi.org/10.1093/femsle/fny290
dc.relation.referencesMarco, M. L., Sanders, M. E., Gänzle, M., Arrieta, M. C., Cotter, P. D., De Vuyst, L., Hill, C., Holzapfel, W., Lebeer, S., Merenstein, D., Reid, G., Wolfe, B. E., & Hutkins, R. (2021). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology & Hepatology, 18, 196–208. https://doi.org/10.1038/s41575-020-00390-5
dc.relation.referencesMarefati, A., Pitsiladis, A., Oscarsson, E., Ilestam, N., & Bergenståhl, B. (2021). Encapsulation of Lactobacillus reuteri in W1/O/W2 double emulsions: Formulation, storage and in vitro gastro-intestinal digestion stability. LWT - Food Science and Technology, 146, 111423. https://doi.org/10.1016/J.LWT.2021.111423
dc.relation.referencesMay-Torruco, L. A., Corona-Cruz, A. I., Luna-Jiménez, A. L., González-Cortés, N., & Jiménez-Vera, R. (2020). Sensibilidad y Resistencia a Antibióticos de Cepas Probióticas Empleadas en Productos Comerciales. European Scientific Journal, 16(18), 43–60. https://doi.org/10.19044/esj.2020.v16n18p43
dc.relation.referencesMeldrum, O. W., & Yakubov, G. E. (2024). Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. In Critical Reviews in Food Science and Nutrition. Taylor and Francis Ltd. https://doi.org/10.1080/10408398.2024.2390556
dc.relation.referencesMinj, S., & Anand, S. (2022). Development of a spray-dried conjugated whey protein hydrolysate powder with entrapped probiotics. J. Dairy Sci., 105(3), 2038–2048. https://doi.org/10.3168/jds.2021-20978
dc.relation.referencesMizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and Beverage Stability and Shelf Life (pp. 482–506). Elsevier. https://doi.org/10.1533/9780857092540.2.482
dc.relation.referencesMohamadzadeh, M., Fazeli, A., Vasheghani-Farahani, E., & Shojaosadati, S. A. (2025). Viability and stability evaluation of microencapsulated Lactobacillus reuteri in polysaccharide-based bionanocomposite. Carbohydrate Polymers, 347(August 2024). https://doi.org/10.1016/j.carbpol.2024.122693
dc.relation.referencesMontes C, A., Santacruz B, A., Sañudo D, J., & Pazos M, A. (2003). Efecto in vitro de Lactobacillus casei subsp rhamnosus sobre el crecimiento de un aislado de Heicobacter pylori. Revista Del Centro de Estudios En Salud, 1(4), 5–12. https://revistas.udenar.edu.co/index.php/usalud/article/view/302/pdf
dc.relation.referencesMontes-Ramírez, L. M. (2013). Efecto de la microencapsulación con agentes prebióticos sobre la viabilidad de microorganismos probióticos (Lactobacillus casei ATCC 393 y Lactobacillus rhamnosus ATCC 9469). https://repositorio.unal.edu.co/handle/unal/11893
dc.relation.referencesMorales-Ramos, V., Osorio-Mirón, A., & Rodríguez-Campos, J. (2017). Innovaciones En El Trapiche Panelero: La Producción De Panela Granulada. Agro Productividad, 10(11), 41–47. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/67
dc.relation.referencesMu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in human health and diseases. Frontiers in Microbiology, 9(APR), 757. https://doi.org/10.3389/fmicb.2018.00757
dc.relation.referencesNath, A., Dutta, D., Kumar, P., & Singh, J. (2015). Review on Recent Advances in Value Addition of Jaggery based Products. Journal of Food Processing & Technology, 06(04), 4–7. https://doi.org/10.4172/2157-7110.1000440
dc.relation.referencesNebesny, E., Żyżelewicz, D., Motyl, I., & Libudzisz, Z. (2007). Dark chocolates supplemented with Lactobacillus strains. European Food Research and Technology, 225(1), 33–42. https://doi.org/10.1007/s00217-006-0379-9
dc.relation.referencesOluwatosin, S. O., Tai, S. L., & Fagan-Endres, M. A. (2022). Sucrose, maltodextrin and inulin efficacy as cryoprotectant, preservative and prebiotic – towards a freeze dried Lactobacillus plantarum topical probiotic. Biotechnol Rep, 33, e00696. https://doi.org/10.1016/j.btre.2021.e00696
dc.relation.referencesPaim, D. R. S. F., Costa, S. D. O., Walter, E. H. M., & Tonon, R. V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT - Food Science and Technology, 74, 21–25. https://doi.org/10.1016/j.lwt.2016.07.022
dc.relation.referencesPathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9
dc.relation.referencesPaulo, E. M., Vasconcelos, M. P., Oliveira, I. S., Affe, H. M. de J., Nascimento, R., de Melo, I. S., Roque, M. R. de A., & de Assis, S. A. (2012). An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, 32(4), 710–714. https://doi.org/10.1590/S0101-20612012005000094
dc.relation.referencesPedersen, M. B., Gaudu, P., Lechardeur, D., Petit, M. A., & Gruss, A. (2012). Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annual Review of Food Science and Technology, 3(1), 37–58. https://doi.org/10.1146/annurev-food-022811-101255
dc.relation.referencesPeighambardoust, S. H., Golshan Tafti, A., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: a review. Trends in Food Science & Technology, 22(5), 215–224. https://doi.org/10.1016/j.tifs.2011.01.009
dc.relation.referencesPérez-Martínez, P., Ros, E., Pedro-Botet, J., Civeira, F., Pascual, V., Garcés, C., Solá, R., Pérez-Jiménez, F., & Mostaza, J. M. (2023). Functional foods and nutraceuticals in the treatment of hypercholesterolemia: Statement of the Spanish Society of Arteriosclerosis 2023. Clínica e Investigación En Arteriosclerosis (English Edition), 35, 248–261. https://doi.org/10.1016/j.artere.2023.09.003
dc.relation.referencesPerez-Sanchez, T., Ruiz-Zarzuela, I., de Blas, I., & Balcazar, J. L. (2013). Probiotics in aquaculture: a current assessment. Reviews in Aquaculture, 5, 1–14. https://doi.org/10.1111/raq.12033
dc.relation.referencesPimentel, T. C., Gomes da Cruz, A., & Deliza, R. (2016). Sensory Evaluation: Sensory Rating and Scoring Methods. In Encyclopedia of Food and Health (pp. 744–749). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00617-6
dc.relation.referencesQiao, F., Wang, S., He, J., Hung, W., Ma, X., Gong, P., Li, J., Sun, T., De Souza, C., Zhang, L., & Lin, K. (2024). Investigating the role of membrane lipid composition differences on spray drying survival in Lactobacillus bulgaricus using non-targeted Lipidomics. Food Chem, 459(April), 140336. https://doi.org/10.1016/j.foodchem.2024.140336
dc.relation.referencesQiu, L., Zhang, M., Tang, J., Adhikari, B., & Cao, P. (2019). Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International, 116, 90–102. https://doi.org/10.1016/j.foodres.2018.12.055
dc.relation.referencesRajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT - Food Science and Technology, 60(2), 773–780. https://doi.org/10.1016/j.lwt.2014.09.062
dc.relation.referencesRajoka, M. S. R., Mehwish, H. M., Hayat, H. F., Hussain, N., Sarwar, S., Aslam, H., Nadeem, A., & Shi, J. (2019). Characterization, the Antioxidant and Antimicrobial Activity of Exopolysaccharide Isolated from Poultry Origin Lactobacilli. Probiotics and Antimicrobial Proteins, 11(4), 1132–1142. https://doi.org/10.1007/S12602-018-9494-8
dc.relation.referencesRamírez, H. (2018). DESARROLLO Y EVALUACIÓN DE CHOCOLATE EDULCORADO CON PANELA Y RELLENO CON NUEZ DE NOGAL (Juglans neotropica). UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS.
dc.relation.referencesRamírez, N. F., Keefe, G., Dohoo, I., Sánchez, J., Arroyave, O., Cerón, J., Jaramillo, M., & Palacio, L. G. (2014). Herd- and cow-level risk factors associated with subclinical mastitis in dairy farms from the High Plains of the northern Antioquia, Colombia. J Dairy Sci, 97(7), 4141–4150. https://doi.org/10.3168/JDS.2013-6815
dc.relation.referencesRasane, P., Jha, A., & Sharma, N. (2015). Predictive modelling for shelf life determination of nutricereal based fermented baby food. Journal of Food Science and Technology, 52(8), 5003–5011. https://doi.org/10.1007/s13197-014-1545-x
dc.relation.referencesRezaei, M., & Netz, R. R. (2021). Water evaporation from solute-containing aerosol droplets: Effects of internal concentration and diffusivity profiles and onset of crust formation. Physics of Fluids, 33(9). https://doi.org/10.1063/5.0060080
dc.relation.referencesRios-Aguirre, S., & Gil-Garzón, M. A. (2021). Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: una revisión. TecnoLógicas, 24(51), e1836. https://doi.org/10.22430/22565337.1836
dc.relation.referencesRobertson, G. L. . (2013). Food packaging : principles and practice (3rd ed.). CRC Press.
dc.relation.referencesRodriguez, G., Polo, S., Riveros, M., & Buitrago, A. (2019). La Agroindustria Panelera Impulsando El Desarrollo Rural En Colombia (p. 66). Fedepanela - AGROSAVIA
dc.relation.referencesRodríguez-Barona, Sneyder., Giraldo, G. I., & Montes, L. M. (2016). Encapsulación de Alimentos Probióticos mediante Liofilización en Presencia de Prebioticos. Información Tecnológica, 27(6), 135–144. https://doi.org/10.4067/S0718-07642016000600014
dc.relation.referencesRoselen, M. D., Weber, F., Diaz de Oliverira, P., Rochedo, F., Scherer, R., Fiorentini, A. M., Padilha da Silva, W., & Pieniz, S. (2019). Symbiotic microencapsulation of Lactococcus lactis subsp. lactis R7 using whey and inulin by spray drying. LWT - Food Science and Technology, 115(July), 108411. https://doi.org/doi.org/10.1016/j.lwt.2019.108411
dc.relation.referencesSaavedra–Leos, M. Z., Leyva-Porras, C., Alvarez-Salas, C., Longoria-Rodríguez, F., López-Pablos, A. L., González-García, R., & Pérez-Urizar, J. T. (2018). Obtención de polvos de jugo de naranja-maltodextrina sin colapso estructural basado en la temperatura de transición vítrea y grado de polimerización. CYTA J Food, 16(1), 61–69. https://doi.org/10.1080/19476337.2017.1337048
dc.relation.referencesSablania, V., Basak, S., & Bosco, S. J. D. (2023). Effect of spray drying on physical, structural, and functional properties of Murraya koenigii leaf extract. Journal of Food Measurement and Characterization, 17(5), 4672–4683. https://doi.org/10.1007/s11694-023-01992-8
dc.relation.referencesSamakradhamrongthai, R. S., Maneechot, S., Wangpankhajorn, P., Jannu, T., & Renaldi, G. (2022). Polydextrose and guar gum as a fat substitute in rice cookies and its physical, textural, and sensory properties. Food Chemistry Adv, 1(May), 100058. https://doi.org/10.1016/j.focha.2022.100058
dc.relation.referencesSánchez, L., Omura, M., Lucas, A., Pérez, T., & Ferreira, C. de L. (2015). Cepas de Lactobacillus spp. con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. Rev. Salud Animal, 37(2), 94–104. http://scielo.sld.cu/pdf/rsa/v37n2/rsa04215.pdf
dc.relation.referencesSanchez, N., Cobo, M., Rodríguez-Fontalvo, D., Ruiz-Pardo, R. Y., & Roedl, A. (2024). Unlocking sustainable solutions: Harnessing residual biomass from Colombia’s non-centrifugal sugar chain for green market deployment. Bioresource Technology Reports, 26(May), 101858. https://doi.org/10.1016/j.biteb.2024.101858
dc.relation.referencesSantivarangkna, C., Kulozik, U., & Foerst, P. (2008). Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. Journal of Applied Microbiology, 105(1), 1–13. https://doi.org/10.1111/j.1365-2672.2008.03744.x
dc.relation.referencesSantos, N. C., Almeida, R. L. J., Albuquerque, J. C., de Andrade, E. W. V., Gregório, M. G., Santos, R. M. S., Rodrigues, T. J. A., Carvalho, R. de O., Gomes, M. M. de A., Moura, H. V., de Figueiredo, D. V. P., Araújo, M. A., Lima, V. R. do N., & Mota, M. M. de A. (2024). Optimization of ultrasound pre-treatment and the effect of different drying techniques on antioxidant capacity, bioaccessibility, structural and thermal properties of purple cabbage. Chemical Engineering and Processing - Process Intensification, 201, 109801. https://doi.org/10.1016/j.cep.2024.109801
dc.relation.referencesSantos, N. C., Almeida, R. L. J., Monteiro, S. S., de Lima, T. L. B., da Silva Lúcio, A., Nogueira, L. P. da S., Paiva, Y. F., Gregório, M. G., Brito, A. C. de O., da Silva, L. A., de Figueiredo, D. V. P., Silva, R. dos S., Mota, M. M. de A., Pasquali, M. A. de B., de Sousa, S., & Rocha, A. P. T. (2025). Microencapsulating Lacticaseibacillus rhamnosus GG by spray drying using pea protein, pectin, and tapioca flour: Probiotic viability, digestibility and thermal stability. Food and Bioproducts Processing, 150, 207–216. https://doi.org/10.1016/j.fbp.2025.01.011
dc.relation.referencesSantos-Rocha, S. J., Mendoza-Ortiz, C., Tobon-Gonzalez, J., Ríos-Estepa, R., & Orozco-Sánchez, F. (2024). Oxygen Transfer Effect on the Growth of Limosilactobacillus reuteri ATCC 53608 and on Its Metabolic Capacity. Current Microbiology, 81(11), 362. https://doi.org/10.1007/s00284-024-03822-6
dc.relation.referencesSarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133
dc.relation.referencesSemyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193–202. https://doi.org/10.1016/j.foodres.2009.09.028
dc.relation.referencesShah, B. R., Li, B., Al Sabbah, H., Xu, W., & Mráz, J. (2020). Effects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsulated formulations. Trends Food Sci Technol, 102(June), 178–192. https://doi.org/10.1016/j.tifs.2020.06.010
dc.relation.referencesSharifi, S., Rezazad-Bari, M., Alizadeh, M., Almasi, H., & Amiri, S. (2021). Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids, 113, 106496. https://doi.org/10.1016/j.foodhyd.2020.106496
dc.relation.referencesShokri, Z., Reza Fazeli, M., Ardjmand, M., Mohammad Mousavi, S., & Gilani, K. (2015). Factors affecting viability of Bifidobacterium bifidum during spray drying. DARU Journal Of Pharmaceutical Sciences, 23(7).
dc.relation.referencesShrivastav, P., Verma, A. K., Walia, R., Parveen, R., & Singh, K. A. (2016). Jaggery : a Revolution in the Field of Natural Sweeteners. European Journal of Pharmaceutical and Medical Research, 3(3), 198–202.
dc.relation.referencesSiemons, I., Politiek, R. G. A., Boom, R. M., van der Sman, R. G. M., & Schutyser, M. A. I. (2020). Dextrose equivalence of maltodextrins determines particle morphology development during single sessile droplet drying. Food Research International, 131, 108988. https://doi.org/10.1016/j.foodres.2020.108988
dc.relation.referencesSilva Gonzáles, J. (2020). El negocio de la panela se transforma. LatinPymes, 18–20.
dc.relation.referencesSingh, N., Kumar, D., Raisuddin, S., & Sahu, A. P. (2008). Genotoxic effects of arsenic: Prevention by functional food-jaggery. Cancer Letters, 268(2), 325–330. https://doi.org/10.1016/j.canlet.2008.04.011
dc.relation.referencesSIPA. (2023). Departamentos paneleros: producción de panela - Colombia
dc.relation.referencesSolís-Fuentes, J. A., Hernández-Ceja, Y., Hernández-Medel, M. del R., García-Gómez, R. S., Bernal-González, M., Mendoza-Pérez, S., & Durán-Domínguez-de-Bazúa, M. del C. (2019a). Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Biosci, 32(July). https://doi.org/10.1016/j.fbio.2019.100444
dc.relation.referencesSørensen, H. M., Rochfort, K. D., Maye, S., MacLeod, G., Brabazon, D., Loscher, C., & Freeland, B. (2022). Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients , 14(14), 1–33. https://doi.org/10.3390/NU14142938
dc.relation.referencesSoukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. (2014). Impact of Milk Protein Type on the Viability and Storage Stability of Microencapsulated Lactobacillus acidophilus NCIMB 701748 Using Spray Drying. Food and Bioprocess Technology, 7(5), 1255–1268. https://doi.org/10.1007/S11947-013-1120-X/TABLES/7
dc.relation.referencesStępień, A., & Grzyb, K. (2023). Comparison of critical storage parameters of the powders containing soy protein isolate and inulin, based on the concepts: Water activity and Temperature of glass transition. International Journal of Biological Macromolecules, 230, 123174. https://doi.org/10.1016/j.ijbiomac.2023.123174
dc.relation.referencesStevens, M. J. A., Vollenweider, S., Meile, L., & Lacroix, C. (2011). 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microbial Cell Factories, 10(61). https://doi.org/10.1186/1475-2859-10-61
dc.relation.referencesThatoi, H., Mohapatra, P. K. Das, Mohapatra, S., & Mondal, K. C. (2020). Microbial Fermentation and Enzyme Technology. In Microbial Fermentation and Enzyme Technology. CRC Press. https://doi.org/10.1201/9780429061257
dc.relation.referencesTovar, I. M., & Parra, L. C. (2020). ESTUDIO DE PREFACTIBILIDAD PARA LA PRODUCCIÓN DE PANELA BAJA EN QUÍMICOS SABORIZADA EN EL MUNICIPIO DE CAMPAMENTO ANTIOQUIA Y COMERCIALIZACIÓN DEL PRODUCTO EN EL VALLE DE ABURRÁ (Issue July).
dc.relation.referencesTufarelli, V., & Laudadio, V. (2016). AN OVERVIEW ON THE FUNCTIONAL FOOD CONCEPT: PROSPECTIVES AND APPLIED RESEARCHES IN PROBIOTICS, PREBIOTICS AND SYNBIOTICS. Journal of Experimental Biology and Agricultural Sciences, 4(3). https://doi.org/10.18006/2016.4(3S).273.278
dc.relation.referencesTyagi, S. K., Kamboj, S., Himanshu, Tyagi, N., Narayanan, R., & Tyagi, V. V. (2022). Technological advancements in jaggery-making processes and emission reduction potential via clean combustion for sustainable jaggery production: An overview. Journal of Environmental Management, 301(September 2021). https://doi.org/10.1016/j.jenvman.2021.113792
dc.relation.referencesUpadhyaya, A., Bhalerao, P. P., Bhushette, P., Dabade, A., & Sonawane, S. K. (2023). Optimization study of palm jaggery and palm candy - production and process. Applied Food Research, 3(1), 100269. https://doi.org/10.1016/j.afres.2023.100269
dc.relation.referencesUPRA. (2023a). Análisis situacional de la cadena agroindustrial de la panela en Colombia.
dc.relation.referencesUPRA. (2023b). Análisis situacional de la cadena agroindustrial de la panela en Colombia. https://upra.gov.co/es-co/POP_Documentos/DT_A_Situacional_Cadena_Panela.pdf
dc.relation.referencesUrrutia-Baca, V. H., Escamilla-García, E., de la Garza-Ramos, M. A., Tamez-Guerra, P., Gomez-Flores, R., & Urbina-Ríos, C. S. (2018). In Vitro Antimicrobial Activity and Downregulation of Virulence Gene Expression on Helicobacter pylori by Reuterin. Probiotics and Antimicrobial Proteins, 10(2), 168–175. https://doi.org/10.1007/s12602-017-9342-2
dc.relation.referencesVerma, P., Shah, N. G., & Mahajani, S. M. (2019). Why jaggery powder is more stable than solid jaggery blocks. LWT - Food Science and Technology, 110(April), 299–306. https://doi.org/10.1016/j.lwt.2019.04.093
dc.relation.referencesVerma, P., Shah, N., & Mahajani, S. (2019a). Effect of sodium hydrosulphite treatment on the quality of non-centrifugal sugar: Jaggery. Food Chemistry, 299(June). https://doi.org/10.1016/j.foodchem.2019.125043
dc.relation.referencesVinderola, G., Ouwehand, A. C., Salminen, S., & Wrigth, A. V. (2019). Lactic Acid Bacteria Microbiological and Fuctional Aspects (Fifth). CRC Press.
dc.relation.referencesWalz, M., Hirth, T., & Weber, A. (2018). Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 536, 47–52. https://doi.org/10.1016/j.colsurfa.2017.07.072
dc.relation.referencesWitt, T., & Stokes, J. R. (2015). Physics of food structure breakdown and bolus formation during oral processing of hard and soft solids. In Current Opinion in Food Science (Vol. 3, pp. 110–117). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2015.06.011
dc.relation.referencesYang, C., Liu, L., Majaw, J. K., Liang, L., & Chen, Y. (2021). Efficacy of Lactobacillus reuteri supplementation therapy for Helicobacter pylori eradication: A meta-analysis of randomised controlled trials. Medicine in Microecology, 100036. https://doi.org/10.1016/J.MEDMIC.2021.100036
dc.relation.referencesYao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532
dc.relation.referencesYin, M., Chen, M., Yuan, Y., Liu, F., & Zhong, F. (2024). Encapsulation of Lactobacillus rhamnosus GG in whey protein isolate-shortening oil and gum Arabic by complex coacervation: Enhanced the viability of probiotics during spray drying and storage. Food Hydrocoll, 146(July 2023), 109252. https://doi.org/10.1016/j.foodhyd.2023.109252
dc.relation.referencesYoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. J Food Eng, 283, 110033. https://doi.org/10.1016/J.JFOODENG.2020.110033
dc.relation.referencesZanoelo, M., Barbosa-Dekker, A. M., Dekker, R. F. H., Pereira, E. A., & da Cunha, M. A. A. (2024). Microencapsulation of roasted mate tea extractives with lasiodiplodan (a (1 → 6)-β-D-glucan) and maltodextrin as combined coating materials: A strategic tool to stabilize and protect the bioactive components. International Journal of Biological Macromolecules, 275, 133615. https://doi.org/10.1016/j.ijbiomac.2024.133615
dc.relation.referencesZhang, F., Lu, Y., Zhu, S., Han, F., Wen, G., Tang, P., & Hou, Z. (2024). Mathematical model and numerical investigation of the influence of spray drying parameters on granule sizes of mold powder. Particuology, 85, 280–295. https://doi.org/10.1016/j.partic.2023.06.017
dc.relation.referencesZhang, S., Ni, D., Xu, W., Zhang, W., & Mu, W. (2023). Characterization of a processive inulosucrase from Lactobacillus mulieris for efficient biosynthesis of high-molecular-weight inulin. Enzyme Microb Technol, 164(November 2022), 110186. https://doi.org/10.1016/j.enzmictec.2022.110186
dc.relation.referencesZhao, H., Zhang, F., Chai, J., & Wang, J. (2020). Effect of lactic acid bacteria on Listeria monocytogenes infection and innate immunity in rabbits. Czech Journal of Animal Science, 65(1), 23–30. https://doi.org/10.17221/247/2019-CJAS
dc.relation.referencesZheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107
dc.relation.referencesZhou, L., Huang, Y., Wang, D., Yuan, T., Song, G., Gong, J., Xiao, G., Kim, S. A., & Li, L. (2024). Microencapsulation of Lactobacillus sakei and Lactobacillus rhamnosus in whey protein isolate and sodium hyaluronate for potential food-grade probiotic delivery system. Food Biosci, 61(May), 104784. https://doi.org/10.1016/j.fbio.2024.104784
dc.relation.referencesZimmermann, J. A., Sirini, N., Oliveroa, C. R., Renna, M. S., Signorinic, M. L., Zbrun, M. V., Frizzo, L. S., & Soto, L. P. (2023). Macroencapsulation of Limosilactobacillus reuteri DSPV002C as nutritional supplement for piglets : conditions. Revista Argentina de Microbiología, xxxx, 12. https://doi.org/doi.org/10.1016/j.ram.2023.07.005
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.agrovocProbióticos
dc.subject.agrovocMaltodextrina
dc.subject.agrovocInulina
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.subject.lembPanela - Producción - Colombia
dc.subject.lembSecado por aspersión
dc.subject.proposalSecado por aspersiónspa
dc.subject.proposalLimosilactobacillus reuterispa
dc.subject.proposalpanelaspa
dc.subject.proposalmaltodextrinaspa
dc.subject.proposalinulinaspa
dc.subject.proposalSpray dryingeng
dc.subject.proposalLimosilactobacillus reuterieng
dc.subject.proposalmaltodextrineng
dc.subject.proposalinulineng
dc.titleEvaluación de la inclusión de Limosilactobacillus reuteri microencapsulado en panela granulada con propiedades probióticasspa
dc.title.translatedEvaluation of the inclusion of microcapsulated Limosilactobacillus reuteri in granulated jaggery with probiotic proprietieseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencia y Tecnología de Alimentos
Tamaño:
3.62 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: