Evaluación de la inclusión de Limosilactobacillus reuteri microencapsulado en panela granulada con propiedades probióticas
dc.contributor.advisor | Sepúlveda Valencia, José Uriel | |
dc.contributor.advisor | Jurado Gámez, Henry | |
dc.contributor.author | Ceron Cordoba, Jhon Fredy | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000187181 | |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=PZEYBQsAAAAJ&hl=es | |
dc.contributor.orcid | Ceron Cordoba, Jhon Fredy [0009-0000-5933-1574] | |
dc.contributor.orcid | Sepúlveda Valencia, José Uriel [0000-0001-5660-4514] | |
dc.contributor.orcid | Jurado Gámez, Henry [0000-0003-2118-7997] | |
dc.contributor.researchgate | https://www.researchgate.net/profile/Jhon-Ceron-Cordoba | |
dc.contributor.researchgroup | Grupo de Investigación en Ciencias y Tecnología de Alimentos -Gicta- | |
dc.contributor.researchgroup | Procesos Biotecnológicos Aplicados a la Producción Animal, Forrajes y apicultura - PROBIOTEC-FORAPIS | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-08-26T20:02:41Z | |
dc.date.available | 2025-08-26T20:02:41Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | El secado por aspersión es una estrategia que permite la preservación y conducción de compuestos bioactivos mediante la formación de una matriz protectora, con alta viabilidad de población bacteriana y de costo accesible. Por otro lado, la producción panelera forma parte de la economía campesina familiar Nariñense y la transformación contribuye en los ingresos monetarios. En el estudio, se evaluó la inclusión de Limosilactobacillus reuteri microencapsulado en panela granulada en el tiempo. Para conseguirlo, se optimizó el secado por aspersión, luego, se caracterizó por: Microscopia Electrónica de Barrido (MEB), eficiencia de microencapsulación, estudio de supervivencia y estabilidad (64 días). Se determinó la estabilidad del probiótico microencapsulado bajo condiciones gastrointestinales in-vitro. Finalmente, se evaluó la viabilidad en almacenamiento (45 días) en la inclusión de una formulación de panela granulada con L. reuteri microencapsulado. Como resultado, los parámetros para el L. reuteri microencapsulado se establecieron a 130 °C de temperatura de entrada, 10% de maltodextrina y 10 % de inulina. En la caracterización del material encapsulado se observaron partículas esféricas con superficie lisa de 6.085±0.621 μm, EE 96.122±0.245 %, viabilidad 8.781±0.178 Log UFC/g, humedad 3.120±0.057 y aW 0.255±0.003. La viabilidad de L. reuteri microencapsulado bajo condiciones gastrointestinales fue mayor a 8.118±0.434 Log UFC/g. Finalmente, se desarrolló una formulación de panela granulada con la inclusión de L. reuteri microencapsulado con viabilidad de 10.658±0.867 Log UFC/g, humedad (2.088±0.093 - 5.032±0.065) y aW (0.394±0.002 - 0.601±0.002). Estos resultados, indican que la formulación es viable en términos de viabilidad, aW, humedad, composición nutricional y aceptación sensorial. (Tomado de la fuente) | spa |
dc.description.abstract | Spray drying constitutes an effective approach for preserving and delivering bioactive compounds by forming a protective matrix that ensures high bacterial viability at a relatively low cost. Moreover, panela production is integral to the family-scale peasant economy of Nariño, with value-added processing contributing to household incomes. This study investigated the temporal inclusion of microencapsulated Limosilactobacillus reuteri in granulated panela. To achieve this, the spray‐drying process was optimized, and the resulting powder was characterized by Scanning Electron Microscopy (SEM), encapsulation efficiency (EE), survival and stability assays over 64 days, and in-vitro gastrointestinal simulation. Finally, probiotic viability was assessed during 45 days of storage in a formulated granulated panela containing microencapsulated L. reuteri. Optimal microencapsulation conditions were established at a 130 °C inlet temperature with 10% maltodextrin and 10% inulin. SEM revealed spherical, smooth-surfaced microcapsules averaging 6.085±0.621 μm in diameter; EE was 96.122±0.245%, viability reached 8.781±0.178 Log CFU/g, moisture content was 3.120±0.057%, and water activity (aW) was 0.255±0.003. Under simulated gastrointestinal conditions, microencapsulated L. reuteri viability exceeded 8.118±0.434 Log CFU/g. The granulated panela formulation maintained a viability of 10.658±0.867 Log CFU/g, moisture between 2.088±0.093% and 5.032±0.065%, and aW between 0.394±0.002 and 0.601 ± 0.002. These results demonstrate that the formulated product is viable with respect to probiotic viability, aW, moisture content, nutritional composition, and sensory acceptance. | eng |
dc.description.curriculararea | Agro Ingeniería Y Alimentos.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | |
dc.description.researcharea | Desarrollo de Productos Alimenticios | |
dc.format.extent | 174 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88474 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Abd-Talib, N., Hamidah Mohd-Setapar, S., Kamal Khamis, A., Nian-Yian, L., & Aziz, R. (2013). Survival of encapsulated probiotics through spray drying and non-refrigerated storage for animal feeds application. Agricultural Sciences, 04(05), 78–83. https://doi.org/10.4236/as.2013.45B015 | |
dc.relation.references | Ahmad, W., Nasir, A., Sattar, F., Ashfaq, I., Chen, M. H., Hayat, A., Rehman, M. ur, Zhao, S., Khaliq, S., Ghauri, M. A., & Anwar, M. A. (2022). Production of bimodal molecular weight levan by a Lactobacillus reuteri isolate from fish gut. Folia Microbiologica, 67(1), 21–31. https://doi.org/10.1007/S12223-021-00913-W/METRICS | |
dc.relation.references | Akbarbaglu, Z., Peighambardoust, S. H., Sarabandi, K., & Jafari, S. M. (2021). Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. In Food Chemistry (Vol. 359). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2021.129965 | |
dc.relation.references | Alarcón, Á. L., Orjuela, A., Narváez, P. C., & Camacho, E. C. (2020). Thermal and Rheological Properties of Juices and Syrups during Non-centrifugal Sugar Cane (Jaggery) Production. Food and Bioproducts Processing, 121, 76–90. https://doi.org/10.1016/j.fbp.2020.01.016 | |
dc.relation.references | Algaithi, M., Mudgil, P., Hamdi, M., Redha, A. A., Ramachandran, T., Hamed, F., & Maqsood, S. (2022). Lactobacillus reuteri-fortified camel milk infant formula: Effects of encapsulation, in vitro digestion, and storage conditions on probiotic cell viability and physicochemical characteristics of infant formula. J Dairy Sci, 105(11), 8621–8637. https://doi.org/10.3168/jds.2022-22008 | |
dc.relation.references | Anandharamakrishnan, C. ., & Ishwarya, S. Padma. (2015). Spray drying techniques for food ingredient encapsulation. Wiley-Blackwell, IFT Press | |
dc.relation.references | Angnunavuri, P. N., Attiogbe, F., & Mensah, B. (2022). Effect of storage on the levels of phthalates in high-density polyethylene (HDPE) film-packaged drinking water. Science of The Total Environment, 845, 157347. https://doi.org/10.1016/j.scitotenv.2022.157347 | |
dc.relation.references | AOAC. (1990). OFFICIAL METHODS OF ANALYSIS (Fifteenth). | |
dc.relation.references | Aponte, D. J. (2020). Elaboración y evaluación sensorial de un yogur probiotico tipo batido, endulcorado con panela granulada orgánica y aromatizado con concentrado de café orgánico. Universidad Catolica sedes Sapientiae. | |
dc.relation.references | Arenales, I. M. (2019). Control de pH interno de microcápsulas para la proteccion de probioticos ante condiciones gastrointestinales simuladas. Universidad Autónoma de Chapingo | |
dc.relation.references | Arepally, D., Sudharshan Reddy, R., Coorey, R., & Goswami, T. K. (2023). Modelling inactivation kinetics of free and encapsulated probiotic cells in millet biscuit under different baking conditions. Food Res Int, 174, 113573. https://doi.org/10.1016/j.foodres.2023.113573 | |
dc.relation.references | Asfaq, & Chand, K. (2020). Effect of Moisture Absorber and High-Density Polyethylene Bags on Shelf Life of Edible Coated Jaggery Cubes During Storage. Sugar Tech, 22(6), 1130–1137. https://doi.org/10.1007/s12355-020-00849-4 | |
dc.relation.references | Asfaq, Chand, K., Nasir, G., Hussain, A., Bisht, B., upadhyay, S., Ahmad, S., & Kumar, S. (2023). Numerical optimization of process parameters and quality stability of active edible coated jaggery cubes during storage. Journal of Agriculture and Food Research, 14(June). https://doi.org/10.1016/j.jafr.2023.100790 | |
dc.relation.references | Aydın, A., Yüceer, M., Ulugergerli, E., & Caner, C. (2024). Improving food security as disaster relief using intermediate moisture foods and active packaging technologies. Applied Food Research, 4(1). https://doi.org/10.1016/j.afres.2023.100378 | |
dc.relation.references | Badin, R., Gaiani, C., Desobry, S., Prakash, S., Bhandari, B., & Burgain, J. (2023). Food Hydrocolloids Dynamic investigation of maltodextrins surface properties by environmental atomic force microscopy. 145(July). https://doi.org/10.1016/j.foodhyd.2023.109081 | |
dc.relation.references | Barajas-Álvarez, P., González-Ávila, M., & Espinosa-Andrews, H. (2022). Microencapsulation of Lactobacillus rhamnosus HN001 by spray drying and its evaluation under gastrointestinal and storage conditions. LWT - Food Science and Technology, 153, 112485. https://doi.org/10.1016/j.lwt.2021.112485 | |
dc.relation.references | Barbosa-Cánovas, G. V, Board, A., Hartel, R. W., Peleg, M., Rahman, S., University, Q., & Rao, O. M. A. (2021). Food Powders Properties and Characterization (E. Ermiş, Ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-48908-3 | |
dc.relation.references | Barrera, C., Betoret, N., & Seguí, L. (2024). Potential of vacuum impregnation and osmotic dehydration techniques in producing jaggery-fortified apple snacks. Sustainable Food Technology, 2(4), 1041–1051. https://doi.org/10.1039/d3fb00255a | |
dc.relation.references | Behboudi-jobbehdar, S., Soukoulis, C., Yonekura, L., Fisk, I., Soukoulis, C., Yonekura, L., Fisk, I., Jobbehdar, S. B., Yonekura, L., Fisk, I., Behboudi-jobbehdar, S., Soukoulis, C., Yonekura, L., & Fisk, I. (2013). Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated L . acidophilus NCIMB 701748 Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated. 3937. https://doi.org/10.1080/07373937.2013.788509 | |
dc.relation.references | Bello, D., Carrera, E., & Díaz, Y. (2006). Determinación de azúcares reductores totales en jugos mezclados de caña de azúcar utilizando el método del ácido 3,5 dinitrosalicílico. Sobre Los Derivados de La Caña de Azúcar, 2, 45–50. https://doi.org/https://www.redalyc.org/articulo.oa?id=223120664006 | |
dc.relation.references | Beltrán Martínez, C. (2020a). EVALUACIÓN DE TÉCNICAS PARA GESTIÓN DE LOS RESIDUOS DE LA PRODUCCIÓN PANELERA (CACHAZA) EN LA VEREDA NACEDEROS MUNICIPIO DE QUEBRADANEGRA-CUNDINAMARCA. www.ucundinamarca.edu.co | |
dc.relation.references | Bhandari, B., Bansal, N., Zhang, M., & Schuck, P. (2013). Handbook of food powders (B. Bhandari, N. Bansal, M. Zhang, & P. Schuck, Eds.; 1st ed.). Woodhead Publishing. www.woodheadpublishing.com | |
dc.relation.references | Bhola, J., & Bhadekar, R. (2024). Prebiotic effect of daily dietary polyphenols and oligosaccharides on lactobacillus species. Bioactive Carbohydrates and Dietary Fibre, 31, 100407. https://doi.org/10.1016/j.bcdf.2024.100407 | |
dc.relation.references | Bian, L., Molan, A.-L., Maddox, I., & Shu, Q. (2011). Antimicrobial activity of Lactobacillus reuteri DPC16 supernatants against selected food borne pathogens. World Journal of Microbiology and Biotechnology, 27(4), 991–998. https://doi.org/10.1007/s11274-010-0543-z | |
dc.relation.references | Bilodeau, M., Bouin, M., & Ghia, J.-E. (2022). The Digestive System: From Basic Sciences to Clinical Practice. In P. Poitras & M. Bouin (Eds.), The Digestive System: from Basic Sciences to Clinical Practice (0th ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-98381-9 | |
dc.relation.references | Bolaños-Cardona, L. C., Briñez-Javela, I. A., & Ramírez-Navas, J. S. (2018). Evaluación termodinámica de variables críticas en la Estabilidad de la panela de caña de azúcar. Revista Facultad de Ciencias Básicas, 14(2), 100–110. https://doi.org/10.18359/rfcb.3167 | |
dc.relation.references | Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991–1014. https://doi.org/10.1038/s41596-018-0119-1 | |
dc.relation.references | Cai, Y., Puangpen, S., Premsuda, S., & Benno, Y. (1999). Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. The Journal of General and Applied Microbiology, 45(4), 177–184. https://doi.org/10.2323/JGAM.45.177 | |
dc.relation.references | Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428. https://doi.org/10.1016/j.ifset.2005.05.003 | |
dc.relation.references | Ceballos, A. M., Giraldo, G. I., & Orrego, C. E. (2012). Effect of freezing rate on quality parameters of freeze dried soursop fruit pulp. J Food Eng, 111(2), 360–365. https://doi.org/10.1016/J.JFOODENG.2012.02.010 | |
dc.relation.references | Chand, K., Verma, A. K., Kumar, A., & Shahi, N. C. (2014). Effect of Edible Coating on Quality Parameters of Jaggery During Storage. Sugar Tech, 16(1), 80–85. https://doi.org/10.1007/s12355-013-0244-7 | |
dc.relation.references | CHARM SCIENCES INC. (2021). Charm ® Peel Plate ® Microbial Tests Family Brochure "Charm Peel Plate Microbial. https://www.charm.com/wp-content/uploads/2022/09/MRK-1052_email.pdf | |
dc.relation.references | Chen, G., & Chen, J. (2013). A novel cell modification method used in biotransformation of glycerol to 3-HPA by Lactobacillus reuteri. Applied Microbiology and Biotechnology, 97(10), 4325–4332. https://doi.org/10.1007/s00253-013-4723-2 | |
dc.relation.references | Civille, G. V., & Carr, B. T. (2015). Sensory Evaluation Techniques. CRC Press. https://doi.org/10.1201/b19493 | |
dc.relation.references | Crueger, W., & Crueger, A. (1993). Industrial microbiology manual. Acribia. | |
dc.relation.references | Dahl, T. A., Midden, W. R., & Hartman, P. E. (1989). Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. Journal of Bacteriology, 171(4), 2188–2194. https://doi.org/10.1128/jb.171.4.2188-2194.1989 | |
dc.relation.references | Delgado, P., & Bañón, S. (2018). Effects of replacing starch by inulin on the physicochemical, texture and sensory characteristics of gummy jellies. CyTA - Journal of Food, 16(1), 1–10. https://doi.org/10.1080/19476337.2017.1327462 | |
dc.relation.references | Divyashree, S., Ramu, R., & Sreenivasa, M. Y. (2024). Evaluation of new candidate probiotic lactobacillus strains isolated from a traditional fermented food- multigrain-millet dosa batter. Food Biosci, 57(December 2023), 103450. https://doi.org/10.1016/j.fbio.2023.103450 | |
dc.relation.references | El-Enshasy, H. A., & Yang, S.-T. (2021). Probiotics, the Natural Microbiota in Living Organisms. In Probiotics, the Natural Microbiota in Living Organisms (1st ed.). CRC Press. https://doi.org/10.1201/9781351027540 | |
dc.relation.references | Essa, M. M., Bishir, M., Bhat, A., Saravana, C., Al-Balushi, B., Hamdan, H., Govindarajan, N., Freidland, R., & Walid Qoronfleh, M. (2023a). Functional foods and their impact on health. Journal of Food Science and Technology, 60(3). https://doi.org/10.1007/s13197-021-05193-3 | |
dc.relation.references | FAO & OMS. (2018). DOCUMENTO DE DEBATE SOBRE LAS DIRECTRICES ARMONIZADAS SOBRE EL USO DE PROBIÓTICOS EN ALIMENTOS Y COMPLEMENTOS ALIMENTICIOS. In Comisión del Codex Alimentarius. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/ar/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-720-40%252FWD%252Fnf40_12s.pdf | |
dc.relation.references | FEDEPANELA. (2022, May 31). Estas son las marcas locales que le están dando una nueva vida a la tradicional panela. https://fedepanela.org.co/gremio/estas-son-las-marcas-locales-que-le-estan-dando-una-nueva-vida-a-la-tradicional-panela/ | |
dc.relation.references | Fennema, O., Damodaran, S., & Parkin, K. (2017). Fennema´s Food Chemistry (Fifth). Taylor & Francis Group. https://lccn.loc.gov/2016027062 | |
dc.relation.references | Floch, M., Ringel, Y., & Walker, A. (2017). The Microbiota in Gastrointestinal Pathophysiology (1st ed.). Elsevier. | |
dc.relation.references | Fredes, C., Becerra, C., Parada, J., & Robert, P. (2018). The Microencapsulation of Maqui (Aristotelia chilensis (Mol.) Stuntz) Juice by Spray-Drying and Freeze-Drying Produces Powders with Similar Anthocyanin Stability and Bioaccessibility. Molecules, 23(5), 1227. https://doi.org/10.3390/molecules23051227 | |
dc.relation.references | Freire, T. T., Silva, A. L. T. e, Ferreira, B. K. O., & Santos, T. M. dos. (2021). Lactic acid bacteria its characteristics and importance: review. Research, Society and Development, 10(11), e513101119964–e513101119964. https://doi.org/10.33448/RSD-V10I11.19964 | |
dc.relation.references | Freudig, B., Hogekamp, S., & Schubert, H. (1999). Dispersion of powders in liquids in a stirred vessel. Chemical Engineering & Processing: Process Intensification, 4–6(38), 525–532. https://www.infona.pl//resource/bwmeta1.element.elsevier-33e81bfd-56c5-3670-897d-8ebf9cea4cb8 | |
dc.relation.references | Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res Int, 45(1), 306–312. https://doi.org/10.1016/J.FOODRES.2011.09.020 | |
dc.relation.references | Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. In Food Research International (Vol. 40, Issue 9, pp. 1107–1121). https://doi.org/10.1016/j.foodres.2007.07.004 | |
dc.relation.references | Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75 | |
dc.relation.references | Gichau, A. W., Okoth, J. K., & Makokha, A. (2020). Moisture sorption isotherm and shelf life prediction of complementary food based on amaranth–sorghum grains. Journal of Food Science and Technology, 57(3), 962–970. https://doi.org/10.1007/s13197-019-04129-2 | |
dc.relation.references | Gojiya, D., Gohil, V., Dabhi, M., & Dhamsaniya, N. (2024). Storage stability of jaggery based sesame spread: A comprehensive study. Journal of Stored Products Research, 107. https://doi.org/10.1016/j.jspr.2024.102350 | |
dc.relation.references | Gonzales-Cuello, R., Perez-Mendoza, J., & Morón-Alcazar, L. (2015). Efecto de la Microencapsulación sobre la Viabilidad de Lactobacillus delbrueckii sometido a Jugos Gástricos Simulados. Información Tecnológica, 26(5), 11–16. https://doi.org/10.4067/S0718-0764201500050000 | |
dc.relation.references | González, E., Gómez-Caravaca, A. M., Giménez, B., Cebrián, R., Maqueda, M., Parada, J., Martínez-Férez, A., Segura-Carretero, A., & Robert, P. (2020). Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chem, 310, 125976. https://doi.org/10.1016/J.FOODCHEM.2019.125976 | |
dc.relation.references | Goranov, B., Denkova-Kostova, R., Denkova, Z., & Kostov, G. (2023). Growth kinetics of probiotic lactobacilli strains cultivated in a laboratory bioreactor with stirring. BIO Web of Conferences, 58, 3–7. https://doi.org/10.1051/bioconf/20235802003 | |
dc.relation.references | Guarner, F., Ellen Sanders, M., Eliakim, R., Fedorak, R., Gangl, A., Garisch, J., Kaufmann, P., Karakan, T., Khan, A. G., Kim, N., Andrés De Paula, J., Ramakrishna, B., Shanahan, F., Szajewska, H., Thomson, A., & Le Mair, A. (2017). Probióticos y prebióticos. In Guías Mundiales de la Organización Mundial de Gastroenterología Probióticos y prebióticos | |
dc.relation.references | Guerrero, M., Guzmán S, S., Yandar B, N., & Pazos M, A. (2002). Efecto inhibitorio de Lactobacillus Acidophilus SOBRE EL ENTEROPATOGENO Vibrio Cholerae 01 OGAWA, in vitro. Universidad y Salud, 1(3), 8–14. https://revistas.udenar.edu.co/index.php/usalud/article/view/314/pdf | |
dc.relation.references | Gupta, E., Mishra, P., Mishra, N., Singh, P., & Sheikh, A. (2023). Topic: Utilization of fruit peel for the development of functional fruit peel bar. Food Chemistry Adv, 2(June 2022), 0–5. https://doi.org/10.1016/j.focha.2023.100310 | |
dc.relation.references | Gutiérrez, L. F., Arias, S., Garzón, D., López Velasco, D. M., & Osorio Alturo, A. (2014). Transición vítrea en alimentos: sistemas binarios agua-carbohidratos. Revista Vector, 9, 21–28. http://vector.ucaldas.edu.co/downloads/Vector9_4.pdf | |
dc.relation.references | Hadinia, N., Edalatian Dovom, M. R., & Yavarmanesh, M. (2022). The effect of fermentation conditions (temperature, salt concentration, and pH) with lactobacillus strains for producing Short Chain Fatty Acids. LWT - Food Science and Technology, 165(June), 113709. https://doi.org/10.1016/j.lwt.2022.113709 | |
dc.relation.references | Hasler, C. M., & Brown, A. C. (2009). Position of the American Dietetic Association: functional foods. Journal of the American Dietetic Association, 109(4), 735–746. https://doi.org/10.1016/j.jada.2009.02.023 | |
dc.relation.references | Hutkins, R. (2019). Microbiology and Technology of Fermented Food (Wiley Blac, Vol. 2). John Wiley & Sons, Inc | |
dc.relation.references | ICONTEC. (2009). Productos Agrícolas Panela. In Instituto Colombiano de Normas Técnicas y Certificación (NTC 1311). | |
dc.relation.references | Jackson, P. P., Wijeyesekera, A., Theis, S., van Harsselaar, J., & Rastall, A. R. (2022). Food for thought! Inulin-type fructans: Does the food matrix matter? J Funct Foods, 90(January), 104987. https://doi.org/10.1016/j.jff.2022.104987 | |
dc.relation.references | Jia, J., Zhang, X., Jia, X., Duan, J., Wu, Z., Deng, X., & Ge, J. (2025). Lactic acid fermentation improves rehydration and emulsifying properties of spray-dried egg yolk powder. Food Chemistry, 463(September 2024). https://doi.org/10.1016/j.foodchem.2024.141352 | |
dc.relation.references | Jiang, A., & Westland, S. (2024). Colour Measurement (pp. 33–48). https://doi.org/10.1007/978-3-031-70920-3_3 | |
dc.relation.references | Ju, J. H., Jeon, S. G., Heo, S. Y., Kim, J. S., Jo, M. H., Kim, M. S., Kim, C. H., & Oh, B. R. (2023). Synbiotics production using Lactobacillus reuteri EC01, a strain that produces alternan-type exopolysaccharide. LWT - Food Science and Technology, 182(April), 114814. https://doi.org/10.1016/j.lwt.2023.114814 | |
dc.relation.references | Jurado-Gámez, H. A., Cerón-Córdoba, J. F., & Bolaños-Bolaños, J. (2023). Effect of microencapsulated Lactobacillus reuteri under simulated gastric conditions and its inhibition on Listeria monocytogenes. Revista de Ciencias Agrícolas, 40(1), e1202. https://doi.org/10.22267/rcia.20234001.202 | |
dc.relation.references | Jurado-Gámez, H., Ramírez, C., & Aguirre, D. (2013). Cinética de fermentación de Lactobacillus plantarum en un medio de cultivo enriquecido como potencial probiótico. Veterinaria y Zootecnía, 7(2), 37–53. | |
dc.relation.references | Kanauchi, M. (2019). Lactic Acid Bacteria: Methods and Protocols (Vol. 1887). | |
dc.relation.references | Karasawa, M. M. G., & Mohan, C. (2018a). Fruits as Prospective Reserves of bioactive Compounds: A Review. Natural Products and Bioprospecting, 8(5), 335–346. https://doi.org/10.1007/s13659-018-0186-6 | |
dc.relation.references | Karasawa, M. M. G., & Mohan, C. (2018b). Fruits as Prospective Reserves of bioactive Compounds: A Review. Natural Products and Bioprospecting, 8(5), 335–346. https://doi.org/10.1007/s13659-018-0186-6 | |
dc.relation.references | Kawai, K., Fukami, K., Thanatuksorn, P., Viriyarattanasak, C., & Kajiwara, K. (2011). Effects of moisture content, molecular weight, and crystallinity on the glass transition temperature of inulin. Carbohydrate Polymers, 83(2), 934–939. https://doi.org/10.1016/j.carbpol.2010.09.001 | |
dc.relation.references | Kent, R. M., & Doherty, S. B. (2014). Probiotic bacteria in infant formula and follow-up formula: Microencapsulation using milk and pea proteins to improve microbiological quality. FRIN, 64, 567–576. https://doi.org/10.1016/j.foodres.2014.07.029 | |
dc.relation.references | Kheto, A., Bist, Y., Awana, A., Kaur, S., Kumar, Y., & Sehrawat, R. (2023). Utilization of inulin as a functional ingredient in food : Processing , physicochemical characteristics , food applications , and future research directions. Food Chemistry Adv, 3(March), 100443. https://doi.org/10.1016/j.focha.2023.100443 | |
dc.relation.references | Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., & Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT, 62(1), 847–853. https://doi.org/10.1016/j.lwt.2014.12.007 | |
dc.relation.references | Kong, X. P., Yang, Q., Wang, Q. L., & Chen, H. Q. (2024). Effects of ball milling treated wheat flour and maltodextrin on the texture and oil absorption properties of fried batter-coated cashews and almonds. Food Chemistry, 460, 140627. https://doi.org/10.1016/j.foodchem.2024.140627 | |
dc.relation.references | Kontogiorgos, V. (2024). Colour Chemistry. In Introduction to Food Chemistry (pp. 131–146). Springer International Publishing. https://doi.org/10.1007/978-3-031-53558-1_7 | |
dc.relation.references | Kumar, A., & Singh, S. (2020). The benefit of Indian jaggery over sugar on human health. Dietary Sugar, Salt and Fat in Human Health, 347–359. https://doi.org/10.1016/B978-0-12-816918-6.00016-0 | |
dc.relation.references | Kurozawa, L. E., Park, K. J., & Hubinger, M. D. (2009). Effect of carrier agents on the physicochemical properties of a spray dried chicken meat protein hydrolysate. Journal of Food Engineering, 94(3–4), 326–333. https://doi.org/10.1016/j.jfoodeng.2009.03.025 | |
dc.relation.references | Lacerda, E. C. Q., Calado, V. M. D. A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510. https://doi.org/10.1016/J.CARBPOL.2016.05.093 | |
dc.relation.references | Larrea, V., Morell, P., Quiles, A., & Hernando, I. (2023). Alimentos funcionales: probióticos, prebióticos y simbióticos. Universidad Politecnica de Valencia. | |
dc.relation.references | Laureanti, E. J. G., Paiva, T. S., de Matos Jorge, L. M., & Jorge, R. M. M. (2023). Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. International Journal of Biological Macromolecules, 253(September), 126969. https://doi.org/10.1016/j.ijbiomac.2023.126969 | |
dc.relation.references | Lawless, H. T., & Heymann, H. (2010). Sensory Evaluation of Food (Second Edition). Springer New York. https://doi.org/10.1007/978-1-4419-6488-5 | |
dc.relation.references | Lee, J. S., Ramalingam, S., Jo, I. G., Kwon, Y. S., Bahuguna, A., Oh, Y. S., Kwon, O. J., & Kim, M. (2018). Comparative study of the physicochemical, nutritional, and antioxidant properties of some commercial refined and non-centrifugal sugars. Food Res Int, 109, 614–625. https://doi.org/10.1016/j.foodres.2018.04.047 | |
dc.relation.references | Lepsien, A., Jüptner, A., Scherließ, R., & Schaum, A. (2024). Control oriented modeling for particle size distributions in a spray drying process. IFAC-PapersOnLine, 58(15), 438–443. https://doi.org/10.1016/j.ifacol.2024.08.568 | |
dc.relation.references | Liu, Z., Liu, M., Meng, J., Wang, L., & Chen, M. (2024). A review of the interaction between diet composition and gut microbiota and its impact on associated disease. Journal of Future Foods, 4(3), 221–232. https://doi.org/10.1016/j.jfutfo.2023.07.004 | |
dc.relation.references | Lorenzoni, G., Araújo, M. De, José, A., Queiroz, L., Jacob, E., Smanioto, J., Marlon, É., Flores, D. M., Bona, C. De, Ragagnin, C., & Menezes, D. (2018). Inulin, hi-maize , and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT - Food Science and Technology, 89(May 2017), 128–133. | |
dc.relation.references | Luo, Y., De Souza, C., Ramachandran, M., Wang, S., Yi, H., Ma, Z., Zhang, L., & Lin, K. (2022). Precise oral delivery systems for probiotics: A review. In Journal of Controlled Release (Vol. 352, pp. 371–384). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2022.10.030 | |
dc.relation.references | Luzzi, A., Briata, I. M., Di Napoli, I., Giugliano, S., Di Sabatino, A., Rescigno, M., & Cena, H. (2024). Prebiotics, probiotics, synbiotics and postbiotics to adolescents in metabolic syndrome. Clin Nutr, 43(6), 1433–1446. https://doi.org/10.1016/j.clnu.2024.04.032 | |
dc.relation.references | Mahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105(1), 57–62. https://doi.org/10.1016/j.carbpol.2014.01.042 | |
dc.relation.references | Marcial-Coba, M. S., Saaby, L., Knøchel, S., & Nielsen, D. S. (2019). Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei . FEMS Microbiology Letters, 366(2). https://doi.org/10.1093/femsle/fny290 | |
dc.relation.references | Marco, M. L., Sanders, M. E., Gänzle, M., Arrieta, M. C., Cotter, P. D., De Vuyst, L., Hill, C., Holzapfel, W., Lebeer, S., Merenstein, D., Reid, G., Wolfe, B. E., & Hutkins, R. (2021). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology & Hepatology, 18, 196–208. https://doi.org/10.1038/s41575-020-00390-5 | |
dc.relation.references | Marefati, A., Pitsiladis, A., Oscarsson, E., Ilestam, N., & Bergenståhl, B. (2021). Encapsulation of Lactobacillus reuteri in W1/O/W2 double emulsions: Formulation, storage and in vitro gastro-intestinal digestion stability. LWT - Food Science and Technology, 146, 111423. https://doi.org/10.1016/J.LWT.2021.111423 | |
dc.relation.references | May-Torruco, L. A., Corona-Cruz, A. I., Luna-Jiménez, A. L., González-Cortés, N., & Jiménez-Vera, R. (2020). Sensibilidad y Resistencia a Antibióticos de Cepas Probióticas Empleadas en Productos Comerciales. European Scientific Journal, 16(18), 43–60. https://doi.org/10.19044/esj.2020.v16n18p43 | |
dc.relation.references | Meldrum, O. W., & Yakubov, G. E. (2024). Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. In Critical Reviews in Food Science and Nutrition. Taylor and Francis Ltd. https://doi.org/10.1080/10408398.2024.2390556 | |
dc.relation.references | Minj, S., & Anand, S. (2022). Development of a spray-dried conjugated whey protein hydrolysate powder with entrapped probiotics. J. Dairy Sci., 105(3), 2038–2048. https://doi.org/10.3168/jds.2021-20978 | |
dc.relation.references | Mizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and Beverage Stability and Shelf Life (pp. 482–506). Elsevier. https://doi.org/10.1533/9780857092540.2.482 | |
dc.relation.references | Mohamadzadeh, M., Fazeli, A., Vasheghani-Farahani, E., & Shojaosadati, S. A. (2025). Viability and stability evaluation of microencapsulated Lactobacillus reuteri in polysaccharide-based bionanocomposite. Carbohydrate Polymers, 347(August 2024). https://doi.org/10.1016/j.carbpol.2024.122693 | |
dc.relation.references | Montes C, A., Santacruz B, A., Sañudo D, J., & Pazos M, A. (2003). Efecto in vitro de Lactobacillus casei subsp rhamnosus sobre el crecimiento de un aislado de Heicobacter pylori. Revista Del Centro de Estudios En Salud, 1(4), 5–12. https://revistas.udenar.edu.co/index.php/usalud/article/view/302/pdf | |
dc.relation.references | Montes-Ramírez, L. M. (2013). Efecto de la microencapsulación con agentes prebióticos sobre la viabilidad de microorganismos probióticos (Lactobacillus casei ATCC 393 y Lactobacillus rhamnosus ATCC 9469). https://repositorio.unal.edu.co/handle/unal/11893 | |
dc.relation.references | Morales-Ramos, V., Osorio-Mirón, A., & Rodríguez-Campos, J. (2017). Innovaciones En El Trapiche Panelero: La Producción De Panela Granulada. Agro Productividad, 10(11), 41–47. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/67 | |
dc.relation.references | Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in human health and diseases. Frontiers in Microbiology, 9(APR), 757. https://doi.org/10.3389/fmicb.2018.00757 | |
dc.relation.references | Nath, A., Dutta, D., Kumar, P., & Singh, J. (2015). Review on Recent Advances in Value Addition of Jaggery based Products. Journal of Food Processing & Technology, 06(04), 4–7. https://doi.org/10.4172/2157-7110.1000440 | |
dc.relation.references | Nebesny, E., Żyżelewicz, D., Motyl, I., & Libudzisz, Z. (2007). Dark chocolates supplemented with Lactobacillus strains. European Food Research and Technology, 225(1), 33–42. https://doi.org/10.1007/s00217-006-0379-9 | |
dc.relation.references | Oluwatosin, S. O., Tai, S. L., & Fagan-Endres, M. A. (2022). Sucrose, maltodextrin and inulin efficacy as cryoprotectant, preservative and prebiotic – towards a freeze dried Lactobacillus plantarum topical probiotic. Biotechnol Rep, 33, e00696. https://doi.org/10.1016/j.btre.2021.e00696 | |
dc.relation.references | Paim, D. R. S. F., Costa, S. D. O., Walter, E. H. M., & Tonon, R. V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT - Food Science and Technology, 74, 21–25. https://doi.org/10.1016/j.lwt.2016.07.022 | |
dc.relation.references | Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9 | |
dc.relation.references | Paulo, E. M., Vasconcelos, M. P., Oliveira, I. S., Affe, H. M. de J., Nascimento, R., de Melo, I. S., Roque, M. R. de A., & de Assis, S. A. (2012). An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, 32(4), 710–714. https://doi.org/10.1590/S0101-20612012005000094 | |
dc.relation.references | Pedersen, M. B., Gaudu, P., Lechardeur, D., Petit, M. A., & Gruss, A. (2012). Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annual Review of Food Science and Technology, 3(1), 37–58. https://doi.org/10.1146/annurev-food-022811-101255 | |
dc.relation.references | Peighambardoust, S. H., Golshan Tafti, A., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: a review. Trends in Food Science & Technology, 22(5), 215–224. https://doi.org/10.1016/j.tifs.2011.01.009 | |
dc.relation.references | Pérez-Martínez, P., Ros, E., Pedro-Botet, J., Civeira, F., Pascual, V., Garcés, C., Solá, R., Pérez-Jiménez, F., & Mostaza, J. M. (2023). Functional foods and nutraceuticals in the treatment of hypercholesterolemia: Statement of the Spanish Society of Arteriosclerosis 2023. Clínica e Investigación En Arteriosclerosis (English Edition), 35, 248–261. https://doi.org/10.1016/j.artere.2023.09.003 | |
dc.relation.references | Perez-Sanchez, T., Ruiz-Zarzuela, I., de Blas, I., & Balcazar, J. L. (2013). Probiotics in aquaculture: a current assessment. Reviews in Aquaculture, 5, 1–14. https://doi.org/10.1111/raq.12033 | |
dc.relation.references | Pimentel, T. C., Gomes da Cruz, A., & Deliza, R. (2016). Sensory Evaluation: Sensory Rating and Scoring Methods. In Encyclopedia of Food and Health (pp. 744–749). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00617-6 | |
dc.relation.references | Qiao, F., Wang, S., He, J., Hung, W., Ma, X., Gong, P., Li, J., Sun, T., De Souza, C., Zhang, L., & Lin, K. (2024). Investigating the role of membrane lipid composition differences on spray drying survival in Lactobacillus bulgaricus using non-targeted Lipidomics. Food Chem, 459(April), 140336. https://doi.org/10.1016/j.foodchem.2024.140336 | |
dc.relation.references | Qiu, L., Zhang, M., Tang, J., Adhikari, B., & Cao, P. (2019). Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International, 116, 90–102. https://doi.org/10.1016/j.foodres.2018.12.055 | |
dc.relation.references | Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT - Food Science and Technology, 60(2), 773–780. https://doi.org/10.1016/j.lwt.2014.09.062 | |
dc.relation.references | Rajoka, M. S. R., Mehwish, H. M., Hayat, H. F., Hussain, N., Sarwar, S., Aslam, H., Nadeem, A., & Shi, J. (2019). Characterization, the Antioxidant and Antimicrobial Activity of Exopolysaccharide Isolated from Poultry Origin Lactobacilli. Probiotics and Antimicrobial Proteins, 11(4), 1132–1142. https://doi.org/10.1007/S12602-018-9494-8 | |
dc.relation.references | Ramírez, H. (2018). DESARROLLO Y EVALUACIÓN DE CHOCOLATE EDULCORADO CON PANELA Y RELLENO CON NUEZ DE NOGAL (Juglans neotropica). UNIVERSIDAD NACIONAL TORIBIO RODRÍGUEZ DE MENDOZA DE AMAZONAS. | |
dc.relation.references | Ramírez, N. F., Keefe, G., Dohoo, I., Sánchez, J., Arroyave, O., Cerón, J., Jaramillo, M., & Palacio, L. G. (2014). Herd- and cow-level risk factors associated with subclinical mastitis in dairy farms from the High Plains of the northern Antioquia, Colombia. J Dairy Sci, 97(7), 4141–4150. https://doi.org/10.3168/JDS.2013-6815 | |
dc.relation.references | Rasane, P., Jha, A., & Sharma, N. (2015). Predictive modelling for shelf life determination of nutricereal based fermented baby food. Journal of Food Science and Technology, 52(8), 5003–5011. https://doi.org/10.1007/s13197-014-1545-x | |
dc.relation.references | Rezaei, M., & Netz, R. R. (2021). Water evaporation from solute-containing aerosol droplets: Effects of internal concentration and diffusivity profiles and onset of crust formation. Physics of Fluids, 33(9). https://doi.org/10.1063/5.0060080 | |
dc.relation.references | Rios-Aguirre, S., & Gil-Garzón, M. A. (2021). Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: una revisión. TecnoLógicas, 24(51), e1836. https://doi.org/10.22430/22565337.1836 | |
dc.relation.references | Robertson, G. L. . (2013). Food packaging : principles and practice (3rd ed.). CRC Press. | |
dc.relation.references | Rodriguez, G., Polo, S., Riveros, M., & Buitrago, A. (2019). La Agroindustria Panelera Impulsando El Desarrollo Rural En Colombia (p. 66). Fedepanela - AGROSAVIA | |
dc.relation.references | Rodríguez-Barona, Sneyder., Giraldo, G. I., & Montes, L. M. (2016). Encapsulación de Alimentos Probióticos mediante Liofilización en Presencia de Prebioticos. Información Tecnológica, 27(6), 135–144. https://doi.org/10.4067/S0718-07642016000600014 | |
dc.relation.references | Roselen, M. D., Weber, F., Diaz de Oliverira, P., Rochedo, F., Scherer, R., Fiorentini, A. M., Padilha da Silva, W., & Pieniz, S. (2019). Symbiotic microencapsulation of Lactococcus lactis subsp. lactis R7 using whey and inulin by spray drying. LWT - Food Science and Technology, 115(July), 108411. https://doi.org/doi.org/10.1016/j.lwt.2019.108411 | |
dc.relation.references | Saavedra–Leos, M. Z., Leyva-Porras, C., Alvarez-Salas, C., Longoria-Rodríguez, F., López-Pablos, A. L., González-García, R., & Pérez-Urizar, J. T. (2018). Obtención de polvos de jugo de naranja-maltodextrina sin colapso estructural basado en la temperatura de transición vítrea y grado de polimerización. CYTA J Food, 16(1), 61–69. https://doi.org/10.1080/19476337.2017.1337048 | |
dc.relation.references | Sablania, V., Basak, S., & Bosco, S. J. D. (2023). Effect of spray drying on physical, structural, and functional properties of Murraya koenigii leaf extract. Journal of Food Measurement and Characterization, 17(5), 4672–4683. https://doi.org/10.1007/s11694-023-01992-8 | |
dc.relation.references | Samakradhamrongthai, R. S., Maneechot, S., Wangpankhajorn, P., Jannu, T., & Renaldi, G. (2022). Polydextrose and guar gum as a fat substitute in rice cookies and its physical, textural, and sensory properties. Food Chemistry Adv, 1(May), 100058. https://doi.org/10.1016/j.focha.2022.100058 | |
dc.relation.references | Sánchez, L., Omura, M., Lucas, A., Pérez, T., & Ferreira, C. de L. (2015). Cepas de Lactobacillus spp. con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. Rev. Salud Animal, 37(2), 94–104. http://scielo.sld.cu/pdf/rsa/v37n2/rsa04215.pdf | |
dc.relation.references | Sanchez, N., Cobo, M., Rodríguez-Fontalvo, D., Ruiz-Pardo, R. Y., & Roedl, A. (2024). Unlocking sustainable solutions: Harnessing residual biomass from Colombia’s non-centrifugal sugar chain for green market deployment. Bioresource Technology Reports, 26(May), 101858. https://doi.org/10.1016/j.biteb.2024.101858 | |
dc.relation.references | Santivarangkna, C., Kulozik, U., & Foerst, P. (2008). Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. Journal of Applied Microbiology, 105(1), 1–13. https://doi.org/10.1111/j.1365-2672.2008.03744.x | |
dc.relation.references | Santos, N. C., Almeida, R. L. J., Albuquerque, J. C., de Andrade, E. W. V., Gregório, M. G., Santos, R. M. S., Rodrigues, T. J. A., Carvalho, R. de O., Gomes, M. M. de A., Moura, H. V., de Figueiredo, D. V. P., Araújo, M. A., Lima, V. R. do N., & Mota, M. M. de A. (2024). Optimization of ultrasound pre-treatment and the effect of different drying techniques on antioxidant capacity, bioaccessibility, structural and thermal properties of purple cabbage. Chemical Engineering and Processing - Process Intensification, 201, 109801. https://doi.org/10.1016/j.cep.2024.109801 | |
dc.relation.references | Santos, N. C., Almeida, R. L. J., Monteiro, S. S., de Lima, T. L. B., da Silva Lúcio, A., Nogueira, L. P. da S., Paiva, Y. F., Gregório, M. G., Brito, A. C. de O., da Silva, L. A., de Figueiredo, D. V. P., Silva, R. dos S., Mota, M. M. de A., Pasquali, M. A. de B., de Sousa, S., & Rocha, A. P. T. (2025). Microencapsulating Lacticaseibacillus rhamnosus GG by spray drying using pea protein, pectin, and tapioca flour: Probiotic viability, digestibility and thermal stability. Food and Bioproducts Processing, 150, 207–216. https://doi.org/10.1016/j.fbp.2025.01.011 | |
dc.relation.references | Santos-Rocha, S. J., Mendoza-Ortiz, C., Tobon-Gonzalez, J., Ríos-Estepa, R., & Orozco-Sánchez, F. (2024). Oxygen Transfer Effect on the Growth of Limosilactobacillus reuteri ATCC 53608 and on Its Metabolic Capacity. Current Microbiology, 81(11), 362. https://doi.org/10.1007/s00284-024-03822-6 | |
dc.relation.references | Sarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133 | |
dc.relation.references | Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193–202. https://doi.org/10.1016/j.foodres.2009.09.028 | |
dc.relation.references | Shah, B. R., Li, B., Al Sabbah, H., Xu, W., & Mráz, J. (2020). Effects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsulated formulations. Trends Food Sci Technol, 102(June), 178–192. https://doi.org/10.1016/j.tifs.2020.06.010 | |
dc.relation.references | Sharifi, S., Rezazad-Bari, M., Alizadeh, M., Almasi, H., & Amiri, S. (2021). Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids, 113, 106496. https://doi.org/10.1016/j.foodhyd.2020.106496 | |
dc.relation.references | Shokri, Z., Reza Fazeli, M., Ardjmand, M., Mohammad Mousavi, S., & Gilani, K. (2015). Factors affecting viability of Bifidobacterium bifidum during spray drying. DARU Journal Of Pharmaceutical Sciences, 23(7). | |
dc.relation.references | Shrivastav, P., Verma, A. K., Walia, R., Parveen, R., & Singh, K. A. (2016). Jaggery : a Revolution in the Field of Natural Sweeteners. European Journal of Pharmaceutical and Medical Research, 3(3), 198–202. | |
dc.relation.references | Siemons, I., Politiek, R. G. A., Boom, R. M., van der Sman, R. G. M., & Schutyser, M. A. I. (2020). Dextrose equivalence of maltodextrins determines particle morphology development during single sessile droplet drying. Food Research International, 131, 108988. https://doi.org/10.1016/j.foodres.2020.108988 | |
dc.relation.references | Silva Gonzáles, J. (2020). El negocio de la panela se transforma. LatinPymes, 18–20. | |
dc.relation.references | Singh, N., Kumar, D., Raisuddin, S., & Sahu, A. P. (2008). Genotoxic effects of arsenic: Prevention by functional food-jaggery. Cancer Letters, 268(2), 325–330. https://doi.org/10.1016/j.canlet.2008.04.011 | |
dc.relation.references | SIPA. (2023). Departamentos paneleros: producción de panela - Colombia | |
dc.relation.references | Solís-Fuentes, J. A., Hernández-Ceja, Y., Hernández-Medel, M. del R., García-Gómez, R. S., Bernal-González, M., Mendoza-Pérez, S., & Durán-Domínguez-de-Bazúa, M. del C. (2019a). Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Biosci, 32(July). https://doi.org/10.1016/j.fbio.2019.100444 | |
dc.relation.references | Sørensen, H. M., Rochfort, K. D., Maye, S., MacLeod, G., Brabazon, D., Loscher, C., & Freeland, B. (2022). Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients , 14(14), 1–33. https://doi.org/10.3390/NU14142938 | |
dc.relation.references | Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. (2014). Impact of Milk Protein Type on the Viability and Storage Stability of Microencapsulated Lactobacillus acidophilus NCIMB 701748 Using Spray Drying. Food and Bioprocess Technology, 7(5), 1255–1268. https://doi.org/10.1007/S11947-013-1120-X/TABLES/7 | |
dc.relation.references | Stępień, A., & Grzyb, K. (2023). Comparison of critical storage parameters of the powders containing soy protein isolate and inulin, based on the concepts: Water activity and Temperature of glass transition. International Journal of Biological Macromolecules, 230, 123174. https://doi.org/10.1016/j.ijbiomac.2023.123174 | |
dc.relation.references | Stevens, M. J. A., Vollenweider, S., Meile, L., & Lacroix, C. (2011). 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microbial Cell Factories, 10(61). https://doi.org/10.1186/1475-2859-10-61 | |
dc.relation.references | Thatoi, H., Mohapatra, P. K. Das, Mohapatra, S., & Mondal, K. C. (2020). Microbial Fermentation and Enzyme Technology. In Microbial Fermentation and Enzyme Technology. CRC Press. https://doi.org/10.1201/9780429061257 | |
dc.relation.references | Tovar, I. M., & Parra, L. C. (2020). ESTUDIO DE PREFACTIBILIDAD PARA LA PRODUCCIÓN DE PANELA BAJA EN QUÍMICOS SABORIZADA EN EL MUNICIPIO DE CAMPAMENTO ANTIOQUIA Y COMERCIALIZACIÓN DEL PRODUCTO EN EL VALLE DE ABURRÁ (Issue July). | |
dc.relation.references | Tufarelli, V., & Laudadio, V. (2016). AN OVERVIEW ON THE FUNCTIONAL FOOD CONCEPT: PROSPECTIVES AND APPLIED RESEARCHES IN PROBIOTICS, PREBIOTICS AND SYNBIOTICS. Journal of Experimental Biology and Agricultural Sciences, 4(3). https://doi.org/10.18006/2016.4(3S).273.278 | |
dc.relation.references | Tyagi, S. K., Kamboj, S., Himanshu, Tyagi, N., Narayanan, R., & Tyagi, V. V. (2022). Technological advancements in jaggery-making processes and emission reduction potential via clean combustion for sustainable jaggery production: An overview. Journal of Environmental Management, 301(September 2021). https://doi.org/10.1016/j.jenvman.2021.113792 | |
dc.relation.references | Upadhyaya, A., Bhalerao, P. P., Bhushette, P., Dabade, A., & Sonawane, S. K. (2023). Optimization study of palm jaggery and palm candy - production and process. Applied Food Research, 3(1), 100269. https://doi.org/10.1016/j.afres.2023.100269 | |
dc.relation.references | UPRA. (2023a). Análisis situacional de la cadena agroindustrial de la panela en Colombia. | |
dc.relation.references | UPRA. (2023b). Análisis situacional de la cadena agroindustrial de la panela en Colombia. https://upra.gov.co/es-co/POP_Documentos/DT_A_Situacional_Cadena_Panela.pdf | |
dc.relation.references | Urrutia-Baca, V. H., Escamilla-García, E., de la Garza-Ramos, M. A., Tamez-Guerra, P., Gomez-Flores, R., & Urbina-Ríos, C. S. (2018). In Vitro Antimicrobial Activity and Downregulation of Virulence Gene Expression on Helicobacter pylori by Reuterin. Probiotics and Antimicrobial Proteins, 10(2), 168–175. https://doi.org/10.1007/s12602-017-9342-2 | |
dc.relation.references | Verma, P., Shah, N. G., & Mahajani, S. M. (2019). Why jaggery powder is more stable than solid jaggery blocks. LWT - Food Science and Technology, 110(April), 299–306. https://doi.org/10.1016/j.lwt.2019.04.093 | |
dc.relation.references | Verma, P., Shah, N., & Mahajani, S. (2019a). Effect of sodium hydrosulphite treatment on the quality of non-centrifugal sugar: Jaggery. Food Chemistry, 299(June). https://doi.org/10.1016/j.foodchem.2019.125043 | |
dc.relation.references | Vinderola, G., Ouwehand, A. C., Salminen, S., & Wrigth, A. V. (2019). Lactic Acid Bacteria Microbiological and Fuctional Aspects (Fifth). CRC Press. | |
dc.relation.references | Walz, M., Hirth, T., & Weber, A. (2018). Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 536, 47–52. https://doi.org/10.1016/j.colsurfa.2017.07.072 | |
dc.relation.references | Witt, T., & Stokes, J. R. (2015). Physics of food structure breakdown and bolus formation during oral processing of hard and soft solids. In Current Opinion in Food Science (Vol. 3, pp. 110–117). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2015.06.011 | |
dc.relation.references | Yang, C., Liu, L., Majaw, J. K., Liang, L., & Chen, Y. (2021). Efficacy of Lactobacillus reuteri supplementation therapy for Helicobacter pylori eradication: A meta-analysis of randomised controlled trials. Medicine in Microecology, 100036. https://doi.org/10.1016/J.MEDMIC.2021.100036 | |
dc.relation.references | Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874. https://doi.org/10.1111/1541-4337.12532 | |
dc.relation.references | Yin, M., Chen, M., Yuan, Y., Liu, F., & Zhong, F. (2024). Encapsulation of Lactobacillus rhamnosus GG in whey protein isolate-shortening oil and gum Arabic by complex coacervation: Enhanced the viability of probiotics during spray drying and storage. Food Hydrocoll, 146(July 2023), 109252. https://doi.org/10.1016/j.foodhyd.2023.109252 | |
dc.relation.references | Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. J Food Eng, 283, 110033. https://doi.org/10.1016/J.JFOODENG.2020.110033 | |
dc.relation.references | Zanoelo, M., Barbosa-Dekker, A. M., Dekker, R. F. H., Pereira, E. A., & da Cunha, M. A. A. (2024). Microencapsulation of roasted mate tea extractives with lasiodiplodan (a (1 → 6)-β-D-glucan) and maltodextrin as combined coating materials: A strategic tool to stabilize and protect the bioactive components. International Journal of Biological Macromolecules, 275, 133615. https://doi.org/10.1016/j.ijbiomac.2024.133615 | |
dc.relation.references | Zhang, F., Lu, Y., Zhu, S., Han, F., Wen, G., Tang, P., & Hou, Z. (2024). Mathematical model and numerical investigation of the influence of spray drying parameters on granule sizes of mold powder. Particuology, 85, 280–295. https://doi.org/10.1016/j.partic.2023.06.017 | |
dc.relation.references | Zhang, S., Ni, D., Xu, W., Zhang, W., & Mu, W. (2023). Characterization of a processive inulosucrase from Lactobacillus mulieris for efficient biosynthesis of high-molecular-weight inulin. Enzyme Microb Technol, 164(November 2022), 110186. https://doi.org/10.1016/j.enzmictec.2022.110186 | |
dc.relation.references | Zhao, H., Zhang, F., Chai, J., & Wang, J. (2020). Effect of lactic acid bacteria on Listeria monocytogenes infection and innate immunity in rabbits. Czech Journal of Animal Science, 65(1), 23–30. https://doi.org/10.17221/247/2019-CJAS | |
dc.relation.references | Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107 | |
dc.relation.references | Zhou, L., Huang, Y., Wang, D., Yuan, T., Song, G., Gong, J., Xiao, G., Kim, S. A., & Li, L. (2024). Microencapsulation of Lactobacillus sakei and Lactobacillus rhamnosus in whey protein isolate and sodium hyaluronate for potential food-grade probiotic delivery system. Food Biosci, 61(May), 104784. https://doi.org/10.1016/j.fbio.2024.104784 | |
dc.relation.references | Zimmermann, J. A., Sirini, N., Oliveroa, C. R., Renna, M. S., Signorinic, M. L., Zbrun, M. V., Frizzo, L. S., & Soto, L. P. (2023). Macroencapsulation of Limosilactobacillus reuteri DSPV002C as nutritional supplement for piglets : conditions. Revista Argentina de Microbiología, xxxx, 12. https://doi.org/doi.org/10.1016/j.ram.2023.07.005 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject.agrovoc | Probióticos | |
dc.subject.agrovoc | Maltodextrina | |
dc.subject.agrovoc | Inulina | |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | |
dc.subject.lemb | Panela - Producción - Colombia | |
dc.subject.lemb | Secado por aspersión | |
dc.subject.proposal | Secado por aspersión | spa |
dc.subject.proposal | Limosilactobacillus reuteri | spa |
dc.subject.proposal | panela | spa |
dc.subject.proposal | maltodextrina | spa |
dc.subject.proposal | inulina | spa |
dc.subject.proposal | Spray drying | eng |
dc.subject.proposal | Limosilactobacillus reuteri | eng |
dc.subject.proposal | maltodextrin | eng |
dc.subject.proposal | inulin | eng |
dc.title | Evaluación de la inclusión de Limosilactobacillus reuteri microencapsulado en panela granulada con propiedades probióticas | spa |
dc.title.translated | Evaluation of the inclusion of microcapsulated Limosilactobacillus reuteri in granulated jaggery with probiotic proprieties | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
- Tamaño:
- 3.62 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: