Durability performance assessment of fly ash concrete using fine recycled aggregates

dc.contributor.advisorRíos Fresneda, Camilospa
dc.contributor.advisorLizarazo Marriaga, Juan Manuelspa
dc.contributor.authorBarragán Ramos, Andrés Felipespa
dc.contributor.researchgroupAnálisis, Diseño y Materiales Giesspa
dc.date.accessioned2022-02-11T14:11:37Z
dc.date.available2022-02-11T14:11:37Z
dc.date.issued2021-09-24
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractIn Colombia and internationally, the use of the fine fraction of recycled concrete aggregates (RCA) is a highly restrictive practice due to the negative effect of its use in the mechanical and durability-related properties of new concrete. International research has concluded that a satisfactory compressive strength can be achieved using these aggregates, however, the durability effects related to steel bar corrosion by chlorides have not been extensively assessed. In this research, concrete mixes were produced with an RCA replacement of 0%, 20%, 60% and 100%, using fly ash as a supplementary cementing material to evaluate the physical properties, mechanical performance, chloride permeability and steel rebar corrosion using electrochemical techniques at different specimen ages. Results indicate that while some properties are negatively affected by the inclusion of fine RCA; using fly ash is a highly effective mitigation technique to reduce long-term chloride penetration. It was also concluded that the use of recycled aggregates does not increase reinforcement steel’s corrosion risk. Based on these results, an assessment of different international building codes was performed in order to suggest basic requirements for using recycled aggregates for structural concrete production.eng
dc.description.abstractEn Colombia y el mundo, el uso de la fracción fina de los agregados reciclados derivados del concreto (RCA) es una práctica altamente restringida debido al efecto negativo que tienen los mismos en las propiedades mecánicas y de durabilidad. A pesar de que internacionalmente se ha concluido que pueden obtenerse resistencias satisfactorias usando estos agregados, no se ha estudiado extensamente el efecto que tienen los mismos en las propiedades de durabilidad, específicamente aquellas relacionadas a la corrosión debido a cloruros. En esta investigación, fueron realizadas mezclas de concreto con 0%, 20%, 60% y 100% de sustitución de agregados RCA y ceniza volante como cementante adicional con el fin de evaluar las propiedades físicas, desempeño mecánico, permeabilidad a cloruros y corrosión del acero de refuerzo con técnicas electroquímicas a distintas edades. Los resultados indican que a pesar de que algunas propiedades se ven afectadas negativamente por la inclusión de finos reciclados, la ceniza volante es un mitigador altamente efectivo ante la penetración de cloruros a largo plazo y el uso de agregados reciclados no incrementa significativamente el riesgo de corrosión del acero de refuerzo a pesar de su alta alcalinidad. Basado en estos resultados, fue realizado un análisis de códigos de construcción internacionales con el fin de proponer lineamientos básicos que permitan usar estos agregados para la producción de concreto con fines estructurales. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaMateriales para construcciónspa
dc.format.extent296 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80944
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesB. Estanqueiro, J. Dinis Silvestre, J. de Brito, and M. Duarte Pinheiro, “Environmental life cycle assessment of coarse natural and recycled aggregates for concrete,” Eur. J. Environ. Civ. Eng., vol. 22, no. 4, pp. 429–449, 2018.spa
dc.relation.referencesC. M. Grădinaru, “The Environmental Impact of Concrete Production and the Necessity of its Greening,” Resilient Soc. Multidiscip. Contrib. from Econ. Law, Policy, Eng. Agric. Life Sci. Fields, no. June, 2017.spa
dc.relation.referencesA. Melo, A. Gonçalves, and I. Martins, “Construction and demolition waste generation and management in Lisbon (Portugal),” Resour. Conserv. Recycl. - RESOUR Conserv Recycl, vol. 55, pp. 1252–1264, 2011.spa
dc.relation.referencesJ. Xiao, Recycled Aggregate Concrete Structures. 2018.spa
dc.relation.referencesJ. De Brito, F. Agrela, and R. V. Silva, Construction and Demolition Waste. Elsevier Ltd, 2019.spa
dc.relation.referencesL. W. Zhang, A. O. Sojobi, V. K. R. Kodur, and K. M. Liew, “Effective utilization and recycling of mixed recycled aggregates for a greener environment,” J. Clean. Prod., vol. 236, p. 117600, 2019.spa
dc.relation.referencesB. B. Mukharjee and S. V. Barai, “Mechanical and microstructural characterization of recycled aggregate concrete containing silica nanoparticles,” J. Sustain. Cem. Mater., vol. 6, no. 1, pp. 37–53, 2017.spa
dc.relation.referencesK. P. Verian, W. Ashraf, and Y. Cao, “Properties of recycled concrete aggregate and their influence in new concrete production,” Resour. Conserv. Recycl., vol. 133, no. October 2017, pp. 30–49, 2018.spa
dc.relation.referencesH. Guo et al., “Durability of recycled aggregate concrete – A review,” Cem. Concr. Compos., vol. 89, pp. 251–259, 2018.spa
dc.relation.referencesW. H. Kwan, M. Ramli, K. J. Kam, and M. Z. Sulieman, “Influence of the amount of recycled coarse aggregate in concrete design and durability properties,” Constr. Build. Mater., vol. 26, no. 1, pp. 565–573, 2012.spa
dc.relation.referencesD. Matias, J. De Brito, A. Rosa, and D. Pedro, “Mechanical properties of concrete produced with recycled coarse aggregates - Influence of the use of superplasticizers,” Constr. Build. Mater., vol. 44, pp. 101–109, 2013.spa
dc.relation.referencesJ. Xiao, W. Li, Y. Fan, and X. Huang, “An overview of study on recycled aggregate concrete in China (1996-2011),” Constr. Build. Mater., vol. 31, pp. 364–383, 2012.spa
dc.relation.referencesJ. Pacheco, J. de Brito, C. Chastre, and L. Evangelista, “Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates,” Constr. Build. Mater., vol. 201, pp. 110–120, 2019.spa
dc.relation.referencesR. Kurda, J. De Brito, and J. D. Silvestre, “Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios,” Mag. Concr. Res., vol. 70, no. 4, pp. 204–216, 2018.spa
dc.relation.referencesF. Rodrigues, M. T. Carvalho, L. Evangelista, and J. De Brito, “Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants,” J. Clean. Prod., vol. 52, pp. 438–445, 2013.spa
dc.relation.referencesS. Lotfi, M. Eggimann, E. Wagner, R. Mróz, and J. Deja, “Performance of recycled aggregate concrete based on a new concrete recycling technology,” Constr. Build. Mater., vol. 95, pp. 243–256, 2015.spa
dc.relation.referencesD. Pedro, J. de Brito, and L. Evangelista, “Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement,” Constr. Build. Mater., vol. 147, pp. 803–814, 2017.spa
dc.relation.referencesR. V. V Silva, J. De Brito, R. K. K. Dhir, J. de Brito, and R. K. K. Dhir, “Use of recycled aggregates arising from construction and demolition waste in new construction applications,” J. Clean. Prod., vol. 236, p. 117629, 2019.spa
dc.relation.referencesP. Marco, A conceptual model to design recycled aggregate concrete for structural applications. 2014.spa
dc.relation.referencesV. S. Babu, A. K. Mullick, K. K. Jain, and P. K. Singh, “Strength and durability characteristics of high-strength concrete with recycled aggregate-influence of processing,” J. Sustain. Cem. Mater., vol. 4, no. 1, pp. 54–71, 2014.spa
dc.relation.referencesC. Shi, Y. Li, J. Zhang, W. Li, L. Chong, and Z. Xie, “Performance enhancement of recycled concrete aggregate - A review,” J. Clean. Prod., vol. 112, pp. 466–472, 2016.spa
dc.relation.referencesB. J. Zhan, D. X. Xuan, W. Zeng, and C. S. Poon, “Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete,” Cem. Concr. Compos., vol. 104, no. July, p. 103360, 2019.spa
dc.relation.referencesC. M. Nwakaire, S. P. Yap, C. C. Onn, C. W. Yuen, and H. A. Ibrahim, “Utilisation of recycled concrete aggregates for sustainable highway pavement applications ; a review,” Constr. Build. Mater., vol. 235, p. 117444, 2020.spa
dc.relation.referencesR. Wang, N. Yu, and Y. Li, “Methods for improving the microstructure of recycled concrete aggregate : A review,” Constr. Build. Mater., vol. 242, p. 118164, 2020.spa
dc.relation.referencesK. Mcneil and T. H. Kang, “Recycled Concrete Aggregates : A Review,” vol. 7, no. 1, pp. 61–69, 2013.spa
dc.relation.referencesL. Evangelista and J. De Brito, “Concrete with fine recycled aggregates: A review,” Eur. J. Environ. Civ. Eng., vol. 18, no. 2, pp. 129–172, 2014.spa
dc.relation.referencesM. Pepe, R. D. Toledo Filho, E. A. B. Koenders, and E. Martinelli, “Alternative processing procedures for recycled aggregates in structural concrete,” Constr. Build. Mater., vol. 69, pp. 124–132, 2014.spa
dc.relation.referencesG. Dimitriou, P. Savva, and M. F. Petrou, “Enhancing mechanical and durability properties of recycled aggregate concrete.” 2017.spa
dc.relation.referencesS. M. S. Kazmi, M. J. Munir, Y.-F. Wu, I. Patnaikuni, Y. Zhou, and F. Xing, “Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study,” Cem. Concr. Compos., vol. 104, no. July, p. 103398, 2019.spa
dc.relation.referencesY. Kim, A. Hanif, S. M. S. Kazmi, M. J. Munir, and C. Park, “Properties enhancement of recycled aggregate concrete through pretreatment of coarse aggregates - Comparative assesssment of assorted techniques.” 2018.spa
dc.relation.referencesS. Ismail and M. Ramli, “Engineering properties of treated recycled concrete aggregate (RCA) for structural applications,” Constr. Build. Mater., vol. 44, pp. 464–476, 2013.spa
dc.relation.referencesA. Akbarnezhad, K. C. G. Ong, M. H. Zhang, C. T. Tam, and T. W. J. Foo, “Microwave-assisted beneficiation of recycled concrete aggregates,” Constr. Build. Mater., vol. 25, no. 8, pp. 3469–3479, 2011.spa
dc.relation.referencesH. Choi, M. Lim, H. Choi, R. Kitagaki, and T. Noguchi, “Using Microwave Heating to Completely Recycle Concrete,” J. Environ. Prot. (Irvine,. Calif)., vol. 05, no. 07, pp. 583–596, 2014.spa
dc.relation.referencesK. Bru, S. Touzé, F. Bourgeois, N. Lippiatt, and Y. Ménard, “Assessment of a microwave-assisted recycling process for the recovery of high-quality aggregates from concrete waste,” Int. J. Miner. Process., vol. 126, no. January 2014, pp. 90–98, 2014.spa
dc.relation.referencesM. S. de Juan and P. A. Gutiérrez, “Study on the influence of attached mortar content on the properties of recycled concrete aggregate,” Constr. Build. Mater., vol. 23, no. 2, pp. 872–877, 2009.spa
dc.relation.referencesF. S. Khalid, N. B. Azmi, K. A. S. M. Sumandi, and P. N. Mazenan, “Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement,” AIP Conf. Proc., vol. 1891, no. 2017, 2017.spa
dc.relation.referencesS. Kabir, A. Al-Shayeb, and I. M. Khan, “Recycled Construction Debris as Concrete Aggregate for Sustainable Construction Materials,” Procedia Eng., vol. 145, pp. 1518–1525, 2016.spa
dc.relation.referencesK. Kim, M. Shin, and S. Cha, “Combined effects of recycled aggregate and fly ash towards concrete sustainability,” Constr. Build. Mater., vol. 48, pp. 499–507, 2013.spa
dc.relation.referencesY. Wang, P. Hughes, H. Niu, and Y. Fan, “A new method to improve the propierties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica.” 2019.spa
dc.relation.referencesA. Abd Elhakam, A. E. Mohamed, and E. Awad, “Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete,” Constr. Build. Mater., vol. 35, pp. 421–427, 2012.spa
dc.relation.referencesB. A. Tayeh, D. M. Al, and R. Alyousef, “The utilization of recycled aggregate in high performance concrete : a review,” Integr. Med. Res., vol. 9, no. 4, pp. 8469–8481, 2020.spa
dc.relation.referencesM. Gomes and J. De Brito, “Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance,” Mater. Struct. Constr., vol. 42, no. 5, pp. 663–675, 2009.spa
dc.relation.referencesV. W. Y. Tam, D. Kotrayothar, and J. Xiao, “Long-term deformation behaviour of recycled aggregate concrete,” Constr. Build. Mater., vol. 100, pp. 262–272, 2015.spa
dc.relation.referencesS. Seara-paz, B. González-fonteboa, F. Martínez-abella, and I. González-taboada, “Time-dependent behaviour of structural concrete made with recycled coarse aggregates . Creep and shrinkage,” Constr. Build. Mater., vol. 122, pp. 95–109, 2016.spa
dc.relation.referencesD. Pedro, J. de Brito, and L. Evangelista, “Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties,” Constr. Build. Mater., vol. 154, pp. 294–309, 2017.spa
dc.relation.referencesR. V. Silva, J. De Brito, and R. K. Dhir, “Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production,” Constr. Build. Mater., vol. 65, pp. 201–217, 2014.spa
dc.relation.referencesL. Evangelista and J. De Brito, “Durability of crushed fine recycled aggregate concrete assessed by permeability-related properties,” Mag. Concr. Res., vol. 71, no. 21, pp. 1142–1150, 2019.spa
dc.relation.referencesJ. J. de Oliveira Andrade, E. Possan, J. Z. Squiavon, and T. L. P. Ortolan, “Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste,” Constr. Build. Mater., vol. 161, pp. 70–83, 2018.spa
dc.relation.referencesL. Evangelista, M. Guedes, J. De Brito, A. C. Ferro, and M. F. Pereira, “Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste,” Constr. Build. Mater., vol. 86, pp. 178–188, 2015.spa
dc.relation.referencesS. Ghorbani, S. Sharifi, S. Ghorbani, V. W. Tam, J. de Brito, and R. Kurda, “Effect of crushed concrete waste’s maximum size as partial replacement of natural coarse aggregate on the mechanical and durability properties of concrete,” Resour. Conserv. Recycl., vol. 149, no. November 2018, pp. 664–673, 2019.spa
dc.relation.referencesM. Bravo et al., “Durability performance of concrete with recycled aggregates from construction and demolition waste plants,” Constr. Build. Mater., vol. 77, pp. 357–369, 2015.spa
dc.relation.referencesF. Cartuxo, J. De Brito, L. Evangelista, J. R. Jiménez, and E. F. Ledesma, “Increased durability of concrete made with fine recycled concrete aggregates using superplasticizers,” Materials (Basel)., vol. 9, no. 2, 2016.spa
dc.relation.referencesC. J. Zega and Á. A. Di Maio, “Use of recycled fine aggregate in concretes with durable requirements,” Waste Manag., vol. 31, no. 11, pp. 2336–2340, 2011.spa
dc.relation.referencesL. Evangelista and J. de Brito, “Mechanical behaviour of concrete made with fine recycled concrete aggregates,” Cem. Concr. Compos., vol. 29, no. 5, pp. 397–401, 2007.spa
dc.relation.referencesZ. Guo, C. Chen, D. E. Lehman, W. Xiao, S. Zheng, and B. Fan, “Mechanical and durability behaviours of concrete made with recycled coarse and fine aggregates,” Eur. J. Environ. Civ. Eng., vol. 8189, pp. 1–19, 2017.spa
dc.relation.referencesL. Evangelista and J. de Brito, “Durability performance of concrete made with fine recycled concrete aggregates,” Cem. Concr. Compos., vol. 32, no. 1, pp. 9–14, 2010.spa
dc.relation.referencesS. Sadati and K. H. Khayat, “Field performance of concrete pavement incorporating recycled concrete aggregate,” Constr. Build. Mater., vol. 126, pp. 691–700, 2016.spa
dc.relation.referencesC. Thomas, J. Setién, J. A. Polanco, P. Alaejos, and M. Sánchez De Juan, “Durability of recycled aggregate concrete,” Constr. Build. Mater., vol. 40, pp. 1054–1065, 2013.spa
dc.relation.referencesS. Omary, E. Ghorbel, and G. Wardeh, “Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties,” Constr. Build. Mater., vol. 108, pp. 163–174, 2016.spa
dc.relation.referencesY. A. Fawzy, “Impact of recycled gravel obtained from low or medium concrete grade on concrete properties,” HBRC J., vol. 14, no. 1, pp. 1–8, 2018.spa
dc.relation.referencesL. Ferreira, J. De Brito, and M. Barra, “Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties,” Mag. Concr. Res., vol. 63, no. 8, pp. 617–627, 2011.spa
dc.relation.referencesA. Barbudo, J. De Brito, L. Evangelista, M. Bravo, and F. Agrela, “Influence of water-reducing admixtures on the mechanical performance of recycled concrete,” J. Clean. Prod., vol. 59, pp. 93–98, 2013.spa
dc.relation.referencesL. Ferreira, J. de Brito, and M. Barra, “Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties,” Mag. Concr. Res., vol. 63, no. 8, pp. 617–627, 2011.spa
dc.relation.referencesC. Ulsen, H. Kahn, G. Hawlitschek, E. A. Masini, S. C. Angulo, and V. M. John, “Production of recycled sand from construction and demolition waste,” Constr. Build. Mater., vol. 40, pp. 1168–1173, 2013.spa
dc.relation.referencesR. V. Silva, J. De Brito, and N. Saikia, “Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates,” Cem. Concr. Compos., vol. 35, no. 1, pp. 23–31, 2013.spa
dc.relation.referencesC. Alexandridou, G. N. Angelopoulos, and F. A. Coutelieris, “Mehcanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants.” 2017.spa
dc.relation.referencesJ. Xiao, D. Lu, and J. Ying, “Durability of recycled aggregate concrete: An overview,” J. Adv. Concr. Technol., vol. 11, no. 12, pp. 347–359, 2013.spa
dc.relation.referencesR. Kurda, J. de Brito, and J. D. Silvestre, “Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties,” Constr. Build. Mater., vol. 157, pp. 554–572, 2017.spa
dc.relation.referencesM. J. McGinnis, M. Davis, A. de la Rosa, B. D. Weldon, and Y. C. Kurama, “Strength and stiffness of concrete with recycled concrete aggregates,” Constr. Build. Mater., vol. 154, pp. 258–269, 2017.spa
dc.relation.referencesD. Pedro, J. De Brito, and L. Evangelista, “Influence of the use of recycled concrete aggregates from different sources on structural concrete,” Constr. Build. Mater., vol. 71, no. 2014, pp. 141–151, 2014.spa
dc.relation.referencesC. C. Fan, R. Huang, H. Hwang, and S. J. Chao, “The effects of different fine recycled concrete aggregates on the properties of Mortar,” Materials (Basel)., vol. 8, no. 5, pp. 2658–2672, 2015.spa
dc.relation.referencesZ. Li, Advanced Concrete Technology. Wiley, 2011.spa
dc.relation.referencesA. André, J. De Brito, A. Rosa, and D. Pedro, “Durability performance of concrete incorporating coarse aggregates from marble industry waste,” J. Clean. Prod., vol. 65, pp. 389–396, 2014.spa
dc.relation.referencesR. V. Silva, R. Neves, J. De Brito, and R. K. Dhir, “Carbonation behaviour of recycled aggregate concrete,” Cem. Concr. Compos., vol. 62, pp. 22–32, 2015.spa
dc.relation.referencesS. Macdonald, Concrete: Building Pathology. Wiley, 2008.spa
dc.relation.referencesA. M. Neville and J. J. Brooks, Concrete Technology. Prentice Hall, 2010.spa
dc.relation.referencesS.-C. Kou and C.-S. Poon, “Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash,” Cem. Concr. Compos., vol. 37, pp. 12–19, 2013.spa
dc.relation.referencesR. Kurda, J. De Brito, and J. D. Silvestre, “Carbonation of concrete made with high amount of fly ash and recycled concrete aggregates for utilization of CO2,” J. CO2 Util., vol. 29, no. November 2018, pp. 12–19, 2019.spa
dc.relation.referencesM. C. Limbachiya, T. Leelawat, and R. K. Dhir, “RCA CONCRETE: A STUDY OF PROPERTIES IN THE FRESH STATE, STRENGTH DEVELOPMENT AND DURABILITY,” in Sustainable Construction: Use of Recycled Concrete Aggregate, pp. 227–237.spa
dc.relation.referencesS. C. Kou, “Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete,” ASCE Libr., 2007.spa
dc.relation.referencesS. C. Kou, C. S. Poon, and H. W. Wan, “Properties of concrete prepared with low-grade recycled aggregates,” Constr. Build. Mater., vol. 36, pp. 881–889, 2012.spa
dc.relation.referencesR. Kurda, J. de Brito, and J. D. Silvestre, “Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash,” Cem. Concr. Compos., vol. 95, no. October 2018, pp. 169–182, 2019.spa
dc.relation.referencesJ. Sim and C. Park, “Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate,” Waste Manag., vol. 31, no. 11, pp. 2352–2360, 2011.spa
dc.relation.referencesR. V. Silva, J. De Brito, R. Neves, and R. Dhir, “Prediction of chloride ion penetration of recycled aggregate concrete,” Mater. Res., vol. 18, no. 2, pp. 427–440, 2015.spa
dc.relation.referencesS. Taner, C. Meyer, and S. Herfellner, “Effects of internal curing on the strength , drying shrinkage and freeze – thaw resistance of concrete containing recycled concrete aggregates,” Constr. Build. Mater., vol. 91, pp. 288–296, 2015.spa
dc.relation.referencesY. Cheng, X. Shang, and Y. Zhang, “Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles,” 2017.spa
dc.relation.referencesS. Lotfi, J. Deja, P. Rem, R. Mróz, E. Van Roekel, and H. Van Der Stelt, “Mechanical recycling of EOL concrete into high-grade aggregates,” "Resources, Conserv. Recycl., vol. 87, pp. 117–125, 2014.spa
dc.relation.referencesJ. Wu, X. Jing, and Z. Wang, “Uni-axial compressive stress-strain relation of recycled coarse aggregate concrete after freezing and thawing cycles,” Constr. Build. Mater., vol. 134, pp. 210–219, 2017.spa
dc.relation.referencesZ. Li, Z. Deng, H. Yang, and H. Wang, “Bond behavior between recycled aggregate concrete and deformed rebar after Freeze-thaw damage,” Constr. Build. Mater., vol. 250, p. 118805, 2020.spa
dc.relation.referencesA. Richardson, K. Coventry, and J. Bacon, “Freeze / thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete,” J. Clean. Prod., vol. 19, no. 2–3, pp. 272–277, 2011.spa
dc.relation.referencesJ. A. Bogas, J. De Brito, and D. Ramos, “Freeze e thaw resistance of concrete produced with fi ne recycled concrete aggregates,” J. Clean. Prod., vol. 115, pp. 294–306, 2016.spa
dc.relation.referencesR. Zaharieva, “Frost resistance of recycled aggregate concrete,” vol. 34, pp. 1927–1932, 2004.spa
dc.relation.referencesK. Liu, J. Yan, Q. Hu, Y. Sun, and C. Zou, “Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete,” Constr. Build. Mater., vol. 106, pp. 264–273, 2016.spa
dc.relation.referencesA. Gokce, S. Nagataki, T. Saeki, and M. Hisada, “Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate: The role of air content in demolished concrete,” Cem. Concr. Res., vol. 34, no. 5, pp. 799–806, 2004.spa
dc.relation.referencesM. Bravo, J. De Brito, J. Pontes, and L. Evangelista, “Shrinkage and creep performance of concrete with recycled aggregates from CDW plants,” Mag. Concr. Res., vol. 69, no. 19, pp. 974–995, 2017.spa
dc.relation.referencesR. V. Silva, J. De Brito, and R. K. Dhir, “Prediction of the shrinkage behavior of recycled aggregate concrete: A review,” Constr. Build. Mater., vol. 77, pp. 327–339, 2015.spa
dc.relation.referencesY. Geng, Y. Wang, and J. Chen, “Creep behaviour of concrete using recycled coarse aggregates obtained from source concrete with different strengths,” Constr. Build. Mater., vol. 128, pp. 199–213, 2016.spa
dc.relation.referencesY. Geng, M. Zhao, H. Yang, and Y. Wang, “Creep model of concrete with recycled coarse and fine aggregates that accounts for creep development trend difference between recycled and natural aggregate concrete,” Cem. Concr. Compos., vol. 103, no. October 2018, pp. 303–317, 2019.spa
dc.relation.referencesF. Cartuxo, J. De Brito, L. Evangelista, J. R. Jiménez, and E. F. Ledesma, “Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizer,” Constr. Build. Mater., vol. 89, pp. 36–47, 2015.spa
dc.relation.referencesS. Manzi, C. Mazzotti, and M. C. Bignozzi, “Short and long-term behavior of structural concrete with recycled concrete aggregate,” Cem. Concr. Compos., vol. 37, no. 1, pp. 312–318, 2013.spa
dc.relation.referencesC. Thomas, J. De Brito, A. Cimentada, and J. A. Sainz-aja, “Macro- and micro- properties of multi-recycled aggregate concrete,” J. Clean. Prod., vol. 245, p. 118843, 2020.spa
dc.relation.referencesP. Zhu, Y. Hao, H. Liu, D. Wei, L. Shaofeng, and L. Gu, “Durability evaluation of three generations of 100% repeatedly recycled coarse aggregate concrete.” 2019.spa
dc.relation.referencesV. Abreu, L. Evangelista, and J. de Brito, “The effect of multi-recycling on the mechanical performance of coarse recycled aggregates concrete.” 2018.spa
dc.relation.referencesA. Poursaee, Corrosion of Steel in Concrete Structures, 1st ed. Elsevier, 2016.spa
dc.relation.referencesS. F. U. Ahmed, “Properties of Concrete Containing Recycled Fine Aggregate and Fly Ash,” J. Solid Waste Technol. Manag., vol. 40, no. 1, pp. 70–78, 2014.spa
dc.relation.referencesQ. Ren, Y. Wu, X. Zhang, and Y. Wang, “Effects of fly ash on the mechanical and impact properties of recycled aggregate concrete after exposure to high temperature,” Eur. J. Environ. Civ. Eng., vol. 0, no. 0, pp. 1–17, 2019.spa
dc.relation.referencesR. V. Silva, J. de Brito, and R. K. Dhir, “Comparative analysis of existing prediction models on the creep behaviour of recycled aggregate concrete,” Eng. Struct., vol. 100, pp. 31–42, 2015.spa
dc.relation.referencesM. Limbachiya, M. S. Meddah, and Y. Ouchagour, “Use of recycled concrete aggregate in fly-ash concrete,” Constr. Build. Mater., vol. 27, no. 1, pp. 439–449, 2012.spa
dc.relation.referencesK. P. Verian, “Using recycled concrete as coarse aggregate in pavement concrete,” no. April 2012, p. 192, 2012.spa
dc.relation.referencesB. Fonteboa and F. Abella, “Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties,” Build. Environ., vol. 43, pp. 429–437, 2008.spa
dc.relation.referencesM. Gesoglu, E. Güneyisi, H. Ö. Öz, I. Taha, and M. T. Yasemin, “Failure characteristics of self-compacting concretes made with recycled aggregates,” Constr. Build. Mater., vol. 98, pp. 334–344, 2015.spa
dc.relation.referencesY. Wang, P. Hughes, H. Niu, and Y. Fan, “A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica,” J. Clean. Prod., vol. 236, p. 117602, 2019.spa
dc.relation.referencesM. Stefanidou and I. Papayianni, “Influence of nano-SiO2 on the Portland cement pastes,” Compos. Part B Eng., vol. 43, pp. 2706–2710, 2012.spa
dc.relation.referencesZ. Luo, W. Li, V. W. Y. Tam, J. Xiao, and S. P. Shah, “Current progress on nanotechnology application in recycled aggregate concrete,” J. Sustain. Cem. Mater., vol. 8, no. 2, pp. 79–96, 2019.spa
dc.relation.referencesJ. Ying, B. Zhou, and J. Xiao, “Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2,” Constr. Build. Mater., vol. 150, pp. 49–55, 2017.spa
dc.relation.referencesP. Hosseini, A. Booshehrian, and A. Madari, “Developing Concrete Recycling Strategies by Utilization of Nano-SiO2 Particles,” Waste and Biomass Valorization, vol. 2, no. 3, pp. 347–355, 2011.spa
dc.relation.referencesM. A. Chandak and P. Y. Pawade, “Influence of Metakaolin in Concrete Mixture : A Review,” no. May, pp. 37–41, 2018.spa
dc.relation.referencesP. min Zhan et al., “Utilization of nano-metakaolin in concrete: A review,” J. Build. Eng., vol. 30, no. January, p. 101259, 2020.spa
dc.relation.referencesR. Muduli and B. B. Mukharjee, “Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach,” Constr. Build. Mater., vol. 233, p. 117223, 2020.spa
dc.relation.referencesJ. Xie et al., “Effect of nano metakaolin on compressive strength of recycled concrete,” Constr. Build. Mater., vol. 256, 2020.spa
dc.relation.referencesA. Sadeghi-Nik, J. Berenjian, S. Alimohammadi, O. Lotfi-Omran, A. Sadeghi-Nik, and M. Karimaei, “The Effect of Recycled Concrete Aggregates and Metakaolin on the Mechanical Properties of Self-Compacting Concrete Containing Nanoparticles,” Iran. J. Sci. Technol. - Trans. Civ. Eng., vol. 43, no. s1, pp. 503–515, 2019.spa
dc.relation.referencesR. Muduli and B. B. Mukharjee, “Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete,” J. Clean. Prod., vol. 209, pp. 398–414, 2019.spa
dc.relation.referencesV. N. Patel, C. D. Modhera, M. M. Chavda, and M. M. Panseriya, “Effect of metakaolin on mechanical properties of different grades concretes inclusion of recycled aggregates from C & D waste and ceramic waste,” Int. J. Eng. Technol., vol. 7, no. 3, pp. 138–142, 2018.spa
dc.relation.referencesN. K. Bui, T. Satomi, and H. Takahashi, “Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature,” Constr. Build. Mater., vol. 184, pp. 361–373, 2018.spa
dc.relation.referencesK. Kapoor, S. P. Singh, and B. Singh, “Permeability of self-compacting concrete made with recycled concrete aggregates and metakaolin,” J. Sustain. Cem. Mater., vol. 6, no. 5, pp. 293–313, 2017.spa
dc.relation.referencesN. Singh and S. P. Singh, “Carbonation and electrical resistance of self compacting concrete made with recycled concrete aggregates and metakaolin,” Constr. Build. Mater., vol. 121, pp. 400–409, 2016.spa
dc.relation.referencesN. Singh and S. P. Singh, “Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates,” Constr. Build. Mater., vol. 127, pp. 828–842, 2016.spa
dc.relation.referencesA. Mardani-Aghabaglou, C. Yüksel, A. Beglarigale, and K. Ramyar, “Improving the mechanical and durability performance of recycled concrete aggregate-bearing mortar mixtures by using binary and ternary cementitious systems,” Constr. Build. Mater., vol. 196, pp. 295–306, 2019.spa
dc.relation.referencesV. S. Babu, A. K. Mullick, K. K. Jain, and P. K. Singh, “Strength and durability characteristics of high-strength concrete with recycled aggregate-influence of processing,” J. Sustain. Cem. Mater., vol. 4, no. 1, pp. 54–71, 2014.spa
dc.relation.referencesS.-C. Kou, B. Zhan, and C.-S. Poon, “Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates,” Cem. Concr. Compos., vol. 45, pp. 22–28, 2014.spa
dc.relation.referencesB. Zhan, C. S. Poon, Q. Liu, S. Kou, and C. Shi, “Experimental study on CO2 curing for enhancement of recycled aggregate properties,” Constr. Build. Mater., vol. 67, pp. 3–7, 2014.spa
dc.relation.referencesB. Lu, C. Shi, Z. Cao, M. Guo, and J. Zheng, “Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete,” J. Clean. Prod., vol. 233, pp. 421–428, 2019.spa
dc.relation.referencesZ. Zhao, S. Wang, L. Lu, and C. Gong, “Evaluation of pre-coated recycled aggregate for concrete and mortar,” Constr. Build. Mater., vol. 43, pp. 191–196, 2013.spa
dc.relation.referencesF. Martirena, T. Castaño, A. Alujas, R. Orozco-Morales, L. Martinez, and S. Linsel, “Improving quality of coarse recycled aggregates through cement coating,” J. Sustain. Cem. Mater., vol. 6, no. 1, pp. 69–84, 2017.spa
dc.relation.referencesY. C. Liang, Z. M. Ye, F. Vernerey, and Y. Xi, “Development of processing methods to improve strength of concrete with 100% recycled coarse aggregate,” J. Mater. Civ. Eng., vol. 27, no. 5, pp. 1–9, 2015.spa
dc.relation.referencesJ. Qiu, D. Q. S. Tng, and E.-H. Yang, “Surface treatment of recycled concrete aggregates through microbial carbonate precipitation,” Constr. Build. Mater., vol. 57, pp. 144–150, 2014.spa
dc.relation.referencesA. M. Grabiec, J. Klama, D. Zawal, and D. Krupa, “Modification of recycled concrete aggregate by calcium carbonate biodeposition,” Constr. Build. Mater., vol. 34, pp. 145–150, 2012.spa
dc.relation.referencesZ. Feng, Y. Zhao, W. Zeng, Z. Lu, and S. P. Shah, “Using microbial carbonate precipitation to improve the properties of recycled fine aggregate and mortar,” Constr. Build. Mater., vol. 230, p. 116949, 2020.spa
dc.relation.referencesK. K. Sahoo, M. Arakha, P. Sarkar, D. P. Robin, and S. Jha, “Enhancement of properties of recycled coarse aggregate concrete using bacteria,” Int. J. Smart Nano Mater., vol. 7, no. 1, pp. 22–38, 2016.spa
dc.relation.referencesJ. Wang, B. Vandevyvere, S. Vanhessche, J. Schoon, N. Boon, and N. De Belie, “Microbial carbonate precipitation for the improvement of quality of recycled aggregates,” J. Clean. Prod., vol. 156, pp. 355–366, 2017.spa
dc.relation.referencesV. W. Y. Tam, X. F. Gao, and C. M. Tam, “Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach,” Cem. Concr. Res., vol. 35, no. 6, pp. 1195–1203, 2005.spa
dc.relation.referencesV. W. Y. Tam and C. M. Tam, “Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach,” J. Mater. Sci., vol. 42, no. 10, pp. 3592–3602, May 2007.spa
dc.relation.referencesJ. P. Barreto Delgado and D. A. Cufiño Melo, “Influencia del porcentaje de agregado reciclado en la penetrabilidad al ión cloruro y en la permeabilidad al agua para concretos reciclados,” Univ. La Gran Colomb., no. c, 2014.spa
dc.relation.referencesA. Laverde and N. Torres Castellanos, “Propiedades mecáncias, eléctricas y de durabilidad de concretos con agregados reciclados,” p. 87, 2017.spa
dc.relation.referencesS. A. Gil, J. J. M. Barrero, and C. D. T. Bello, “Evaluación de la resistencia a la compresión y flexión de concretos de 28 MPA con RA y Ceniza Volante,” Univ. La Gran Colomb., vol. 53, no. 9, pp. 1689–1699, 2017.spa
dc.relation.referencesN. R. Bojacá Castañeda, “Propiedades Mecánicas Y De Durabilidad De Concretos Con Agregado Reciclado,” ECI, p. 119, 2013.spa
dc.relation.referencesA. F. de J. Muñoz Cuellar, “Carbonatación acelerada de agregados finos reciclados y su influencia en mezclas de mortero,” Tesis Maest. Esc. Colomb. Ing. Julio Garavito Colomb. Bogotá, p. 296, 2017.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 6421 - Agregados gruesos reciclados para uso en el concreto hidráulico.” ICONTEC - Instituto Colombiano de Normas Técnicas, 2021.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 6422 - Ensayo de clasificación de los componentes de los agregados gruesos reciclados,” 2021.spa
dc.relation.referencesA. Poursaee, “Corrosion of steel bars in saturated Ca(OH)2 and concrete pore solution,” Chall. J. Concr. Res. Lett., vol. 1, no. 3, 2010.spa
dc.relation.referencesA. Poursaee and C. M. Hansson, “Reinforcing steel passivation in mortar and pore solution,” Cem. Concr. Res., vol. 37, no. 7, pp. 1127–1133, 2007.spa
dc.relation.referencesO. M. Jensen, P. F. Hansen, A. M. Coats, and F. P. Glasser, “Chloride ingress in cement paste and mortar,” Cem. Concr. Res., vol. 29, no. 9, pp. 1497–1504, 1999.spa
dc.relation.referencesP. Ghods, O. B. Isgor, G. McRae, and T. Miller, “The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement,” Cem. Concr. Compos., vol. 31, no. 1, pp. 2–11, 2009.spa
dc.relation.referencesA. J. Bard and M. V Mirkin, Scanning electrochemical microscopy. CRC Press, 2001.spa
dc.relation.referencesB. Martín-Pérez, H. Zibara, R. D. Hooton, and M. D. A. Thomas, “Study of the effect of chloride binding on service life predictions,” Cem. Concr. Res., vol. 30, no. 8, pp. 1215–1223, 2000.spa
dc.relation.referencesS. Ahmad, “Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review,” Cem. Concr. Compos., vol. 25, no. 4, pp. 459–471, 2003.spa
dc.relation.referencesK. Tuutti, “Corrosion of Steel in Concrete,” Swedish Cem. Concr. Res. Inst., 1982.spa
dc.relation.referencesD. A. Jones, Principles and Prevention of Corrosion. Prentice Hall, 1996.spa
dc.relation.referencesJ. L. Marriaga and P. Claisse, “The influence of the blast furnace slag replacement on chloride penetration in concrete,” Ing. e Investig., vol. 31, no. 2, pp. 38–47, 2011.spa
dc.relation.referencesNT Build 492, “Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments,” Measurement, pp. 1–8, 1999.spa
dc.relation.referencesR. J. Torrent, “A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site,” Mater. Struct., vol. 25, no. 6, pp. 358–365, 1992.spa
dc.relation.referencesT. Vieira, A. Alves, J. de Brito, J. R. Correia, and R. V. Silva, “Durability-related performance of concrete containing fine recycled aggregates from crushed bricks and sanitary ware,” Mater. Des., vol. 90, pp. 767–776, 2016.spa
dc.relation.referencesASTM International, “ASTM C1157 / C1157M-20a, Standard Performance Specification for Hydraulic Cement,” 2020.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 121 - Especificación de desempeño para cemento hidráulico,” 2021.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 220 - Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado,” 2021.spa
dc.relation.referencesASTM International, “ASTM C109 / C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” 2021.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 111 - Cementos. Especificaciones para la mesa de flujo usada en ensayos de cemento hidráulico,” 2021.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 3937 - CEMENTOS. ARENA NORMALIZADA PARA ENSAYOS DE CEMENTO HIDRÁULICO,” 2019.spa
dc.relation.referencesASTM International, “ASTM C778-17, Standard Specification for Standard Sand,” 2017.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 1776 - MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO TOTAL DE HUMEDAD EVAPORABLE POR SECADO DE LOS AGREGADOS,” 2019.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 176 - Método de ensayo para determinar la densidad relativa (gravedad específica) y la absorción del agregado grueso,” 2019.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 92 - MÉTODO DE ENSAYO PARA LA DETERMINACIÓN DE LA DENSIDAD VOLUMÉTRICA (MASA UNITARIA) Y VACÍOS EN AGREGADOS,” 2019.spa
dc.relation.referencesASTM International, “ASTM C566-19, Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying,” 2019.spa
dc.relation.referencesASTM International, “ASTM C127- Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., pp. 1–5, 2004.spa
dc.relation.referencesASTM International, “ASTM C29, Standard Test Method for Bulk Density (‘ Unit Weight ’) and Voids in Aggregate,” ASTM Int., vol. i, no. c, pp. 1–5, 2009.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 78 - MÉTODO DE ENSAYO PARA DETERMINAR POR LAVADO EL MATERIAL QUE PASA EL TAMIZ 75 µm (No. 200) EN AGREGADOS MINERALES,” 2019.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 237 - Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino,” 2020.spa
dc.relation.referencesASTM International, “ASTM C117-17, Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing,” 2017.spa
dc.relation.referencesASTM International, “ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” 2015.spa
dc.relation.referencesASTM International, “ASTM C87 / C87M-17, Standard Test Method for Effect of Organic Impurities in Fine Aggregate on Strength of Mortar,” 2017.spa
dc.relation.referencesASTM International, “ASTM C136 / C136M-19, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” vol. i, no. 200, pp. 1–5, 2019.spa
dc.relation.referencesASTM International, “ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates,” 2018.spa
dc.relation.referencesASTM International, “ASTM C295 / C295M-19, Standard Guide for Petrographic Examination of Aggregates for Concrete,” 2019.spa
dc.relation.referencesICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 3773 - Guía para la inspección petrográfica de agregados para concreto,” 1995.spa
dc.relation.referencesB. Fournier and M.-A. Bérubé, “Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications,” Can. J. Civ. Eng., vol. 27, no. 2, pp. 167–191, 2011.spa
dc.relation.referencesM. B. Santos, J. De Brito, and A. S. Silva, “A review on alkali-silica reaction evolution in recycled aggregate concrete,” Materials (Basel)., vol. 13, no. 11, 2020.spa
dc.relation.referencesASTM International, “ASTM C1260-14 Standard Test Method for Potential Alkali Reactivity of Aggregates ( Mortar-Bar Method),” Annu. B. ASTM Stand. Vol. 04.02, pp. 1–5, 2014.spa
dc.relation.referencesASTM International, “ASTM C1567-21, Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method),” Annu. B. ASTM Stand., vol. 04.02, pp. 774–778, 2021.spa
dc.relation.referencesY. Zhu, A. Zahedi, L. F. M. Sanchez, B. Fournier, and S. Beauchemin, “Overall assessment of alkali-silica reaction affected recycled concrete aggregate mixtures derived from construction and demolition waste,” Cem. Concr. Res., vol. 142, no. November 2020, p. 106350, 2021.spa
dc.relation.referencesC. Trottier, R. Ziapour, A. Zahedi, L. Sanchez, and F. Locati, “Microscopic characterization of alkali-silica reaction (ASR) affected recycled concrete mixtures induced by reactive coarse and fine aggregates,” Cem. Concr. Res., vol. 144, no. March, p. 106426, 2021.spa
dc.relation.referencesASTM International, “ASTM D7348-13, Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues,” 2013.spa
dc.relation.referencesASTM International, “ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” 2019.spa
dc.relation.referencesASTM International, “ASTM C494 / C494M-19, Standard Specification for Chemical Admixtures for Concrete,” 2019.spa
dc.relation.referencesACI - American Concrete Institute, “ACI PRC-211.1-91: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete,” 2002.spa
dc.relation.referencesASTM International, “ASTM C192 / C192M-19, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory,” pp. 1–8, 2007.spa
dc.relation.referencesASTM International, “ASTM C143 / C143M-20, Standard Test Method for Slump of Hydraulic-Cement Concrete,” 2020.spa
dc.relation.referencesASTM International, “ASTM C511-19, Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes,” 2019.spa
dc.relation.referencesASTM International, “ASTM C39 / C39M-21, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” 2021.spa
dc.relation.referencesASTM International, “ASTM C469 / C469M-14e1, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” 2014.spa
dc.relation.referencesASTM International, “ASTM C1202-19, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” 2019.spa
dc.relation.referencesASTM International, “ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” 2013.spa
dc.relation.referencesSwiss Society of Engineers and Architects, “SIA 262/1 - Construction en béton - Spécifications complémentaires,” 2013.spa
dc.relation.referencesASTM International, “ASTM G59-97(2020), Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements,” 2020.spa
dc.relation.referencesR. López et al., “Durabilidad De La Infraestructura De Concreto Reforzado Expuesta a Diferentes Ambientes Urbanos De México,” vol. 292, no. July 2017, p. 149, 2006.spa
dc.relation.referencesG. H. N. Suarez, “Propiedades mecánicas y de durabilidad del concreto elaborado con agregados finos reciclados sometidos a carbonatación acelerada,” ECI, vol. 4, pp. 9–15, 2017.spa
dc.relation.referencesD. M. Rosero Alvarez, “Propuesta de guía de uso de los agregados reciclados en colombia provenientes de rcd, basado en normativa internacional y en el desarrollo de investigaciones de universidades colombianas,” Univ. Nac. Colomb., 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembHormigónspa
dc.subject.lembConcreteeng
dc.subject.lembAgregados (Materiales de Construcción)spa
dc.subject.lembAggregates (building materials)eng
dc.subject.lembConcrete constructioneng
dc.subject.lembConstrucciones de hormigónspa
dc.subject.proposalDurabilidad del concretospa
dc.subject.proposalCorrosión en concretospa
dc.subject.proposalRecycled concreteeng
dc.subject.proposalConcrete’s durabilityeng
dc.subject.proposalSteel rebar corrosioneng
dc.subject.proposalAgregados recicladosspa
dc.subject.proposalConcreto recicladospa
dc.subject.proposalRecycled aggregateseng
dc.titleDurability performance assessment of fly ash concrete using fine recycled aggregateseng
dc.title.translatedEvaluación de la durabilidad de concreto con ceniza volante incorporando agregados finos recicladosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026296186.2021.pdf
Tamaño:
9.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: