Validation of the NOνA experiment 2023-tuning on simulated neutrino-matter interactions
dc.contributor.advisor | Arrieta Díaz, Enrique | |
dc.contributor.advisor | Sandoval Usme, Carlos Eduardo | |
dc.contributor.author | Cortés Parra, Camilo Andrés | |
dc.contributor.researchgroup | FENyX UN | spa |
dc.date.accessioned | 2025-04-23T13:14:55Z | |
dc.date.available | 2025-04-23T13:14:55Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | NOνA es un experimento de oscilación de neutrinos de base larga que emplea un diseño de dos detectores para estudiar las oscilaciones de neutrinos muónicos en neutrinos electrónicos a lo largo de una distancia de 810 km. El Detector Cercano (ND, por sus siglas en inglés) mide el espectro y la composición del haz de neutrinos antes de que ocurran las oscilaciones, lo cual se compara posteriormente con el espectro energético de neutrinos oscilados observado en el Detector Lejano (FD). En el ND, los neutrinos se detectan mediante sus interacciones con los núcleos pesados presentes en el material del detector. NOνA utiliza el generador de eventos de neutrinos GENIE para simular estas interacciones neutrino-núcleo. Sin embargo, la predicción por defecto de GENIE no reproduce adecuadamente los datos observados en el ND. Para subsanar esta discrepancia, NOνA desarrolló un ajuste específico de los modelos de interacción de neutrinos dentro de la versión 3.0.6 de GENIE, con el fin de minimizar las diferencias entre las predicciones simuladas y los datos experimentales recolectados en el ND. Esta disertación evalúa el ajuste realizado por NOνA en 2023 a las simulaciones de secciones eficaces de interacción neutrino-materia de GENIE, mediante una comparación entre datos y simulaciones en el ND. El análisis empleó conjuntos de datos que comprenden $2.55\times10^{21}$ protones en blanco (POT) en modo haz de neutrinos y $1.14\times10^{21}$ POT en modo haz de antineutrinos. El ajuste realizado por NOνA a las simulaciones de interacciones neutrino-materia concuerda con los datos del ND dentro de la banda de error de una desviación estándar, aunque sobreestima las interacciones cargadas de neutrinos muónicos y antineutrinos en aproximadamente un 6 % y 9 %, respectivamente. Se observaron discrepancias notables en la región energética dominada por interacciones de tipo cuasi-elástico. Las incertidumbres sistemáticas asociadas a la modelización de la sección eficaz de interacción de neutrinos, en particular aquellas relacionadas con interacciones cuasi-elásticas, contribuyeron significativamente al error global en las simulaciones. Además, el algoritmo de reconstrucción empleado por NOνA para la clasificación de partículas mostró una tasa considerable de identificaciones erróneas entre piones cargados y protones, así como una tendencia a omitir piones o protones adicionales en eventos simulados con múltiples partículas (Texto tomado de la fuente). | spa |
dc.description.abstract | NOνA is a long-baseline neutrino oscillation experiment that utilizes a two-detector design to study the oscillations of muon neutrinos into electron neutrinos over a baseline of 810 km. The Near Detector (ND) measures the neutrino beam spectrum and composition before oscillation, which is then compared to the oscillated neutrino energy spectrum observed in the Far Detector (FD). In the ND, the neutrinos are detected through their interactions with the heavy target nuclei within the detector. NOνA employs the GENIE neutrino event generator for simulating these neutrino-nucleus interactions. However, the default GENIE prediction does not adequately reproduce the ND data. To address this, NOνA developed a tune of the neutrino interaction models within GENIE version 3:0:6 to minimize discrepancies between the simulated predictions and the observed data in the ND. This dissertation tests the NOνA’s 2023 tune of the GENIE neutrino cross-section simulations by performing a data/simulations comparison for the ND. The analysis employed datasets comprising $2.55\times10^{21}$ protons-on-target (POT) in neutrino beam mode and $1.14\times10^{21}$ POT in antineutrino beam mode. The NOνA tuning of neutrino-matter interaction simulations matches with ND data within the $1\sigma$ error band, overestimating muon neutrino and antineutrino charged current interactions by approximately 6 % and 9 %, respectively. Discrepancies were observed in the energy region dominated by Quasi-Elastic-like interactions. Systematic uncertainties associated with the modeling of the neutrino cross-section, particularly those pertaining Quasi-Elastic like interactions, contributed considerably to the overall error in the simulations. Furthermore, the reconstruction algorithm used in NOνA for particle classification demonstrated significant misidentifications between charged pions and protons, as well as a tendency to overlook additional pions or protons in multi-particle simulated events. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Física de Neutrinos Experimental | spa |
dc.format.extent | xxv, 132 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88088 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | B. Pontecorvo, “Mesonium and antimesonium”, Zhur. Eksptl’. i Teoret. Fiz. 33, 549–551 (1957). | spa |
dc.relation.references | B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge”, Zhur. Eksptl’. i Teoret. Fiz. 34, 247–248 (1958). | spa |
dc.relation.references | R. Davis Jr, D. S. Harmer, and K. C. Hoffman, “Search for neutrinos from the sun”, Phys. Rev. Lett. 20, 1205–1209 (1968). | spa |
dc.relation.references | S. King, “Neutrino mass”, Cont. Phys. 48, 195–211 (2007). | spa |
dc.relation.references | M. Fukugita and T. Yanagida, “Barygenesis without grand unification”, Phys. Lett. B. 174, 45–47 (1986). | spa |
dc.relation.references | S. Davidson, E. Nardi, and Y. Nir, “Leptogenesis”, Phys. Rep. 466, 105–177 (2008). | spa |
dc.relation.references | Fermilab, NOvA experiment, Accessed: 2024-07-22, https : / / novaexperiment . fnal . gov. | spa |
dc.relation.references | M. A. Acero et al. (NOvA Collaboration), Eur. Phys. J. C. 80, 1–19 (2020). | spa |
dc.relation.references | N. M. Coyle, S. W. Li, and P. A. Machado, “The impact of neutrino-nucleus interaction modeling on new physics searches”, J. High. Energ. Phys. 2022, 1–25 (2022). | spa |
dc.relation.references | L. Alvarez-Ruso et al., “NuSTEC white paper: status and challenges of neutrino–nucleus scattering”, Prog. Part. Nucl. Phys. 100, 1–68 (2018). | spa |
dc.relation.references | J. A. Formaggio and G. P. Zeller, “From eV to EeV: neutrino cross sections across energy scales”, Rev. Mod. Phys. 84, 1307–1341 (2012). | spa |
dc.relation.references | A. S. Kronfeld, D. G. Richards, W. Detmold, R. Gupta, H.-W. Lin, K.-F. Liu, A. S. Meyer, R. Sufian, and S. Syritsyn, “Lattice QCD and neutrino-nucleus scattering”, Eur. Phys. J. A. 55, 1–18 (2019). | spa |
dc.relation.references | T. Golan, C. Juszczak, and J. T. Sobczyk, “Effects of final-state interactions in neutrinonucleus interactions”, Phys. Rev. C. 86, 015505 (2012). | spa |
dc.relation.references | C. Llewellyn Smith, “Neutrino reactions at accelerator energies”, Phys. Rep. 3, 261–379 (1972). | spa |
dc.relation.references | D. Rein and L. M. Sehgal, “Neutrino-excitation of baryon resonances and single pion production”, Ann. of Phys. 133, 79–153 (1981). | spa |
dc.relation.references | D. Rein and L. M. Sehgal, “Coherent π0 production in neutrino reactions”, Nucl. Phys. B. 223, 29–44 (1983). | spa |
dc.relation.references | M. Martini, M. Ericson, G. Chanfray, and J. Marteau, “Unified approach for nucleon knockout and coherent and incoherent pion production in neutrino interactions with nuclei”, Phys. Rev. C. 80, 065501 (2009). | spa |
dc.relation.references | R. Slobodrian, “Final-state interactions”, Rep. Prog. Phys. 34, 175 (1971). | spa |
dc.relation.references | B. Abi, R. Acciarri, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z. Ahmad, J. Ahmed, T. Alion, S. A. Monsalve, et al. (DUNE Collaboration), “Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume II: DUNE physics”, arXiv:2002.03005 (2020). | spa |
dc.relation.references | K. Abe, T. Abe, H. Aihara, Y. Fukuda, Y. Hayato, K. Huang, A. Ichikawa, M. Ikeda, K. Inoue, H. Ishino, et al. (Hyper-Kamiokande Collaboration), “Letter of intent: the Hyper- Kamiokande experiment—detector design and physics potential—”, arXiv:1109.3262 (2011). | spa |
dc.relation.references | P. Deka, J. Singh, N. Sarma, and K. Bora, “Uncertainties in the oscillation parameters measurement due to multi-nucleon effects at NOvA experiment”, Nucl. Phys. B. 983, 115903 (2022). | spa |
dc.relation.references | U. Mosel, “Neutrino event generators: foundation, status and future”, J. Phys. G Nucl. Part. Phys. 46, 113001 (2019). | spa |
dc.relation.references | C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, et al. (GENIE Collaboration), “The GENIE neutrino monte carlo generator”, Nucl. Instrum. Meth. A. 614, 87–104 (2010). | spa |
dc.relation.references | GENIE, Event generator & global analysis of neutrino scattering data, Accessed: 2024-07-22, http: //www.genie-mc.org. | spa |
dc.relation.references | Y. Hayato, “Neut”, Nucl. Phys. B. 112, 171–176 (2002). | spa |
dc.relation.references | T. Golan, J. Sobczyk, and J. Żmuda, “NuWro: the Wrocław Monte Carlo generator of neutrino interactions”, Nucl. Phys. B. 229-232, 499 (2012). | spa |
dc.relation.references | K. Abe, C. Andreopoulos, M. Antonova, S. Aoki, A. Ariga, S. Assylbekov, D. Autiero, S. Ban, M. Barbi, G. J. Barker, et al. (T2K Collaboration), “Measurement of coherent π+ production in low energy neutrino-carbon scattering”, Phys. Rev. Lett. 117, 192501 (2016). | spa |
dc.relation.references | K. Abe, J. Amey, C. Andreopoulos, M. Antonova, S. Aoki, A. Ariga, Y. Ashida, S. Ban, M. Barbi, G. Barker, et al. (T2K Collaboration), “Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector”, Phys. Rev. D. 96, 092006 (2017). | spa |
dc.relation.references | P. Rodrigues, J. Demgen, E. Miltenberger, L. Aliaga, O. Altinok, L. Bellantoni, A. Bercellie, M. Betancourt, A. Bodek, A. Bravar, et al. (MINERvA Collaboration), “Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer”, Phys. Rev. Lett. 116, 071802 (2016). | spa |
dc.relation.references | R. Gran, M. Betancourt, M. Elkins, P. Rodrigues, F. Akbar, L. Aliaga, D. Andrade, A. Bashyal, L. Bellantoni, A. Bercellie, et al. (MINERvA Collaboration), “Antineutrino charged-current reactions on hydrocarbon with low momentum transfer”, Phys. Rev. Lett. 120, 221805 (2018). | spa |
dc.relation.references | P. Stowell, L. Pickering, C. Wilkinson, C. Wret, F. Akbar, D. Andrade, M. Ascencio, L. Bellantoni, A. Bercellie, M. Betancourt, et al. (MINERvA Collaboration), “Tuning the GENIE pion production model with MINER A data”, Phys. Rev. D. 100, 072005 (2019). | spa |
dc.relation.references | P. Rodrigues, C. Wilkinson, and K. McFarland, “Constraining the GENIE model of neutrinoinduced single pion production using reanalyzed bubble chamber data”, Eur. Phys. J. C. 76, 1–16 (2016). | spa |
dc.relation.references | J. Tena-Vidal, C. Andreopoulos, A. Ashkenazi, C. Barry, S. Dennis, S. Dytman, H. Gallagher, S. Gardiner, W. Giele, R. Hatcher, et al. (GENIE Collaboration), “Neutrino-nucleon crosssection model tuning in GENIE v3”, Phys. Rev. D. 104, 072009 (2021). | spa |
dc.relation.references | J. Tena-Vidal, C. Andreopoulos, C. Barry, S. Dennis, S. Dytman, H. Gallagher, S. Gardiner, W. Giele, R. Hatcher, O. Hen, et al. (GENIE Collaboration), “Hadronization model tuning in GENIE v3”, Phys. Rev. D. 105, 012009 (2022). | spa |
dc.relation.references | K. Bays et al., NOvA cross-section modeling internal technical note for production 5.1, NOvA Internal Document. DocDB 61559-v8, (2024). | spa |
dc.relation.references | J. Wolcott, New results from NOvA with 10 years of data, NOvA Internal Document. DocDB 62708-v4, (2024). | spa |
dc.relation.references | Neutrino, XXXI international conference on neutrino physics and astrophysics, Accessed: 2024-07- 29, https://neutrino2024.org. | spa |
dc.relation.references | C. Giunti and C. W. Kim, Fundamentals of neutrino physics and astrophysics (Oxford University Press, 2007). | spa |
dc.relation.references | T. P. Cheng and L. F. Li, Gauge theory of elementary particle physics (Oxford University Press, 1984). | spa |
dc.relation.references | P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13, 508–509 (1964). | spa |
dc.relation.references | P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145, 1156–1163 (1966). | spa |
dc.relation.references | F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett. 13, 321–323 (1964). | spa |
dc.relation.references | F. Halzen and A. D. Martin, Quarks and leptons: an introductory course in modern particle physics (John Wiley & Sons, Inc., 1991). | spa |
dc.relation.references | S. L. Glashow, “Partial-symmetries of weak interactions”, Nucl. Phys. 22, 579–588 (1961). | spa |
dc.relation.references | L. Landau, “On the conservation laws for weak interactions”, Nucl. Phys. 3, 127–131 (1957). | spa |
dc.relation.references | T. D. Lee and C. N. Yang, “Question of parity conservation in weak interactions”, Phys. Rev. 104, 254–258 (1956). | spa |
dc.relation.references | A. Salam, “On parity conservation and neutrino mass”, Nuovo Cim. 5, 299–301 (1957). | spa |
dc.relation.references | Y. Fukuda et al. (Super-Kamiokande Collaboration), “Evidence for oscillation of atmospheric neutrinos”, Phys. Rev. Lett. 81, 1562–1567 (1998). | spa |
dc.relation.references | Q. R. Ahmad et al. (SNO Collaboration), “Measurement of the rate of νe +d -> p+p+e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory”, Phys. Rev. Lett. 87, 071301 (2001). | spa |
dc.relation.references | S. Eliezer and A. R. Swift, “Experimental consequences of νe - νμ mixing in neutrino beams”, Nucl. Phys. B. 105, 45–51 (1976). | spa |
dc.relation.references | Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles”, Prog. Theo. Phys. 28, 870–880 (1962). | spa |
dc.relation.references | P. Lipari, “Introduction to neutrino physics”, 10.5170/CERN-2003-003.115 (2003). | spa |
dc.relation.references | E. K. Akhmedov and A. Y. Smirnov, “Paradoxes of neutrino oscillations”, Phys. Atom. Nuclei. 72, 1363–1381 (2009). | spa |
dc.relation.references | E. K. Akhmedov and J. Kopp, “Neutrino oscillations: quantum mechanics vs. quantum field theory”, J. High. Energ. Phys. 2010, 1–41 (2010). | spa |
dc.relation.references | L. Wolfenstein, “Neutrino oscillations in matter”, Phys. Rev. D. 17, 2369–2374 (1978). | spa |
dc.relation.references | N. J. Baker, P. L. Connolly, S. A. Kahn, M. J. Murtagh, R. B. Palmer, N. P. Samios, and M. Tanaka, “Total cross sections for νμn and νμp charged-current interactions in the 7-foot bubble chamber”, Phys. Rev. D. 25, 617–623 (1982). | spa |
dc.relation.references | D. Baranov, A. Bugorsky, A. Ivanilov, V. Kochetkov, V. Konyushko, V. Korablev, V. Korotkov, V. Kurbakov, E. Kuznetsov, V. Makeev, et al., “Measurement of the νμN total cross section at 2-30 GeV in a skat neutrino experiment”, Phys. Lett. B. 81, 255–257 (1979). | spa |
dc.relation.references | S. Ciampolillo, B. Degrange, M. Dewit, T. François, D. Haidt, M. Jaffre, C. Longuemare, C. Matteuzzi, F. Mattioli, J. Pattison, et al., “Total cross section for neutrino charged current interactions at 3 GeV and 9 GeV”, Phys. Lett. B. 84, 281–284 (1979). | spa |
dc.relation.references | G. D. M. Vázquez, “Charged-current neutrino interactions with nucleons and nuclei at intermediate energies”, PhD Thesis (Universidad de Sevilla, 2017). | spa |
dc.relation.references | J. T. Suhonen, “Value of the axial-vector coupling strength in β and ββ decays: a review”, Front. Phys. 5, 55 (2017). | spa |
dc.relation.references | E. Hernández, J. Nieves, and M. J. V. Vacas, “Neutrino induced coherent pion production off nuclei and the partial conservation of the axial current”, Phys. Rev. D. 80, 013003 (2009). | spa |
dc.relation.references | R. Devi and B. Potukuchi, “Pion production in νμ charged current interactions on 12Ar in Deep Underground Neutrino Experiment”, https://doi.org/10.48550/arXiv.2208. 14643 (2022). | spa |
dc.relation.references | K. Abe et al. (T2K Collaboration), “Measurements of the νμ and barνμ-induced coherent charged pion production cross sections on 12C by the T2K experiment”, Phys. Rev. D. 108, 092009 (2023). | spa |
dc.relation.references | D. Rein, “Angular distribution in neutrino-induced single pion production processes”, Z. Phys. C - Particles and Fields. 35, 43–64 (1987). | spa |
dc.relation.references | M. S. Athar, A. Fatima, and S. Singh, “Neutrinos and their interactions with matter”, Prog. Part. Nucl. Phys. 129, 104019 (2023). | spa |
dc.relation.references | A. Bodek and T. Cai, “Removal energies and final state interaction in lepton nucleus scattering”, Eur. Phys. J. C. 79, 1–23 (2019). | spa |
dc.relation.references | K. Saito and T. Uchiyama, “Effect of the fermi motion on nuclear structure functions and the EMC effect”, Z. Physik. A. 322, 299–307 (1985). | spa |
dc.relation.references | Y. S. Tsai, “Pair production and bremsstrahlung of charged leptons”, Rev. Mod. Phys. 46, 815–851 (1974). | spa |
dc.relation.references | M. S. Athar and S. K. Singh, The physics of neutrino interactions (Cambridge University Press, 2020). | spa |
dc.relation.references | T. Katori, “Meson exchange current (MEC) models in neutrino interaction generators”, in AIP conference proceedings, Vol. 1663, 1 (AIP Publishing, 2015). | spa |
dc.relation.references | S. Dytman, “Final state interactions in neutrino-nucleus experiments”, Acta Phys. Pol. B. 40 (2009). | spa |
dc.relation.references | C. Maieron, J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and C. F. Williamson, “Superscaling of non-quasielastic electron-nucleus scattering”, Phys. Rev. C. 80, 035504 (2009). | spa |
dc.relation.references | F. Di Lodovico, R. B. Patterson, M. Shiozawa, and E. Worcester, “Experimental considerations in long-baseline neutrino oscillation measurements”, Annu. Rev. Nucl. Part. Sci. 73, 69–93 (2023). | spa |
dc.relation.references | M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, “NuFIT: three-flavour global analyses of neutrino oscillation experiments”, Universe 7 (2021). | spa |
dc.relation.references | R. Workman, V. Burkert, V. Crede, E. Klempt, U. Thoma, L. Tiator, K. Agashe, G. Aielli, B. Allanach, et al. (Particle Data Group), “Review of particle physics”, Prog. Theo. Exp. Phys. 2022, 083C01 (2022). | spa |
dc.relation.references | T. Wester, K. Abe, C. Bronner, Y. Hayato, K. Hiraide, K. Hosokawa, K. Ieki, M. Ikeda, J. Kameda, Y. Kanemura, et al. (Super-Kamiokande Collaboration), “Atmospheric neutrino oscillation analysis with neutron tagging and an expanded fiducial volume in Super- Kamiokande I–V”, Phys. Rev. D. 109, 072014 (2024). | spa |
dc.relation.references | D. S. Ayres et al., “The NO A technical design report”, 10.2172/935497 (2007). | spa |
dc.relation.references | Fermilab, Concepts rookie book, Accessed: 2024-04-08, https://operations.fnal.gov/ rookie_books/concepts.pdf. | spa |
dc.relation.references | P. Adamson et al., “The NuMI neutrino beam”, NIM - A 806, 279–306 (2016). | spa |
dc.relation.references | Fermilab, Fermilab’s accelerator complex, Accessed: 2024-04-08, https://www.fnal.gov/ pub/science/particle-accelerators/accelerator-complex.html. | spa |
dc.relation.references | A. Cooleybeck, Blessing package for ND all POT plots, NOvA Internal Document. DocDB 62927- v1, (2024). | spa |
dc.relation.references | K. Sachdev, “Muon neutrino to electron neutrino oscillation in NOvA”, PhD Thesis (University of Minnesota, 2015). | spa |
dc.relation.references | M. A. Acero et al. (NOvA Collaboration), “Measurement of νμ charged-current inclusive π0 production in the NOvA near detector”, Phys. Rev. D. 107, 112008 (2023). | spa |
dc.relation.references | C. Grupen, “Physics of particle detection”, in AIP conference proceedings, Vol. 536, 1 (AIP Publishing, 2000). | spa |
dc.relation.references | S. Mufson et al., “Liquid scintillator production for the NO A experiment”, NIM - A 799, 1–9 (2015). | spa |
dc.relation.references | Kuraray, Plastic scintillating fibers (materials and structures), Accessed: 2024-05-21, http:// kuraraypsf.jp/psf/. | spa |
dc.relation.references | Hamamatsu, Si photodiodes:S1227 series, Accessed: 2024-05-21, https://www.hamamatsu. com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ ssd/s1227_series_kspd1036e.pdf. | spa |
dc.relation.references | M. Groh, “Constraints on neutrino oscillation parameters from neutrinos and antineutrinos with machine learning”, PhD Thesis (Indiana University Bloomington, 2021). | spa |
dc.relation.references | Fermilab, The NOvA neutrino experiment, Accessed: 2024-04-08, https://news.fnal.gov/ wp-content/uploads/nova.pdf. | spa |
dc.relation.references | M. Del Tutto and G. Kafka, Blessing package - beam simulation plots, NOvA Internal Document. DocDB 13524-v6, (2016). | spa |
dc.relation.references | Fermilab, Fermilab experiment sees neutrinos change over 500 miles, Accessed: 2024-04-08, https: //news.fnal.gov/2015/08/fermilab-experiment-sees-neutrinos-changeover- 500-miles/. | spa |
dc.relation.references | Fermilab, Gotta catch ’em all: new NOvA results with neutrinos and antineutrinos, Accessed: 2024- 04-08, https : / / news . fnal . gov / 2019 / 11 / gotta - catch - em - all - new - nova - results-with-neutrinos-and-antineutrinos/. | spa |
dc.relation.references | M. Martinez, “Constraining neutrino interaction uncertainties for oscillation measurements in the NOvA experiment using near detector data”, PhD Thesis (Iowa State University, 2023). | spa |
dc.relation.references | V. Mikola, “Improving the NOvA 3-flavour neutrino oscillation analysis”, PhD Thesis (University College London, 2023). | spa |
dc.relation.references | A. Norman, R. Kwarciany, G. Deuerling, and N. Wilcer, “The NOvA timing system: a system for synchronizing a long baseline neutrino experiment”, J. Phys. Conf. Ser. 396, 012034 (2012). | spa |
dc.relation.references | M. Judah, “An analysis of noise in the NOvA near detector”, Master’s Thesis (Colorado State University, 2016). | spa |
dc.relation.references | Fermilab, NOvA screens, Accessed: 2024-05-21, https : / / nova - nusoft . fnal . gov / shift/screens/. | spa |
dc.relation.references | Fermilab, G4NuMI - NuMI beam simulation, Accessed: 2024-04-08, https://cdcvs.fnal. gov/redmine/projects/numi-beam-sim/wiki/G4numi. | spa |
dc.relation.references | S. Agostinelli et al., “Geant4 — a simulation toolkit”, NIM - A 506, 250–303 (2003). | spa |
dc.relation.references | L. Aliaga et al., “Neutrino flux predictions for the numi beam”, Phys. Rev. D. 94, 092005 (2016). | spa |
dc.relation.references | S. E. Kopp, “Accelerator neutrino beams”, Phys. Rep. 439, 101–159 (2007). | spa |
dc.relation.references | M. Sorel, “Results and status from the HARP and MIPP hadron production experiments”, J. Phys. Conf. Ser. 136, 022027 (2008). | spa |
dc.relation.references | J. M. Paley et al., “Measurement of charged pion production yields off the numi target”, Phys. Rev. D. 90, 032001 (2014). | spa |
dc.relation.references | R. Brun and F. Rademakers, “Root — an object oriented data analysis framework”, NIM - A 389, 81–86 (1997). | spa |
dc.relation.references | A. S. Meyer, M. Betancourt, R. Gran, and R. J. Hill, “Deuterium target data for precision neutrino-nucleus cross sections”, Phys. Rev. D. 93, 113015 (2016). | spa |
dc.relation.references | A. Bodek and U. K. Yang, “Higher twist, W scaling, and effective LO PDFs for lepton scattering in the few GeV region”, J. Phys. G.: Nucl. Part. Phys. 29, 1899 (2003). | spa |
dc.relation.references | T. Yang, C. Andreopoulos, H. Gallagher, K. Hofmann, and P. Kehayias, “A hadronization model for few-GeV neutrino interactions”, Eur. Phys. J. C. 63, 1–10 (2009). | spa |
dc.relation.references | A. Bodek and J. L. Ritchie, “Further studies of Fermi-motion effects in lepton scattering from nuclear targets”, Phys. Rev. D. 24, 1400–1402 (1981). | spa |
dc.relation.references | J. Nieves, J. E. Amaro, and M. Valverde, “Inclusive quasielastic charged-current neutrinonucleus reactions”, Phys. Rev. C. 70, 055503 (2004). | spa |
dc.relation.references | C. Berger and L. M. Sehgal, “Lepton mass effects in single pion production by neutrinos”, Phys. Rev. D. 76, 113004 (2007). | spa |
dc.relation.references | C. Berger and L. M. Sehgal, “Partially conserved axial vector current and coherent pion production by low energy neutrinos”, Phys. Rev. D. 79, 053003 (2009). | spa |
dc.relation.references | R. Gran, J. Nieves, F. Sanchez, and M. J. V. Vacas, “Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV”, Phys. Rev. D. 88, 113007 (2013). | spa |
dc.relation.references | M. Dolce, H. Gallagher, and J. Wolcott, Central value tuning and uncertainties for hN FSI model in GENIE 3, NO A Internal Document. DocDB 43724-v4, (2020). | spa |
dc.relation.references | F. James and M. Roos, “Minuit - a system for function minimization and analysis of the parameter errors and correlations”, Comput. Phys. Commun. 10, 343–367 (1975). | spa |
dc.relation.references | L. Salcedo, E. Oset, M. Vicente-Vacas, and C. Garcia-Recio, “Computer simulation of inclusive pion nuclear reactions”, Nucl. Phys. A. 484, 557–592 (1988). | spa |
dc.relation.references | M. Dolce, “Constraining neutrino oscillation and interaction parameters with the NO A near detector and far detector data using Markov chain Monte Carlo”, PhD Thesis (Tufts University, 2023). | spa |
dc.relation.references | D. Pershey, J. Huang, and M. Jugah, TDSlicer technote, NO A Internal Document. DocDB 27689-v5, (2020). | spa |
dc.relation.references | A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks”, Science 344, 1492–1496 (2014). | spa |
dc.relation.references | R. C. Prim, “Shortest connection networks and some generalizations”, BSTJ 36, 1389– 1401 (1957). | spa |
dc.relation.references | L. A. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform voting scheme”, Pattern Recognit. 41, 299–314 (2008). | spa |
dc.relation.references | M. Ohlsson, C. Peterson, and A. L. Yuille, “Track finding with deformable templates — the elastic arms approach”, Comput. Phys. Commun. 71, 77–98 (1992). | spa |
dc.relation.references | M. Baird, J. Bian, M. Messier, E. Niner, D. Rocco, and K. Sachdev, “Event reconstruction techniques in NOvA”, in J. Phys.: Conf. Ser. Vol. 664, 7 (IOP Publishing, 2015), p. 072035. | spa |
dc.relation.references | G. Davies, Reconstruction event displays, NOvA Internal Document. DocDB 21152-v1, (2017). | spa |
dc.relation.references | R. Krishnapuram and J. M. Keller, “A possibilistic approach to clustering”, IEEE Trans. Fuzzy Syst. 1, 98–110 (1993). | spa |
dc.relation.references | J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms (Springer Science & Business Media, 2013). | spa |
dc.relation.references | R. Frühwirth, “Application of Kalman filtering to track and vertex fitting”, NIM - A 262, 444–450 (1987). | spa |
dc.relation.references | M. D. Baird, “An analysis of muon neutrino disappearance from the NuMI beam using an optimal track fitter”, PhD Thesis (Indiana University, 2015). | spa |
dc.relation.references | B. Rebel, A window tracking algorithm for cosmic ray muons, NOvA Internal Document. DocDB 15977-v1, (2016). | spa |
dc.relation.references | F. Psihas, “Measurement of long baseline neutrino oscillations and improvements from deep learning”, PhD Thesis (Indiana University, 2018). | spa |
dc.relation.references | Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition”, Neural Comput 1, 541–551 (1989). | spa |
dc.relation.references | A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, and P. Vahle, “A convolutional neural network neutrino event classifier”, JINST 11, P09001 (2016). | spa |
dc.relation.references | J. Porter, ReMId retraining 2019 technote, NOvA Internal Document. DocDB 42277-v1, (2019). | spa |
dc.relation.references | Y. Coadou, “Boosted decision trees and applications”, in EPJ web of conferences, Vol. 55 (EDP Sciences, 2013), p. 02004. | spa |
dc.relation.references | C. Backhouse, The CAFAna framework, NOvA Internal Document. DocDB 9222-v4, (2016). | spa |
dc.relation.references | I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: enabling scalable virtual organizations”, Int. J. High Perform. Comput. Appl. 15, 200–222 (2001). | spa |
dc.relation.references | C. Backhouse, “The CAFAna framework for neutrino analysis”, arXiv:2203.13768, https: //doi.org/10.48550/arXiv.2203.13768 (2022). | spa |
dc.relation.references | T. Olson, “Measurement of d2σ/dqdEavail and 2p2h contribution using charged current νμ interactions in the NOvA near detector”, PhD Thesis (Tufts University, 2021). | spa |
dc.relation.references | Y. Zhang, Ana2020 numu FHC event displays, NOvA Internal Document. DocDB 45826-v2, (2021). | spa |
dc.relation.references | E. Catano-Mur, N. Nayak, A. Sutton, and K. Warburton, Event selection for the 2020 3-flavor analysis, NO A Internal Document. DocDB 44040-v2, (2020). | spa |
dc.relation.references | Fermilab, NOvA live event display, Accessed: 2024-07-21, https://nusoft.fnal.gov/ nova/public/. | spa |
dc.relation.references | L. Aliaga, L. Cremonesi, and J. Paley, Measurement of the double-differential cross section of muonneutrino charged-current interactions with low hadronic energy in the NOvA near detector, NOvA Internal Document. DocDB 59477-v4, (2023). | spa |
dc.relation.references | A. Mann and T. Olson, Measurement of d2σ/dqdEavail in charged current νμ-nucleus interaction at <Eν> = 1.86 GeV using the NOvA near detector, NOvA Internal Document. DocDB 56534- v10, (2023). | spa |
dc.relation.references | M. S. Athar and J. G. Morfin, “Neutrino (antineutrino)–nucleus interactions in the shallowand deep-inelastic scattering regions”, J. Phys. G Nucl. Part. Phys. 48, 034001 (2021). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.subject.ddc | 530 - Física::539 - Física moderna | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.lemb | Neutrinos | spa |
dc.subject.proposal | Neutrino Physics | eng |
dc.subject.proposal | Neutrino-nucleus interactions | eng |
dc.subject.proposal | NOνA Experiment | eng |
dc.subject.proposal | Neutrino cross-section | eng |
dc.subject.proposal | Física de neutrinos | spa |
dc.subject.proposal | Interacciones neutrino-núcleo | spa |
dc.subject.proposal | Experimento NOνA | spa |
dc.subject.proposal | Sección eficaz de neutrinos | spa |
dc.subject.wikidata | Neutrino Physics | eng |
dc.subject.wikidata | NOνA | eng |
dc.title | Validation of the NOνA experiment 2023-tuning on simulated neutrino-matter interactions | eng |
dc.title.translated | Validación del ajuste de 2023 del experimento NOνA en interacciones neutrino-materia simuladas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1006512565.2025.pdf
- Tamaño:
- 5.62 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: