Validation of the NOνA experiment 2023-tuning on simulated neutrino-matter interactions

dc.contributor.advisorArrieta Díaz, Enrique
dc.contributor.advisorSandoval Usme, Carlos Eduardo
dc.contributor.authorCortés Parra, Camilo Andrés
dc.contributor.researchgroupFENyX UNspa
dc.date.accessioned2025-04-23T13:14:55Z
dc.date.available2025-04-23T13:14:55Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractNOνA es un experimento de oscilación de neutrinos de base larga que emplea un diseño de dos detectores para estudiar las oscilaciones de neutrinos muónicos en neutrinos electrónicos a lo largo de una distancia de 810 km. El Detector Cercano (ND, por sus siglas en inglés) mide el espectro y la composición del haz de neutrinos antes de que ocurran las oscilaciones, lo cual se compara posteriormente con el espectro energético de neutrinos oscilados observado en el Detector Lejano (FD). En el ND, los neutrinos se detectan mediante sus interacciones con los núcleos pesados presentes en el material del detector. NOνA utiliza el generador de eventos de neutrinos GENIE para simular estas interacciones neutrino-núcleo. Sin embargo, la predicción por defecto de GENIE no reproduce adecuadamente los datos observados en el ND. Para subsanar esta discrepancia, NOνA desarrolló un ajuste específico de los modelos de interacción de neutrinos dentro de la versión 3.0.6 de GENIE, con el fin de minimizar las diferencias entre las predicciones simuladas y los datos experimentales recolectados en el ND. Esta disertación evalúa el ajuste realizado por NOνA en 2023 a las simulaciones de secciones eficaces de interacción neutrino-materia de GENIE, mediante una comparación entre datos y simulaciones en el ND. El análisis empleó conjuntos de datos que comprenden $2.55\times10^{21}$ protones en blanco (POT) en modo haz de neutrinos y $1.14\times10^{21}$ POT en modo haz de antineutrinos. El ajuste realizado por NOνA a las simulaciones de interacciones neutrino-materia concuerda con los datos del ND dentro de la banda de error de una desviación estándar, aunque sobreestima las interacciones cargadas de neutrinos muónicos y antineutrinos en aproximadamente un 6 % y 9 %, respectivamente. Se observaron discrepancias notables en la región energética dominada por interacciones de tipo cuasi-elástico. Las incertidumbres sistemáticas asociadas a la modelización de la sección eficaz de interacción de neutrinos, en particular aquellas relacionadas con interacciones cuasi-elásticas, contribuyeron significativamente al error global en las simulaciones. Además, el algoritmo de reconstrucción empleado por NOνA para la clasificación de partículas mostró una tasa considerable de identificaciones erróneas entre piones cargados y protones, así como una tendencia a omitir piones o protones adicionales en eventos simulados con múltiples partículas (Texto tomado de la fuente).spa
dc.description.abstractNOνA is a long-baseline neutrino oscillation experiment that utilizes a two-detector design to study the oscillations of muon neutrinos into electron neutrinos over a baseline of 810 km. The Near Detector (ND) measures the neutrino beam spectrum and composition before oscillation, which is then compared to the oscillated neutrino energy spectrum observed in the Far Detector (FD). In the ND, the neutrinos are detected through their interactions with the heavy target nuclei within the detector. NOνA employs the GENIE neutrino event generator for simulating these neutrino-nucleus interactions. However, the default GENIE prediction does not adequately reproduce the ND data. To address this, NOνA developed a tune of the neutrino interaction models within GENIE version 3:0:6 to minimize discrepancies between the simulated predictions and the observed data in the ND. This dissertation tests the NOνA’s 2023 tune of the GENIE neutrino cross-section simulations by performing a data/simulations comparison for the ND. The analysis employed datasets comprising $2.55\times10^{21}$ protons-on-target (POT) in neutrino beam mode and $1.14\times10^{21}$ POT in antineutrino beam mode. The NOνA tuning of neutrino-matter interaction simulations matches with ND data within the $1\sigma$ error band, overestimating muon neutrino and antineutrino charged current interactions by approximately 6 % and 9 %, respectively. Discrepancies were observed in the energy region dominated by Quasi-Elastic-like interactions. Systematic uncertainties associated with the modeling of the neutrino cross-section, particularly those pertaining Quasi-Elastic like interactions, contributed considerably to the overall error in the simulations. Furthermore, the reconstruction algorithm used in NOνA for particle classification demonstrated significant misidentifications between charged pions and protons, as well as a tendency to overlook additional pions or protons in multi-particle simulated events.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaFísica de Neutrinos Experimentalspa
dc.format.extentxxv, 132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88088
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesB. Pontecorvo, “Mesonium and antimesonium”, Zhur. Eksptl’. i Teoret. Fiz. 33, 549–551 (1957).spa
dc.relation.referencesB. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge”, Zhur. Eksptl’. i Teoret. Fiz. 34, 247–248 (1958).spa
dc.relation.referencesR. Davis Jr, D. S. Harmer, and K. C. Hoffman, “Search for neutrinos from the sun”, Phys. Rev. Lett. 20, 1205–1209 (1968).spa
dc.relation.referencesS. King, “Neutrino mass”, Cont. Phys. 48, 195–211 (2007).spa
dc.relation.referencesM. Fukugita and T. Yanagida, “Barygenesis without grand unification”, Phys. Lett. B. 174, 45–47 (1986).spa
dc.relation.referencesS. Davidson, E. Nardi, and Y. Nir, “Leptogenesis”, Phys. Rep. 466, 105–177 (2008).spa
dc.relation.referencesFermilab, NOvA experiment, Accessed: 2024-07-22, https : / / novaexperiment . fnal . gov.spa
dc.relation.referencesM. A. Acero et al. (NOvA Collaboration), Eur. Phys. J. C. 80, 1–19 (2020).spa
dc.relation.referencesN. M. Coyle, S. W. Li, and P. A. Machado, “The impact of neutrino-nucleus interaction modeling on new physics searches”, J. High. Energ. Phys. 2022, 1–25 (2022).spa
dc.relation.referencesL. Alvarez-Ruso et al., “NuSTEC white paper: status and challenges of neutrino–nucleus scattering”, Prog. Part. Nucl. Phys. 100, 1–68 (2018).spa
dc.relation.referencesJ. A. Formaggio and G. P. Zeller, “From eV to EeV: neutrino cross sections across energy scales”, Rev. Mod. Phys. 84, 1307–1341 (2012).spa
dc.relation.referencesA. S. Kronfeld, D. G. Richards, W. Detmold, R. Gupta, H.-W. Lin, K.-F. Liu, A. S. Meyer, R. Sufian, and S. Syritsyn, “Lattice QCD and neutrino-nucleus scattering”, Eur. Phys. J. A. 55, 1–18 (2019).spa
dc.relation.referencesT. Golan, C. Juszczak, and J. T. Sobczyk, “Effects of final-state interactions in neutrinonucleus interactions”, Phys. Rev. C. 86, 015505 (2012).spa
dc.relation.referencesC. Llewellyn Smith, “Neutrino reactions at accelerator energies”, Phys. Rep. 3, 261–379 (1972).spa
dc.relation.referencesD. Rein and L. M. Sehgal, “Neutrino-excitation of baryon resonances and single pion production”, Ann. of Phys. 133, 79–153 (1981).spa
dc.relation.referencesD. Rein and L. M. Sehgal, “Coherent π0 production in neutrino reactions”, Nucl. Phys. B. 223, 29–44 (1983).spa
dc.relation.referencesM. Martini, M. Ericson, G. Chanfray, and J. Marteau, “Unified approach for nucleon knockout and coherent and incoherent pion production in neutrino interactions with nuclei”, Phys. Rev. C. 80, 065501 (2009).spa
dc.relation.referencesR. Slobodrian, “Final-state interactions”, Rep. Prog. Phys. 34, 175 (1971).spa
dc.relation.referencesB. Abi, R. Acciarri, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, Z. Ahmad, J. Ahmed, T. Alion, S. A. Monsalve, et al. (DUNE Collaboration), “Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume II: DUNE physics”, arXiv:2002.03005 (2020).spa
dc.relation.referencesK. Abe, T. Abe, H. Aihara, Y. Fukuda, Y. Hayato, K. Huang, A. Ichikawa, M. Ikeda, K. Inoue, H. Ishino, et al. (Hyper-Kamiokande Collaboration), “Letter of intent: the Hyper- Kamiokande experiment—detector design and physics potential—”, arXiv:1109.3262 (2011).spa
dc.relation.referencesP. Deka, J. Singh, N. Sarma, and K. Bora, “Uncertainties in the oscillation parameters measurement due to multi-nucleon effects at NOvA experiment”, Nucl. Phys. B. 983, 115903 (2022).spa
dc.relation.referencesU. Mosel, “Neutrino event generators: foundation, status and future”, J. Phys. G Nucl. Part. Phys. 46, 113001 (2019).spa
dc.relation.referencesC. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, et al. (GENIE Collaboration), “The GENIE neutrino monte carlo generator”, Nucl. Instrum. Meth. A. 614, 87–104 (2010).spa
dc.relation.referencesGENIE, Event generator & global analysis of neutrino scattering data, Accessed: 2024-07-22, http: //www.genie-mc.org.spa
dc.relation.referencesY. Hayato, “Neut”, Nucl. Phys. B. 112, 171–176 (2002).spa
dc.relation.referencesT. Golan, J. Sobczyk, and J. Żmuda, “NuWro: the Wrocław Monte Carlo generator of neutrino interactions”, Nucl. Phys. B. 229-232, 499 (2012).spa
dc.relation.referencesK. Abe, C. Andreopoulos, M. Antonova, S. Aoki, A. Ariga, S. Assylbekov, D. Autiero, S. Ban, M. Barbi, G. J. Barker, et al. (T2K Collaboration), “Measurement of coherent π+ production in low energy neutrino-carbon scattering”, Phys. Rev. Lett. 117, 192501 (2016).spa
dc.relation.referencesK. Abe, J. Amey, C. Andreopoulos, M. Antonova, S. Aoki, A. Ariga, Y. Ashida, S. Ban, M. Barbi, G. Barker, et al. (T2K Collaboration), “Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector”, Phys. Rev. D. 96, 092006 (2017).spa
dc.relation.referencesP. Rodrigues, J. Demgen, E. Miltenberger, L. Aliaga, O. Altinok, L. Bellantoni, A. Bercellie, M. Betancourt, A. Bodek, A. Bravar, et al. (MINERvA Collaboration), “Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer”, Phys. Rev. Lett. 116, 071802 (2016).spa
dc.relation.referencesR. Gran, M. Betancourt, M. Elkins, P. Rodrigues, F. Akbar, L. Aliaga, D. Andrade, A. Bashyal, L. Bellantoni, A. Bercellie, et al. (MINERvA Collaboration), “Antineutrino charged-current reactions on hydrocarbon with low momentum transfer”, Phys. Rev. Lett. 120, 221805 (2018).spa
dc.relation.referencesP. Stowell, L. Pickering, C. Wilkinson, C. Wret, F. Akbar, D. Andrade, M. Ascencio, L. Bellantoni, A. Bercellie, M. Betancourt, et al. (MINERvA Collaboration), “Tuning the GENIE pion production model with MINER A data”, Phys. Rev. D. 100, 072005 (2019).spa
dc.relation.referencesP. Rodrigues, C. Wilkinson, and K. McFarland, “Constraining the GENIE model of neutrinoinduced single pion production using reanalyzed bubble chamber data”, Eur. Phys. J. C. 76, 1–16 (2016).spa
dc.relation.referencesJ. Tena-Vidal, C. Andreopoulos, A. Ashkenazi, C. Barry, S. Dennis, S. Dytman, H. Gallagher, S. Gardiner, W. Giele, R. Hatcher, et al. (GENIE Collaboration), “Neutrino-nucleon crosssection model tuning in GENIE v3”, Phys. Rev. D. 104, 072009 (2021).spa
dc.relation.referencesJ. Tena-Vidal, C. Andreopoulos, C. Barry, S. Dennis, S. Dytman, H. Gallagher, S. Gardiner, W. Giele, R. Hatcher, O. Hen, et al. (GENIE Collaboration), “Hadronization model tuning in GENIE v3”, Phys. Rev. D. 105, 012009 (2022).spa
dc.relation.referencesK. Bays et al., NOvA cross-section modeling internal technical note for production 5.1, NOvA Internal Document. DocDB 61559-v8, (2024).spa
dc.relation.referencesJ. Wolcott, New results from NOvA with 10 years of data, NOvA Internal Document. DocDB 62708-v4, (2024).spa
dc.relation.referencesNeutrino, XXXI international conference on neutrino physics and astrophysics, Accessed: 2024-07- 29, https://neutrino2024.org.spa
dc.relation.referencesC. Giunti and C. W. Kim, Fundamentals of neutrino physics and astrophysics (Oxford University Press, 2007).spa
dc.relation.referencesT. P. Cheng and L. F. Li, Gauge theory of elementary particle physics (Oxford University Press, 1984).spa
dc.relation.referencesP. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13, 508–509 (1964).spa
dc.relation.referencesP. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145, 1156–1163 (1966).spa
dc.relation.referencesF. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett. 13, 321–323 (1964).spa
dc.relation.referencesF. Halzen and A. D. Martin, Quarks and leptons: an introductory course in modern particle physics (John Wiley & Sons, Inc., 1991).spa
dc.relation.referencesS. L. Glashow, “Partial-symmetries of weak interactions”, Nucl. Phys. 22, 579–588 (1961).spa
dc.relation.referencesL. Landau, “On the conservation laws for weak interactions”, Nucl. Phys. 3, 127–131 (1957).spa
dc.relation.referencesT. D. Lee and C. N. Yang, “Question of parity conservation in weak interactions”, Phys. Rev. 104, 254–258 (1956).spa
dc.relation.referencesA. Salam, “On parity conservation and neutrino mass”, Nuovo Cim. 5, 299–301 (1957).spa
dc.relation.referencesY. Fukuda et al. (Super-Kamiokande Collaboration), “Evidence for oscillation of atmospheric neutrinos”, Phys. Rev. Lett. 81, 1562–1567 (1998).spa
dc.relation.referencesQ. R. Ahmad et al. (SNO Collaboration), “Measurement of the rate of νe +d -> p+p+e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory”, Phys. Rev. Lett. 87, 071301 (2001).spa
dc.relation.referencesS. Eliezer and A. R. Swift, “Experimental consequences of νe - νμ mixing in neutrino beams”, Nucl. Phys. B. 105, 45–51 (1976).spa
dc.relation.referencesZ. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles”, Prog. Theo. Phys. 28, 870–880 (1962).spa
dc.relation.referencesP. Lipari, “Introduction to neutrino physics”, 10.5170/CERN-2003-003.115 (2003).spa
dc.relation.referencesE. K. Akhmedov and A. Y. Smirnov, “Paradoxes of neutrino oscillations”, Phys. Atom. Nuclei. 72, 1363–1381 (2009).spa
dc.relation.referencesE. K. Akhmedov and J. Kopp, “Neutrino oscillations: quantum mechanics vs. quantum field theory”, J. High. Energ. Phys. 2010, 1–41 (2010).spa
dc.relation.referencesL. Wolfenstein, “Neutrino oscillations in matter”, Phys. Rev. D. 17, 2369–2374 (1978).spa
dc.relation.referencesN. J. Baker, P. L. Connolly, S. A. Kahn, M. J. Murtagh, R. B. Palmer, N. P. Samios, and M. Tanaka, “Total cross sections for νμn and νμp charged-current interactions in the 7-foot bubble chamber”, Phys. Rev. D. 25, 617–623 (1982).spa
dc.relation.referencesD. Baranov, A. Bugorsky, A. Ivanilov, V. Kochetkov, V. Konyushko, V. Korablev, V. Korotkov, V. Kurbakov, E. Kuznetsov, V. Makeev, et al., “Measurement of the νμN total cross section at 2-30 GeV in a skat neutrino experiment”, Phys. Lett. B. 81, 255–257 (1979).spa
dc.relation.referencesS. Ciampolillo, B. Degrange, M. Dewit, T. François, D. Haidt, M. Jaffre, C. Longuemare, C. Matteuzzi, F. Mattioli, J. Pattison, et al., “Total cross section for neutrino charged current interactions at 3 GeV and 9 GeV”, Phys. Lett. B. 84, 281–284 (1979).spa
dc.relation.referencesG. D. M. Vázquez, “Charged-current neutrino interactions with nucleons and nuclei at intermediate energies”, PhD Thesis (Universidad de Sevilla, 2017).spa
dc.relation.referencesJ. T. Suhonen, “Value of the axial-vector coupling strength in β and ββ decays: a review”, Front. Phys. 5, 55 (2017).spa
dc.relation.referencesE. Hernández, J. Nieves, and M. J. V. Vacas, “Neutrino induced coherent pion production off nuclei and the partial conservation of the axial current”, Phys. Rev. D. 80, 013003 (2009).spa
dc.relation.referencesR. Devi and B. Potukuchi, “Pion production in νμ charged current interactions on 12Ar in Deep Underground Neutrino Experiment”, https://doi.org/10.48550/arXiv.2208. 14643 (2022).spa
dc.relation.referencesK. Abe et al. (T2K Collaboration), “Measurements of the νμ and barνμ-induced coherent charged pion production cross sections on 12C by the T2K experiment”, Phys. Rev. D. 108, 092009 (2023).spa
dc.relation.referencesD. Rein, “Angular distribution in neutrino-induced single pion production processes”, Z. Phys. C - Particles and Fields. 35, 43–64 (1987).spa
dc.relation.referencesM. S. Athar, A. Fatima, and S. Singh, “Neutrinos and their interactions with matter”, Prog. Part. Nucl. Phys. 129, 104019 (2023).spa
dc.relation.referencesA. Bodek and T. Cai, “Removal energies and final state interaction in lepton nucleus scattering”, Eur. Phys. J. C. 79, 1–23 (2019).spa
dc.relation.referencesK. Saito and T. Uchiyama, “Effect of the fermi motion on nuclear structure functions and the EMC effect”, Z. Physik. A. 322, 299–307 (1985).spa
dc.relation.referencesY. S. Tsai, “Pair production and bremsstrahlung of charged leptons”, Rev. Mod. Phys. 46, 815–851 (1974).spa
dc.relation.referencesM. S. Athar and S. K. Singh, The physics of neutrino interactions (Cambridge University Press, 2020).spa
dc.relation.referencesT. Katori, “Meson exchange current (MEC) models in neutrino interaction generators”, in AIP conference proceedings, Vol. 1663, 1 (AIP Publishing, 2015).spa
dc.relation.referencesS. Dytman, “Final state interactions in neutrino-nucleus experiments”, Acta Phys. Pol. B. 40 (2009).spa
dc.relation.referencesC. Maieron, J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and C. F. Williamson, “Superscaling of non-quasielastic electron-nucleus scattering”, Phys. Rev. C. 80, 035504 (2009).spa
dc.relation.referencesF. Di Lodovico, R. B. Patterson, M. Shiozawa, and E. Worcester, “Experimental considerations in long-baseline neutrino oscillation measurements”, Annu. Rev. Nucl. Part. Sci. 73, 69–93 (2023).spa
dc.relation.referencesM. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, “NuFIT: three-flavour global analyses of neutrino oscillation experiments”, Universe 7 (2021).spa
dc.relation.referencesR. Workman, V. Burkert, V. Crede, E. Klempt, U. Thoma, L. Tiator, K. Agashe, G. Aielli, B. Allanach, et al. (Particle Data Group), “Review of particle physics”, Prog. Theo. Exp. Phys. 2022, 083C01 (2022).spa
dc.relation.referencesT. Wester, K. Abe, C. Bronner, Y. Hayato, K. Hiraide, K. Hosokawa, K. Ieki, M. Ikeda, J. Kameda, Y. Kanemura, et al. (Super-Kamiokande Collaboration), “Atmospheric neutrino oscillation analysis with neutron tagging and an expanded fiducial volume in Super- Kamiokande I–V”, Phys. Rev. D. 109, 072014 (2024).spa
dc.relation.referencesD. S. Ayres et al., “The NO A technical design report”, 10.2172/935497 (2007).spa
dc.relation.referencesFermilab, Concepts rookie book, Accessed: 2024-04-08, https://operations.fnal.gov/ rookie_books/concepts.pdf.spa
dc.relation.referencesP. Adamson et al., “The NuMI neutrino beam”, NIM - A 806, 279–306 (2016).spa
dc.relation.referencesFermilab, Fermilab’s accelerator complex, Accessed: 2024-04-08, https://www.fnal.gov/ pub/science/particle-accelerators/accelerator-complex.html.spa
dc.relation.referencesA. Cooleybeck, Blessing package for ND all POT plots, NOvA Internal Document. DocDB 62927- v1, (2024).spa
dc.relation.referencesK. Sachdev, “Muon neutrino to electron neutrino oscillation in NOvA”, PhD Thesis (University of Minnesota, 2015).spa
dc.relation.referencesM. A. Acero et al. (NOvA Collaboration), “Measurement of νμ charged-current inclusive π0 production in the NOvA near detector”, Phys. Rev. D. 107, 112008 (2023).spa
dc.relation.referencesC. Grupen, “Physics of particle detection”, in AIP conference proceedings, Vol. 536, 1 (AIP Publishing, 2000).spa
dc.relation.referencesS. Mufson et al., “Liquid scintillator production for the NO A experiment”, NIM - A 799, 1–9 (2015).spa
dc.relation.referencesKuraray, Plastic scintillating fibers (materials and structures), Accessed: 2024-05-21, http:// kuraraypsf.jp/psf/.spa
dc.relation.referencesHamamatsu, Si photodiodes:S1227 series, Accessed: 2024-05-21, https://www.hamamatsu. com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ ssd/s1227_series_kspd1036e.pdf.spa
dc.relation.referencesM. Groh, “Constraints on neutrino oscillation parameters from neutrinos and antineutrinos with machine learning”, PhD Thesis (Indiana University Bloomington, 2021).spa
dc.relation.referencesFermilab, The NOvA neutrino experiment, Accessed: 2024-04-08, https://news.fnal.gov/ wp-content/uploads/nova.pdf.spa
dc.relation.referencesM. Del Tutto and G. Kafka, Blessing package - beam simulation plots, NOvA Internal Document. DocDB 13524-v6, (2016).spa
dc.relation.referencesFermilab, Fermilab experiment sees neutrinos change over 500 miles, Accessed: 2024-04-08, https: //news.fnal.gov/2015/08/fermilab-experiment-sees-neutrinos-changeover- 500-miles/.spa
dc.relation.referencesFermilab, Gotta catch ’em all: new NOvA results with neutrinos and antineutrinos, Accessed: 2024- 04-08, https : / / news . fnal . gov / 2019 / 11 / gotta - catch - em - all - new - nova - results-with-neutrinos-and-antineutrinos/.spa
dc.relation.referencesM. Martinez, “Constraining neutrino interaction uncertainties for oscillation measurements in the NOvA experiment using near detector data”, PhD Thesis (Iowa State University, 2023).spa
dc.relation.referencesV. Mikola, “Improving the NOvA 3-flavour neutrino oscillation analysis”, PhD Thesis (University College London, 2023).spa
dc.relation.referencesA. Norman, R. Kwarciany, G. Deuerling, and N. Wilcer, “The NOvA timing system: a system for synchronizing a long baseline neutrino experiment”, J. Phys. Conf. Ser. 396, 012034 (2012).spa
dc.relation.referencesM. Judah, “An analysis of noise in the NOvA near detector”, Master’s Thesis (Colorado State University, 2016).spa
dc.relation.referencesFermilab, NOvA screens, Accessed: 2024-05-21, https : / / nova - nusoft . fnal . gov / shift/screens/.spa
dc.relation.referencesFermilab, G4NuMI - NuMI beam simulation, Accessed: 2024-04-08, https://cdcvs.fnal. gov/redmine/projects/numi-beam-sim/wiki/G4numi.spa
dc.relation.referencesS. Agostinelli et al., “Geant4 — a simulation toolkit”, NIM - A 506, 250–303 (2003).spa
dc.relation.referencesL. Aliaga et al., “Neutrino flux predictions for the numi beam”, Phys. Rev. D. 94, 092005 (2016).spa
dc.relation.referencesS. E. Kopp, “Accelerator neutrino beams”, Phys. Rep. 439, 101–159 (2007).spa
dc.relation.referencesM. Sorel, “Results and status from the HARP and MIPP hadron production experiments”, J. Phys. Conf. Ser. 136, 022027 (2008).spa
dc.relation.referencesJ. M. Paley et al., “Measurement of charged pion production yields off the numi target”, Phys. Rev. D. 90, 032001 (2014).spa
dc.relation.referencesR. Brun and F. Rademakers, “Root — an object oriented data analysis framework”, NIM - A 389, 81–86 (1997).spa
dc.relation.referencesA. S. Meyer, M. Betancourt, R. Gran, and R. J. Hill, “Deuterium target data for precision neutrino-nucleus cross sections”, Phys. Rev. D. 93, 113015 (2016).spa
dc.relation.referencesA. Bodek and U. K. Yang, “Higher twist, W scaling, and effective LO PDFs for lepton scattering in the few GeV region”, J. Phys. G.: Nucl. Part. Phys. 29, 1899 (2003).spa
dc.relation.referencesT. Yang, C. Andreopoulos, H. Gallagher, K. Hofmann, and P. Kehayias, “A hadronization model for few-GeV neutrino interactions”, Eur. Phys. J. C. 63, 1–10 (2009).spa
dc.relation.referencesA. Bodek and J. L. Ritchie, “Further studies of Fermi-motion effects in lepton scattering from nuclear targets”, Phys. Rev. D. 24, 1400–1402 (1981).spa
dc.relation.referencesJ. Nieves, J. E. Amaro, and M. Valverde, “Inclusive quasielastic charged-current neutrinonucleus reactions”, Phys. Rev. C. 70, 055503 (2004).spa
dc.relation.referencesC. Berger and L. M. Sehgal, “Lepton mass effects in single pion production by neutrinos”, Phys. Rev. D. 76, 113004 (2007).spa
dc.relation.referencesC. Berger and L. M. Sehgal, “Partially conserved axial vector current and coherent pion production by low energy neutrinos”, Phys. Rev. D. 79, 053003 (2009).spa
dc.relation.referencesR. Gran, J. Nieves, F. Sanchez, and M. J. V. Vacas, “Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV”, Phys. Rev. D. 88, 113007 (2013).spa
dc.relation.referencesM. Dolce, H. Gallagher, and J. Wolcott, Central value tuning and uncertainties for hN FSI model in GENIE 3, NO A Internal Document. DocDB 43724-v4, (2020).spa
dc.relation.referencesF. James and M. Roos, “Minuit - a system for function minimization and analysis of the parameter errors and correlations”, Comput. Phys. Commun. 10, 343–367 (1975).spa
dc.relation.referencesL. Salcedo, E. Oset, M. Vicente-Vacas, and C. Garcia-Recio, “Computer simulation of inclusive pion nuclear reactions”, Nucl. Phys. A. 484, 557–592 (1988).spa
dc.relation.referencesM. Dolce, “Constraining neutrino oscillation and interaction parameters with the NO A near detector and far detector data using Markov chain Monte Carlo”, PhD Thesis (Tufts University, 2023).spa
dc.relation.referencesD. Pershey, J. Huang, and M. Jugah, TDSlicer technote, NO A Internal Document. DocDB 27689-v5, (2020).spa
dc.relation.referencesA. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks”, Science 344, 1492–1496 (2014).spa
dc.relation.referencesR. C. Prim, “Shortest connection networks and some generalizations”, BSTJ 36, 1389– 1401 (1957).spa
dc.relation.referencesL. A. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform voting scheme”, Pattern Recognit. 41, 299–314 (2008).spa
dc.relation.referencesM. Ohlsson, C. Peterson, and A. L. Yuille, “Track finding with deformable templates — the elastic arms approach”, Comput. Phys. Commun. 71, 77–98 (1992).spa
dc.relation.referencesM. Baird, J. Bian, M. Messier, E. Niner, D. Rocco, and K. Sachdev, “Event reconstruction techniques in NOvA”, in J. Phys.: Conf. Ser. Vol. 664, 7 (IOP Publishing, 2015), p. 072035.spa
dc.relation.referencesG. Davies, Reconstruction event displays, NOvA Internal Document. DocDB 21152-v1, (2017).spa
dc.relation.referencesR. Krishnapuram and J. M. Keller, “A possibilistic approach to clustering”, IEEE Trans. Fuzzy Syst. 1, 98–110 (1993).spa
dc.relation.referencesJ. C. Bezdek, Pattern recognition with fuzzy objective function algorithms (Springer Science & Business Media, 2013).spa
dc.relation.referencesR. Frühwirth, “Application of Kalman filtering to track and vertex fitting”, NIM - A 262, 444–450 (1987).spa
dc.relation.referencesM. D. Baird, “An analysis of muon neutrino disappearance from the NuMI beam using an optimal track fitter”, PhD Thesis (Indiana University, 2015).spa
dc.relation.referencesB. Rebel, A window tracking algorithm for cosmic ray muons, NOvA Internal Document. DocDB 15977-v1, (2016).spa
dc.relation.referencesF. Psihas, “Measurement of long baseline neutrino oscillations and improvements from deep learning”, PhD Thesis (Indiana University, 2018).spa
dc.relation.referencesY. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition”, Neural Comput 1, 541–551 (1989).spa
dc.relation.referencesA. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, and P. Vahle, “A convolutional neural network neutrino event classifier”, JINST 11, P09001 (2016).spa
dc.relation.referencesJ. Porter, ReMId retraining 2019 technote, NOvA Internal Document. DocDB 42277-v1, (2019).spa
dc.relation.referencesY. Coadou, “Boosted decision trees and applications”, in EPJ web of conferences, Vol. 55 (EDP Sciences, 2013), p. 02004.spa
dc.relation.referencesC. Backhouse, The CAFAna framework, NOvA Internal Document. DocDB 9222-v4, (2016).spa
dc.relation.referencesI. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: enabling scalable virtual organizations”, Int. J. High Perform. Comput. Appl. 15, 200–222 (2001).spa
dc.relation.referencesC. Backhouse, “The CAFAna framework for neutrino analysis”, arXiv:2203.13768, https: //doi.org/10.48550/arXiv.2203.13768 (2022).spa
dc.relation.referencesT. Olson, “Measurement of d2σ/dqdEavail and 2p2h contribution using charged current νμ interactions in the NOvA near detector”, PhD Thesis (Tufts University, 2021).spa
dc.relation.referencesY. Zhang, Ana2020 numu FHC event displays, NOvA Internal Document. DocDB 45826-v2, (2021).spa
dc.relation.referencesE. Catano-Mur, N. Nayak, A. Sutton, and K. Warburton, Event selection for the 2020 3-flavor analysis, NO A Internal Document. DocDB 44040-v2, (2020).spa
dc.relation.referencesFermilab, NOvA live event display, Accessed: 2024-07-21, https://nusoft.fnal.gov/ nova/public/.spa
dc.relation.referencesL. Aliaga, L. Cremonesi, and J. Paley, Measurement of the double-differential cross section of muonneutrino charged-current interactions with low hadronic energy in the NOvA near detector, NOvA Internal Document. DocDB 59477-v4, (2023).spa
dc.relation.referencesA. Mann and T. Olson, Measurement of d2σ/dqdEavail in charged current νμ-nucleus interaction at <Eν> = 1.86 GeV using the NOvA near detector, NOvA Internal Document. DocDB 56534- v10, (2023).spa
dc.relation.referencesM. S. Athar and J. G. Morfin, “Neutrino (antineutrino)–nucleus interactions in the shallowand deep-inelastic scattering regions”, J. Phys. G Nucl. Part. Phys. 48, 034001 (2021).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc530 - Físicaspa
dc.subject.lembNeutrinosspa
dc.subject.proposalNeutrino Physicseng
dc.subject.proposalNeutrino-nucleus interactionseng
dc.subject.proposalNOνA Experimenteng
dc.subject.proposalNeutrino cross-sectioneng
dc.subject.proposalFísica de neutrinosspa
dc.subject.proposalInteracciones neutrino-núcleospa
dc.subject.proposalExperimento NOνAspa
dc.subject.proposalSección eficaz de neutrinosspa
dc.subject.wikidataNeutrino Physicseng
dc.subject.wikidataNOνAeng
dc.titleValidation of the NOνA experiment 2023-tuning on simulated neutrino-matter interactionseng
dc.title.translatedValidación del ajuste de 2023 del experimento NOνA en interacciones neutrino-materia simuladasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1006512565.2025.pdf
Tamaño:
5.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: