Evaluación de la retentividad de modificadores de fricción para interfaz rueda-riel

dc.contributor.advisorSanta Marín, Juan Felipe
dc.contributor.advisorToro Betancur, Alejandro Octavio
dc.contributor.authorOspina Cardona, Juan José
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energía
dc.date.accessioned2025-09-05T12:18:32Z
dc.date.available2025-09-05T12:18:32Z
dc.date.issued2025-09-04
dc.description.abstractLos modificadores de fricción son importantes para controlar el desgaste y la fricción en los sistemas rueda-riel. Este estudio se centra en el análisis de la retentividad de un modificador de fricción base agua (FM 1). Además, se caracterizó y comparó el rendimiento reológico de dos modificadores de fricción: un modificador a base de aceite de aguacate (FM 2) desarrollado en el laboratorio y un modificador base aceite mineral (FM 3) comercial. Los modificadores de fricción fueron analizados mediante microscopía electrónica de barrido (SEM), análisis térmico (TGA), espectroscopia infrarroja (FTIR) y reología. El rendimiento tribológico de los productos se evaluó utilizando un tribómetro de doble disco, el cual permite simular diferentes escenarios de interacción entre la rueda y el riel: rodadura, deslizamiento y una combinación de ambos. Se evaluaron el coeficiente de tracción y la retentividad del FM 1 en el laboratorio. Los resultados mostraron que el producto FM 1 contiene un alto contenido de agua (aproximadamente 60%) y un polímero de estireno-butadieno (SBS), que actúa como un vehículo para el modificador, responsable de dispersar las partículas. Se observaron partículas de disulfuro de molibdeno de menos de 5 μm y partículas de talco de menos de 2 μm. El coeficiente de tracción del FM 1 presenta valores similares a los de productos comerciales previamente probados, con un coeficiente de fricción de aproximadamente 0.07. El coeficiente de tracción del FM 1 es un 15% mayor que el obtenido para el producto base de aceite vegetal. Los resultados indicaron que el producto FM 3 contiene partículas de cobre y aluminio, elementos encontrados en la literatura de lubricantes. En términos de retentividad, se planteó dos pruebas diferentes halladas en la literatura: “inicio con lubricación” e “inicio sin lubricación” se observó una diferencia en el valor de retentividad de aproximadamente un orden de magnitud. Esta diferencia radica principalmente en la rugosidad de las superficies. (Tomado de la fuente)spa
dc.description.abstractFriction modifiers are essential for controlling wear and friction in wheel/rail systems. This study focuses on the analysis of the retentivity of a water-based friction modifier (FM 1). Additionally, the rheological performance of two friction modifiers was characterized and compared: an avocado oil-based modifier (FM 2) developed in the laboratory and a commercial mineral oil-based modifier (FM 3). The friction modifiers were analyzed using scanning electron microscopy (SEM), thermal analysis (TGA), infrared spectroscopy (FTIR), and rheology. The tribological performance of the products was evaluated using a twin-disc tribometer, which allows simulating different interaction scenarios between the wheel and the rail: rolling, sliding, and a combination of both. The coefficient of traction and the retentivity of FM 1 were evaluated in the laboratory. The results showed that the product FM 1 contains a high-water content (approximately 60%) and a styrene-butadiene polymer (SBS), which acts as a carrier for the modifier, responsible for dispersing the particles. Molybdenum disulfide particles smaller than 5 μm and talc particles smaller than 2 μm were observed. The results indicated that the traction coefficient of FM 1 presents values similar to those of previously tested commercial products, with a friction coefficient of approximately 0.07. The traction coefficient of FM 1 is 15% higher than that obtained for vegetable oil-based product. The results also indicated that FM 3 contains copper and aluminum particles, elements commonly found in lubricant formulations according to the literature. In terms of retentivity, two different tests found in the literature were proposed: “lubrication start” and “non-lubrication start.” A difference of approximately one order of magnitude in retentivity values was observed. This difference is mainly attributed to the roughness of surface.eng
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.notesNo aplica
dc.description.researchareaModificadores de fricción
dc.description.sponsorshipMetro de Medellín
dc.description.technicalinfoNo aplica
dc.format.extent109 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88620
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.relation.indexedLaReferencia
dc.relation.referencesO. Escobar Muriel, Los rieles de una ilusión: historia del Ferrocarril del Norte (1870-1950). Editorial Pontificia Universidad Javeriana, 2022. Consultado: el 13 de abril de 2025. [En línea]. Disponible en: https://repository.javeriana.edu.co/items/1abd59df-5d39-45e2-9f7a-d3a61c3d0569
dc.relation.referencesJ. Moreno (2018). Prehistoria del Ferrocarril: Monografía sobre sus Orígenes. https://studylib.net/doc/27469016/prehistoriaferrocarril#google_vignette
dc.relation.referencesFlórez Mesa, S. M., Arrubla Piedrahita, M. J., Ocampo Hincapié, A. S., & Céspedes Duque, M. J. (2021). Metro de Medellín, antecedentes y desarrollo (Vol. 14, Issue 27).
dc.relation.referencesJ. Fava y R. Romero, “Defectos en rieles y elementos para su inspección no destructiva”, 2022. Consultado: el 13 de abril de 2025. [En línea]. Disponible en: https://frh.cvg.utn.edu.ar/pluginfile.php/19520/mod_resource/content/9/Defectos%20en%20rieles%20y%20elementos%20para%20su%20inspecci%C3%B3n%20no%20destructiva.pdf
dc.relation.referencesZ. Popović, L. Lazarević, L. Brajović, y M. Vilotijević, “The importance of rail inspections in the urban area -aspect of head checking rail defects”, Procedia Eng, vol. 117, núm. 1, pp. 596–608, 2015, doi: 10.1016/j.proeng.2015.08.220.
dc.relation.referencesA. Zarembski, “Separating shelling or spalling”, 2016. [En línea]. Disponible en: https://www.rta.org/index.php?option=com_content&view=article&id=94:comprehensive-rail-and-track-related-research&catid=20:site-content
dc.relation.referencesS. L. Grassie, “Studs and squats: The evolving story”, Wear, vol. 366–367, pp. 194–199, 2016, doi: 10.1016/j.wear.2016.03.021.
dc.relation.referencesK. L. Johnson, (1985). Contact Mechanics. https://doi.org/10.1017/CBO9781139171731
dc.relation.referencesS. M. Zakharov, “Guidelines to best practices for heavy haul railway operations: wheel and rail interface issues”, 2001. [En línea]. Disponible en: https://www.researchgate.net/publication/266969944
dc.relation.referencesR. Larke, “Survey of wheel/rail lubrication practices”. Consultado: el 13 de abril de 2025. [En línea]. Disponible en: https://www.rssb.co.uk/research-catalogue/CatalogueItem/rp000048
dc.relation.referencesM. Harmon y R. Lewis, “Review of top of rail friction modifier tribology”, Tribology - Materials, Surfaces and Interfaces, vol. 10, núm. 3, pp. 150–162, 2016, doi: 10.1080/17515831.2016.1216265.
dc.relation.referencesG. Idárraga, “The influence of rail lubrication on wear and energy dissipation in wheel/rail contact”, tesis de maestría, Universidad Nacional de Colombia, 2015, Consultado: el 13 de abril de 2025. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/53502
dc.relation.referencesS. Richard, S. Louisa, H. Chris, Y. Marcia, D. Eadie, y L. Roger, “Material concepts for top of rail friction management – classification, characterization and application”, 2016, doi: 10.1016/j.wear.2016.05.028.
dc.relation.referencesJ. E. Leiva-Mateus, J. F. Santa-Marín, R. Buitrago-Sierra, D. H. Mesa Grajales, y E. Geffroy, “Rheological and tribological evaluation of friction modifiers for wheel-rail applications”, 2022. doi: 10.1002/ls.1607.
dc.relation.referencesJ. F. Santa Marin, “Development of lubrication system for wear and friction control in wheel/rail interfaces”, tesis de doctorado, Universidad Nacional de Colombia, 2012.
dc.relation.referencesL. Biazon, B. P. Ferrer, A. Toro, y T. Cousseau, “Correlations between rail grease formulation and friction, wear and RCF of a wheel/rail tribological pair”, Tribol Int, vol. 153, núm. August 2020, p. 106566, 2021, doi: 10.1016/j.triboint.2020.106566
dc.relation.referencesW. Wang et al., “Wheel/rail adhesion and damage under different contact conditions and application parameters of friction modifier”, Wear, vol. 523, p. 204870, jun. 2023, doi: 10.1016/J.WEAR.2023.204870.
dc.relation.referencesY. L. Xavier, A. B. Rezende, S. T. Fonseca, E. Jun Kina, y P. R. Mei, “Study of the Initial Cycles Number Influence on the Retentivity of a Commercial Friction Modifier Using the Twin-disk Test”, Tribology Transactions, vol. 67, núm. 2, pp. 212–221, 2024, doi: 10.1080/10402004.2024.2311719.
dc.relation.referencesM. Álvarez Rivas. “Estudio del contacto rueda-carril y análisis de defectos”. Trabajo de grado, 2019.
dc.relation.referencesG. W. Stachowiak y A. W. Batchelor, “Engineering tribology”, p. 801, 2005.
dc.relation.referencesR. Lewis, R. S. Dwyer-Joyce, S. R. Lewis, C. Hardwick, y E. A. Gallardo-Hernandez, “Tribology of the Wheel-Rail Contact: The Effect of Third Body Materials”, International Journal of Railway Technology, vol. 1, núm. 1, pp. 167–194, 2012, doi: 10.4203/ijrt.1.1.8.
dc.relation.referencesFletcher, D. I., Franklin, F. J., & Kapoor, A. (2009). Rail surface fatigue and wear. In Wheel-Rail Interface Handbook. Woodhead Publishing Limited. https://doi.org/10.1533/9781845696788
dc.relation.referencesD. T. Eadie et al., “The effects of top of rail friction modifier on wear and rolling contact fatigue: Full-scale rail–wheel test rig evaluation, analysis and modelling”, Wear, vol. 265, núm. 9–10, pp. 1222–1230, oct. 2008, doi: 10.1016/J.WEAR.2008.02.029.
dc.relation.referencesL. Buckley-Johnstone, M. Harmon, R. Lewis, C. Hardwick, y R. Stock, “A comparison of friction modifier performance using two laboratory test scales”, Proc Inst Mech Eng F J Rail Rapid Transit, vol. 233, núm. 2, pp. 201–210, feb. 2019, doi: 10.1177/0954409718787045.
dc.relation.referencesH. Al-Maliki, A. Meierhofer, G. Trummer, R. Lewis, y K. Six, “A new approach for modelling mild and severe wear in wheel-rail contacts”, Wear, vol. 476, p. 203761, jul. 2021, doi: 10.1016/J.WEAR.2021.203761.
dc.relation.references. C. Vélez Molina, “Resistencia a fatiga de contacto de acero para rieles r400ht en presencia de lubricantes sólidos”, tesis de maestria Universidad Nacional de Colombia, 2019.
dc.relation.referencesM. Chestney, N. Dadkah, y D. Eadie, “The effect of top of rail friction control on a european passenger system: the heathrow express experience”, 2009.
dc.relation.referencesD. T. Eadie, K. Oldknow, M. Santoro, G. Kwan, M. Yu, y X. Lu, “Wayside gauge face lubrication: How much do we really understand?”, Proc Inst Mech Eng F J Rail Rapid Transit, vol. 227, núm. 3, pp. 245–253, may 2013, doi: 10.1177/0954409712459306.
dc.relation.referencesR. Galas, M. Omasta, I. Krupka, y M. Hartl, “Laboratory investigation of ability of oil-based friction modifiers to control adhesion at wheel-rail interface”, Wear, vol. 368–369, pp. 230–238, dic. 2016, doi: 10.1016/j.wear.2016.09.015.
dc.relation.referencesZ. S. Lee, G. Trummer, M. Harmon, B. White, K. Six, y R. Lewis, “Studying the transfer mechanisms of water based top-of-rail products in a wheel/rail interaction”, Proc Inst Mech Eng F J Rail Rapid Transit, vol. 0, núm. 0, pp. 1–11, 2023, doi: 10.1177/09544097231187679.
dc.relation.referencesS. Qiu, J. Dong, y G. Cheng, “A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils”, Lubrication Science, vol. 11, núm. 3, pp. 217–226, 1999, doi: 10.1002/LS.3010110302.
dc.relation.referencesC. Hardwick, S. Lewis, y R. Lewis, “The effect of friction modifiers on wheel/rail isolation at low axle loads”, Proc Inst Mech Eng F J Rail Rapid Transit, vol. 228, núm. 7, pp. 768–783, sep. 2014, doi: 10.1177/0954409713488102.
dc.relation.referencesS. A. Khan, J. Lundberg, y C. Stenström, “Carry distance of top-of-rail friction modifiers”, Proc Inst Mech Eng F J Rail Rapid Transit, vol. 232, núm. 10, pp. 2418–2430, nov. 2018, doi: 10.1177/0954409718772981.
dc.relation.referencesM. R. Khan y S. M. Dasaka, “Optimization of wheel-rail interface friction using top-of-rail friction modifiers: State of the art”, AIP Conf Proc, vol. 1953, may 2018, doi: 10.1063/1.5032985.
dc.relation.referencesD. V. Gutsulyak, L. J. E. Stanlake, y H. Qi, “Twin disc evaluation of third body materials in the wheel/rail interface”, Tribology - Materials, Surfaces and Interfaces, vol. 15, núm. 2, pp. 115–126, 2021, doi: 10.1080/17515831.2020.1829878/ASSET/FE9D50E2-885A-43C2-88CD-6D50E41C09C1/ASSETS/IMAGES/LARGE/10.1080_17515831.2020.1829878-IMG210001.JPG.
dc.relation.referencesY. Suda et al., “Development of onboard friction control”, Wear, vol. 258, núm. 7–8, pp. 1109–1114, mar. 2005, doi: 10.1016/J.WEAR.2004.03.059.
dc.relation.referencesG. Trummer, Z. S. Lee, R. Lewis, y K. Six, “Modelling of Frictional Conditions in the Wheel–Rail Interface Due to Application of Top-of-Rail Products”, Lubricants 2021, Vol. 9, Page 100, vol. 9, núm. 10, p. 100, oct. 2021, doi: 10.3390/LUBRICANTS9100100.
dc.relation.referencesC. Pritchard y T. G. Pearce, “Tribological design-The railways”, Tribology Series, vol. 14, núm. C, pp. 23–32, ene. 1989, doi: 10.1016/S0167-8922(08)70177-9.
dc.relation.referencesW. Wang et al., “Wheel/rail adhesion and damage under different contact conditions and application parameters of friction modifier”, Wear, vol. 523, p. 204870, jun. 2023, doi: 10.1016/J.WEAR.2023.204870
dc.relation.referencesR. Galas, M. Omasta, I. Krupka, y M. Hartl, “Laboratory investigation of ability of oil-based friction modifiers to control adhesion at wheel-rail interface”, Wear, vol. 368–369, pp. 230–238, dic. 2016, doi: 10.1016/J.WEAR.2016.09.015.
dc.relation.referencesS. Maya-Johnson, J. Felipe Santa, y A. Toro, “Dry and lubricated wear of rail steel under rolling contact fatigue - Wear mechanisms and crack growth”, Wear, vol. 380–381, pp. 240–250, 2017, doi: 10.1016/j.wear.2017.03.025.
dc.relation.referencesJ. Guegan, M. Southby, y H. Spikes, “Friction Modifier Additives, Synergies and Antagonisms”, Tribol Lett, vol. 67, núm. 3, sep. 2019, doi: 10.1007/s11249-019-1198-z.
dc.relation.referencesA. F. Pérez de Brito, “Effect of lubricant degradation on the tribological performance of a wheel-rail system”, Tesis de doctorado. 2014, Consultado: el 14 de abril de 2025. [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/52626
dc.relation.referencesO. Arias-Cuevas, Z. Li, R. Lewis, y E. A. Gallardo-Hernández, “Rolling–sliding laboratory tests of friction modifiers in dry and wet wheel–rail contacts”, Wear, vol. 268, núm. 3–4, pp. 543–551, feb. 2010, doi: 10.1016/J.WEAR.2009.09.015.
dc.relation.referencesR. Stock, L. Stanlake, C. Hardwick, M. Yu, D. Eadie, y R. Lewis, “Material concepts for top of rail friction management – Classification, characterisation and application”, Wear, vol. 366–367, pp. 225–232, nov. 2016, doi: 10.1016/J.WEAR.2016.05.028.
dc.relation.referencesB. J. Hamrock, S. R. Schmid, y B. O. Jacobson, “Fundamentals of Fluid Film Lubrication”, Fundamentals of Fluid Film Lubrication, mar. 2004, doi: 10.1201/9780203021187.
dc.relation.referencesM. Farsadi, S. Bagheri, y N. A. Ismail, “Nanocomposite of functionalized graphene and molybdenum disulfide as friction modifier additive for lubricant”, J Mol Liq, vol. 244, pp. 304–308, oct. 2017, doi: 10.1016/J.MOLLIQ.2017.09.008
dc.relation.referencesP. Rudenko y A. Bandyopadhyay, “Talc as friction reducing additive to lubricating oil”, Appl Surf Sci, vol. 276, pp. 383–389, jul. 2013, doi: 10.1016/J.APSUSC.2013.03.102.
dc.relation.referencesF. L. Guzman Borda, S. J. Ribeiro de Oliveira, L. M. Seabra Monteiro Lazaro, y A. J. Kalab Leiróz, “Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles”, Tribol Int, vol. 117, pp. 52–58, ene. 2018, doi: 10.1016/J.TRIBOINT.2017.08.012
dc.relation.referencesY. Choi et al., “Tribological behavior of copper nanoparticles as additives in oil”, Current Applied Physics, vol. 9, núm. 2, pp. e124–e127, mar. 2009, doi: 10.1016/J.CAP.2008.12.050.
dc.relation.referencesB. Wu et al., “Influence of different solid particles in friction modifier on wheel-rail adhesion and damage behaviours”, Wear, vol. 522, p. 204833, jun. 2023, doi: 10.1016/J.WEAR.2023.204833.
dc.relation.referencesR. Lewis, E. A. Gallardo, J. Cotter, y D. T. Eadie, “The effect of friction modifiers on wheel/rail isolation”, Wear, vol. 271, núm. 1–2, pp. 71–77, may 2011, doi: 10.1016/J.WEAR.2010.10.036.
dc.relation.referencesN. Nciri, N. Kim, y N. Cho, “New insights into the effects of styrene-butadiene-styrene polymer modifier on the structure, properties, and performance of asphalt binder: The case of AP-5 asphalt and solvent deasphalting pitch”, Mater ChemPhys, vol. 193, pp. 477–495, jun. 2017, doi: 10.1016/J.MATCHEMPHYS.2017.03.014.
dc.relation.referencesA. Abdolahi, E. Hamzah, Z. Ibrahim, y S. Hashim, “Synthesis of Uniform Polyaniline Nanofibers through Interfacial Polymerization”, Materials 2012, Vol. 5, Pages 1487-1494, vol. 5, núm. 8, pp. 1487–1494, ago. 2012, doi: 10.3390/MA5081487.
dc.relation.referencesY. Zhao, F. Gu, J. Xu, y J. Jin, “Analysis of aging mechanism of SBS polymer modified asphalt based on Fourier transform infrared spectrum”, Journal Wuhan University of Technology, Materials Science Edition, vol. 25, núm. 6, pp. 1047–1052, dic. 2010, doi: 10.1007/S11595-010-0147-3/METRICS
dc.relation.referencesH. U. Bahia, D. I. Hanson, M. Zeng, H. Zhai, M. A. Khatri, y R. M. Anderson, “Characterization of Modified Asphalt Binder in Superpave Mix Design”, Nchrp Report 459, pp. 59–68, 2001.
dc.relation.referencesB. Kumar, K. Smita, A. Debut, y L. Cumbal, “Utilization of Persea americana (Avocado) oil for the synthesis of gold nanoparticles in sunlight and evaluation of antioxidant and photocatalytic activities”, Environ Nanotechnol Monit Manag, vol. 10, pp. 231–237, dic. 2018, doi: 10.1016/J.ENMM.2018.07.009.
dc.relation.referencesJ. P. C. Marques et al., “Potential Bio-Based Lubricants Synthesized from Highly Unsaturated Soybean Fatty Acids: Physicochemical Properties and Thermal Degradation”, Ind Eng Chem Res, vol. 58, núm. 38, pp. 17709–17717, sep. 2019, doi: 10.1021/ACS.IECR.9B03038/ASSET/IMAGES/MEDIUM/IE9B03038_0002.GIF.
dc.relation.referencesJ. Li, J. Liu, X. Sun, y Y. Liu, “The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis”, LWT, vol. 96, pp. 51–57, oct. 2018, doi: 10.1016/J.LWT.2018.05.003.
dc.relation.referencesJ. C. Vélez Molina “Tesis doctorado” en proceso de elaboración. Universidad Nacional de Colombia.
dc.relation.referencesRadovan Galas, Simon Skurka, Martin Valena, Daniel Kvarda, Milan Omasta, Haohao Ding, Qiang Lin, Wen-jian Wang, Ivan Krupka, Martin Hartl, A benchmarking methodology for top-of-rail products, Tribology International, Volume 189, 2023, 108910, ISSN 0301-679X, https://doi.org/10.1016/j.triboint.2023.108910.
dc.relation.referencesCEN/TS 15427–2-2:2021. Railway applications - Wheel/Rail friction management - Part 2–2: Properties and Characteristics - Top of Rail materials, 2021
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lembTransporte ferroviario
dc.subject.lembDesgaste mecánico
dc.subject.lembFricción (Mecánica)
dc.subject.lembTribología
dc.subject.lembContacto de rodadura
dc.subject.lembMateriales de fricción
dc.subject.lembRieles (Ferrocarriles)
dc.subject.proposalModificador de fricción base aguaspa
dc.subject.proposalRetentividadspa
dc.subject.proposalInterfaz rueda rielspa
dc.subject.proposalCriterios retentividadspa
dc.subject.proposalWater-based friction modifiereng
dc.subject.proposalRetentivityeng
dc.subject.proposalWheel-rail interfaceeng
dc.subject.proposalRetentivity criteriaeng
dc.titleEvaluación de la retentividad de modificadores de fricción para interfaz rueda-rielspa
dc.title.translatedEvaluation of the retentivity of friction modifiers at the wheel-rail interfaceeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEvaluación de la retentividad de modificadores de fricción para interfaz rueda-riel
oaire.fundernameAlejandro Octavio Toro Betancur

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Materiales y Procesos
Tamaño:
4.18 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia tesis
Tamaño:
234.94 KB
Formato:
Adobe Portable Document Format
Descripción: