Evaluación comparativa del ciclo de vida de pirólisis y carbonización hidrotérmica para valorización de biosólidos

dc.contributor.advisorGómez Mejía, Alexánder
dc.contributor.authorFonseca Castro, Santiago
dc.contributor.researchgroupBiomasa y Optimización Térmica de Procesos Biot
dc.coverage.cityBogotá, Colombiaspa
dc.date.accessioned2025-09-03T16:32:57Z
dc.date.available2025-09-03T16:32:57Z
dc.date.issued2025
dc.descriptionilustraciones (algunas a color), diagramas
dc.description.abstractEste estudio evalúa los posibles impactos ambientales mediante un análisis de ciclo de vida (ACV) de tecnologías emergentes para el tratamiento de biosólidos, como la pirólisis en horno rotatorio (E1) y la carbonización hidrotérmica (E2), comparándolas con la incineración (E0), una tecnología madura. Se recolectó información experimental de biosólidos provenientes de la PTAR Salitre en Bogotá D.C., Colombia, cuya caracterización fisicoquímica reporta un alto contenido de humedad (77,4%), cenizas (41,8%), carbono, nutrientes (N, P y K) y metales pesados. El inventario del ciclo de vida (ICV) se construyó utilizando datos experimentales, simulaciones en Aspen Plus® V10 y con información de literatura disponible. La evaluación de impactos (EICV) consideró 13 categorías de impactos de punto medio, según las recomendaciones del Sistema Internacional de Datos de Ciclo de Vida (ILCD) en el software EASETECH: cambio climático (CC); agotamiento de la capa de ozono (AO); toxicidad humana, efectos cancerígenos (TH,c); toxicidad humana, efectos no cancerígenos (TH,nc); material particulado (MP); radiación ionizante (RI); formación de ozono fotoquímico (FOF); acidificación terrestre (AC); eutrofización terrestre (EUT,t); eutrofización de agua de agua dulce (EUT,ad); eutrofización marina (EUT,m); ecotoxicidad de agua dulce (ET,ad); y finalmente, agotamiento de recursos abióticos (AR). En la interpretación de los resultados se empleó un análisis de sensibilidad global (GSA, por sus siglas en inglés). En E0, se generaron impactos por la limpieza de gases. E1 genera mayores impactos en TH,nc, EUT,ad y EUT,m debido al requerimiento de energía y aplicación en suelos. E2 impacta en TH,c, TH,nc y ET,ad principalmente por la transferencia de Zn y Cr al suelo. Los beneficios ambientales de E1 y E2 se deben a la sustitución de fertilizantes y de la generación de electricidad en el caso de E1. El posible uso de gas natural para requerimientos de energía térmica o calor aumentaría las emisiones de GEI en un 82% para E1 y 5% para E2. El GSA identificó como aportes más relevantes: la cantidad de ceniza de biosólidos, variables de proceso y en especial eficiencia del sistema (tasa de sustitución con electricidad, eficiencia energética y captura de metales). E2 presentó un mejor desempeño en 6 de las 13 categorías de impacto evaluadas: CC, AO, MP, RI, AC, ET,ad. Por su parte, E1 tuvo un mejor desempeño en 5 de 13 categorías: TH,c, TH,nc, EUT,ad, EUT,m y AR. E0 tuvo un mejor desempeño en 2 de 13 categorías: FOF y EUT,t. EUT,m y AR. Por otro lado, la categoría E1 tuvo un mejor desempeño en 3 de 13 categorías: TH,c, TH,nc y ET,ad. El escenario E0 tuvo mejor desempeño en 1 de 13 categorías: EUT,ad. (Texto tomado de la fuente)spa
dc.description.abstractThis study assesses the potential environmental impacts through a life cycle analysis (LCA) of emerging technologies for sewage sludge (SS) treatment, such as rotary kiln pyrolysis (E1) and hydrothermal carbonization (E2), compared to incineration (E0), a mature technology. Experimental data were collected from SS from the Salitre WWTP in Bogotá D.C., Colombia, whose physicochemical characterization reports a high content of moisture (77.4%), ash (41.8%), carbon, nutrients (N, P and K) and heavy metals. The life cycle inventory (LCI) was constructed using experimental data, simulations in Aspen Plus® V10 and available literature information. The impact assessment (LCIA) considered 13 midpoint impact categories, as recommended by the International Life Cycle Data System (ILCD) in EASETECH software: climate change (CC); ozone depletion (AO); human toxicity, carcinogenic effects (TH,c); human toxicity, non-carcinogenic effects (TH,nc); particulate matter (PM); ionizing radiation (IR); photochemical ozone formation (FOF); terrestrial acidification (AC); terrestrial eutrophication (EUT,t); freshwater eutrophication (EUT,ad); marine eutrophication (EUT,m); freshwater ecotoxicity (ET,ad); and finally, abiotic resource depletion (AR). A global sensitivity analysis (GSA) is used to interpret the results. In E0, impacts are generated by gas cleaning. E1 generates greater impacts on TH,nc, EUT,ad and EUT,m due to the need for heat and application to soil. E2 generates impacts on TH,c, TH,nc and ET, mainly due to the transfer of Zn and Cr to soil. The environmental benefits of E1 and E2 are due to fertilizer substitution and soil carbon storage. The potential use of natural gas for heat needs would increase GHG emissions by 82% for E1 and 25% for E2. The GSA identified SS composition, process variables, and system expansion (fertilizer replacement rate) as key parameters. Discernibility analysis statistically determined that E2 performed better in 9 of the 13 categories: CC, AO, MP, RI, FOF, AC, EUT,t, EUT,m and AR. E1 performed better in 3 of the 13 categories: TH,c, TH,nc and ET,ad. The E0 scenario obtained better results in 1 of the 13 categories: EUT,ad.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaBioenergía y Sistemas Energéticos Sostenibles
dc.format.extentxvi, 114 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88580
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.relation.referencesM. Pariente, Y. Segura, R. Molina y F. Martínez, “Chapter 2 - Wastewater treatment as a process and a resource,” en Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels, J. A. Olivares, D. Puyol, J. A. Melero y J. Dufour, eds., Elsevier, 2020, págs. 19-45, isbn: 978-0-12-816204-0.
dc.relation.referencesW. Rulkens, “Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options,” Energy & Fuels, vol. 22, n.º 1, págs. 9-15, 2008.
dc.relation.referencesN. Gao, K. Kamran, C. Quan y P. T. Williams, “Thermochemical conversion of sewage sludge: A critical review,” Progress in Energy and Combustion Science, vol. 79, pág. 100843, 2020, issn: 0360-1285.
dc.relation.referencesEmpresa de Acueducto y Alcantarillado de Bogotá (EAAB). “PTAR Salitre.” (2023), dirección: https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente/saneamiento/rio-bogota/ptar-salitre (visitado 15-04-2024).
dc.relation.referencesJ. Korhonen, A. Honkasalo y J. Seppälä, “Circular Economy: The Concept and its Limitations,” Ecological Economics, vol. 143, págs. 37-46, 2018, issn: 0921-8009.
dc.relation.referencesEllen Macarthur Foundation, “Hacia una economía circular: motivos económicos para una transición acelerada,” inf. téc., 2010.
dc.relation.referencesParlamento Europeo y del Consejo. “Directiva 2008/98/CE del Parlamento Europeo y del Consejo,” sobre los residuos y por la que se derogan determinadas Directivas. (2008), dirección: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0098-201805705 (visitado 15-04-2024).
dc.relation.referencesA. Gopinath, G. Divyapriya, V. Srivastava, A. Laiju, P. Nidheesh y M. S. Kumar, “Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment,” Environmental Research, vol. 194, pág. 110656, 2021, issn: 0013-9351.
dc.relation.referencesONU-Hábitat y OMS, “Progresos en el tratamiento de las aguas residuales. Estado mundial y necesidades de aceleración del indicador 6.3.1. de los ODS,” inf. téc., 2021.
dc.relation.referencesUnited States Environmental Protection Agency (EPA). “Basic Information about Biosolids.” (2022), dirección: https://www.epa.gov/biosolids/basic-information-about-biosolids (visitado 16-04-2024).
dc.relation.referencesEurostat. “Sewage sludge production and disposal.” (2023), dirección: https://ec.europa.eu/eurostat/databrowser/view/env_ww_spd/default/table?lang=en (visitado 16-04-2024).
dc.relation.referencesB. Zhang, X. Zhou, X. Ren, X. Hu y B. Ji, “Recent Research on Municipal Sludge as Soil Fertilizer in China: a Review,” Water, Air, & Soil Pollution, vol. 234, pág. 192, 2023, issn: 1573-2932. doi: https://doi.org/10.1007/s11270-023-06142-w .
dc.relation.referencesM. Hušek, R. Homma, J. Mosko, M. Pohorely y K. Oshita, “P-recovery versus current sewage sludge treatment policy in the Czech Republic and Japan,” Clean Technologies and Environmental Policy, 2023, issn: 1618-9558.
dc.relation.referencesM. Bagheri, T. Bauer, L. E. Burgman y E. Wetterlund, “Fifty years of sewage sludge management research: Mapping researchers’ motivations and concerns,” Journal of Environmental Management, vol. 325, pág. 116412, 2023, issn: 0301-4797.
dc.relation.referencesSuperintendencia de Servicios Públicos Domiciliarios (Superservicios), “Informe Sectorial de los Servicios Públicos Domiciliarios de Acueducto y Alcantarillado vigencia 2022,” inf. téc., 2023.
dc.relation.referencesMinisterio de Vivienda, Ciudad y Territorio, Ministerio de Agricultura y Desarrollo Rural y Ministerio de Ambiente y Desarrollo Sostenible. “Propuesta de modificación del Decreto 1287 de 2014.” (2023), dirección: https://www.minvivienda.gov.co/system/files/consultasp/documento-soporte-modificacion-biosolidos-version-final-diciembre-de-2023.pdf (visitado 06-05-2024).
dc.relation.referencesRepública de Colombia, Decreto 1287 de 2014, Diario Oficial No. 49.100, Visitado: 2023-10-10, 2014.
dc.relation.referencesAqualia, “Diseño detallado, construcción de las obras, suministro e instalación de equipos, puesta en marcha y operación asistida de la optimización y expansión de la planta de tratamiento de aguas residuales el salitre,” inf. téc., 2018.
dc.relation.referencesS. S. A. Syed-Hassan, Y. Wang, S. Hu, S. Su y J. Xiang, “Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations,” Renewable and Sustainable Energy Reviews, vol. 80, págs. 888-913, 2017, issn: 1364-0321.
dc.relation.referencesM. Hasan, M. Rasul, M. Khan, N. Ashwath y M. Jahirul, “Energy recovery from municipal solid waste using pyrolysis technology: A review of process development and technological progress,” Renewable and Sustainable Energy Reviews, vol. 145, pág. 111073, 2021, issn: 1364-0321.
dc.relation.referencesL. Mendoza, “Pirólisis de biosólidos en horno rotatorio,” Tesis doct., Universidad Nacional de Colombia, Bogotá, Colombia, 2016.
dc.relation.referencesT. T. T. Ho, A. Nadeem y K. Chee, “A Review of Upscaling Hydrothermal Carbonization,” Energies, vol. 17, n.º 8, 2024, issn: 1996-1073.
dc.relation.referencesM. Lucian, F. Merzari, A. Messineo y M. Volpe, “Hydrothermal Carbonization of Sludge Residues via Carborem C700 Industrial Scale Continuous Operating Plant,” vol. 92, págs. 19-24, 2022.
dc.relation.referencesM. Lucian, F. Merzari, M. Gubert, A. Messineo y M. Volpe, “Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery,” Sustainability, vol. 13, n.º 16, 2021.
dc.relation.referencesM. Buttmann, “industrial scale plant for sewage sludge treatment by hydrothermal carbonization in jinling/china and phosphate recovery by terranova® ultra htc process,” en European Biosolids and Organic Resources Conference, Leeds, 2017.
dc.relation.referencesM. Child, “Industrial-scale hydrothermal carbonization of waste sludge materials for fuel production,” Tesis de mtría., Lappeenranta University of Technology, 2014.
dc.relation.referencesG. Ciceri, M. H. Latorre, M. K. Mediboyina y F. Murphy, Hydrothermal Carbonization (HTC): Valorisation of Organic Wastes and Sludges for Hydrochar Production and Biofertilizers, M. Edo, B. Hoffman, I. Johansson y D. Roberts, eds., IEA Bioenergy: Task 36.
dc.relation.referencesM. Hitzl, A. Corma, F. Pomares y M. Renz, “The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass,” Catalysis Today, vol. 257, págs. 154-159, 2015, Biomass valorization into fuels, energy, materials and chemicals (UBIOCHEM-IV), issn: 0920-5861.
dc.relation.referencesHTCycle, HTCycle: Hydrothermal Carbonization Solutions, https://htcycle.ag/en/ , 2024-06-10.
dc.relation.referencesAntaco, Converting Organic Waste into Energy, https://www.antaco.co.uk/ , 2024-06-11, 2024.
dc.relation.referencesSunCoal, SunCoal - Sustainable Biomass Solutions, https://www.suncoal.com/ , Visitado: 2024-06-11, 2024.
dc.relation.referencesK. Wiedner, C. Rumpel, C. Steiner, A. Pozzi, R. Maas y B. Glaser, “Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale,” Biomass and Bioenergy, vol. 59, págs. 264-278, 2013, issn: 0961-9534.
dc.relation.referencesH. Yoshida, “Life cycle assessment of sewage sludge treatment and its use on land,” Tesis doct., DTU Environment, Denmark, 2014.
dc.relation.referencesNTC-ISO 14040:2022 Gestión ambiental. Análisis de ciclo de vida. Principios y marco de referencia. ICONTEC - Instituto Colombiano de Normas Técnicas, Colombia, 2022.
dc.relation.referencesT. Christensen et al., “Application of LCA modelling in integrated waste management,” Waste Management, vol. 118, págs. 313-322, 2020, issn: 0956-053X.
dc.relation.referencesV. Bisinella, S. Schmidt, A. Varling, D. Laner y T. Christensen, “Waste LCA and the future,” Waste Management, vol. 174, págs. 53-75, 2024, issn: 0956-053X.
dc.relation.referencesNTC-ISO 14044:2021 Gestión ambiental. Análisis de ciclo de vida. Requisitos y directrices. Requisitos del ciclo de vida. ICONTEC - Instituto Colombiano de Normas Técnicas, Colombia, 2021.
dc.relation.referencesEuropean Commission - Joint Research Centre - Institute for Environment and Sustainability, ILCD Handbook: Framework and Requirements for LCIA Models and Indicators, First. Luxembourg: Publications Office of the European Union, 2010, isbn: 978-92-79-17539-8. doi: 10.2788/38719. dirección: http://lct.jrc.ec.europa.eu/ .
dc.relation.referencesM. Hauschild et al., “Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors. International Reference Life Cycle Data System - ILCD handbook,” Luxembourg (Luxembourg), Scientific analysis or review, Technical guidance, 2011.
dc.relation.referencesR. van Zelm, P.-O. Roy, M. Z. Hauschild y M. A. J. Huijbregts, “Acidification,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 163-176.
dc.relation.referencesJ. L. Lane, “Stratospheric Ozone Depletion,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 51-73.
dc.relation.referencesA. Levasseur, “Climate Change,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 39-50.
dc.relation.referencesR. K. Rosenbaum, “Ecotoxicity,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 139-162.
dc.relation.referencesA. D. Henderson, “Eutrophication,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 177-192.
dc.relation.referencesS. Humbert, P. Fantke y O. Jolliet, “Particulate Matter Formation,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 97-113.
dc.relation.referencesP. Preiss, “Photochemical Ozone Formation,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 115-138.
dc.relation.referencesO. Jolliet y P. Fantke, “Human Toxicity,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 75-96.
dc.relation.referencesP. Swart, A. R. F. Alvarenga y J. Dewulf, “Abiotic Resource Use,” en Life Cycle Impact Assessment, M. Z. Hauschild y M. A. Huijbregts, eds. Dordrecht: Springer Netherlands, 2015, págs. 247-269.
dc.relation.referencesV. Bisinella, K. Conradsen, T. H. Christensen y T. F. Astrup, “A global approach for sparse representation of uncertainty in Life Cycle Assessments of waste management systems,” The International Journal of Life Cycle Assessment, vol. 21, n.º 3, págs. 378-394, 2016, issn: 1614-7502.
dc.relation.referencesMathWorks, Monte Carlo Simulation - MATLAB & Simulink, Visitado: 21-10-2024, 2024. dirección: https://la.mathworks.com/discovery/monte-carlo-simulation.html .
dc.relation.referencesS. M. Lloyd y R. Ries, “Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of Quantitative Approaches,” Journal of Industrial Ecology, vol. 11, n.º 1, págs. 161-179, 2007.
dc.relation.referencesJ. Clavreul, H. Baumeister, T. H. Christensen y A. Damgaard, “An environmental assessment system for environmental technologies,” Environmental Modelling & Software, vol. 60, págs. 18-30, 2014, issn: 1364-8152.
dc.relation.referencesDepartment of Environmental Engineering, Technical University of Denmark, Impact Categories and Impact Methods in EASETECH, March 2021, Kgs. Lyngby, 2021.
dc.relation.referencesS. Rincón, Desarrollo de una estrategia de valorización termoquímica de biosólidos a productos y bioenergía para el fortalecimiento de la economía circular y la sostenibilidad la región Bogotá, 2023. http://www.hermes.unal.edu.co/pages/consultas/Proyecto.xhtml?IdProyecto=47923&opcion=1 .
dc.relation.referencesS. Rincón, A. Gómez y G. Mendoza, eds., Valorización térmica de biosólidos en la economía circular: producción de biocarbonizados y aprovechamiento energético. Editorial Unal, 2024, Sin publicar.
dc.relation.referencesA. Gómez, Zur Teilvergasung von Biomasse im Drehrohrreaktor, Tesis de Doctorado, Universidad de Kassel, 2007.
dc.relation.referencesL. Mendoza-Geney, S. Fonseca, F. D. Bermudez-Aguilar, M. J. Martínez-Cordón, A. Gómez-Mejía y S. Rincón-Prat, “Agronomic potential of pyrochar and hydrochar from sewage sludge: effects of carbonization conditions,” 2024, Sin publicar.
dc.relation.referencesISO 18134-3:2023. Solid biofuels — Determination of moisture content. Part 3: Moisture in general analysis sample, International Organization for Standardization, 2023.
dc.relation.referencesISO 18122:2022. Solid biofuels — Determination of ash content, International Organization for Standardization, 2022.
dc.relation.referencesISO 18123:2023. Solid biofuels — Determination of volatile matter, International Organization for Standardization, 2023.
dc.relation.referencesCoal and coke - Proximate analysis, Geneva, Switzerland, 2024.
dc.relation.referencesCoal and coke — Ultimate analysis, Geneva, Switzerland, 2020.
dc.relation.referencesASTM D240-19. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter, ASTM International, 2019.
dc.relation.referencesMETHOD 6010C. Inductively coupled plasma-atomic emission spectrometry, Environmental Protection Agency, 2017.
dc.relation.referencesE. Medina-Martos, I.-R. Istrate, J. A. Villamil, J.-L. Gálvez-Martos, J. Dufour y Á. F. Mohedano, “Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge,” Journal of Cleaner Production, vol. 277, pág. 122930, 2020, issn: 0959-6526.
dc.relation.referencesN. Ghavami, K. Özdenkçi, S. Chianese, D. Musmarra y C. De Blasio, “Process simulation of hydrothermal carbonization of digestate from energetic perspectives in Aspen Plus,” Energy Conversion and Management, vol. 270, pág. 116215, 2022, issn: 0196-8904.
dc.relation.referencesN. P. Lumley, D. F. Ramey, A. L. Prieto, R. J. Braun, T. Y. Cath y J. M. Porter, “Techno-economic analysis of wastewater sludge gasification: A decentralized urban perspective,” Bioresource Technology, vol. 161, págs. 385-394, 2014, issn: 0960-8524.
dc.relation.referencesW. Liu, X. Zheng, Y. Feng, Z. Ying, B. Wang y B. Dou, “Prediction and optimization of hydrogen-rich gas production from sewage sludge via a combined process of hydrothermal carbonization, pyrolysis, and reforming,” Energy Conversion and Management, vol. 293, pág. 117462, 2023, issn: 0196-8904.
dc.relation.referencesAspen Technology, Inc., Aspen Plus User Guide, Version 10.2, Aspen Technology, Inc.
dc.relation.referencesJ. Haydary, “Processes with Nonconventional Solids,” en Chemical Process Design and Simulation. John Wiley & Sons, Ltd, 2018, cap. 14, págs. 321-346, issn: 9781119311478.
dc.relation.referencesB. Industrial, Caldera de vapor Universal UL-S, UL-SX, https://www.bosch-industrial.com/latam/es/ocs/comercial-e-industrial/caldera-de-vapor-universal-ul-s-ul-sx-669474-p/ , Visitado: 21-oct-2024, 2024.
dc.relation.referencesE. Danso-Boateng, R. Holdich, S. Martin, G. Shama y A. Wheatley, “Process energetics for the hydrothermal carbonisation of human faecal wastes,” Energy Conversion and Management, vol. 105, págs. 1115-1124, 2015, issn: 0196-8904.
dc.relation.referencesM. Owsianski, M. W. Ryberg, M. Renz, M. Hitzl y M. Z. Hauschild, “Environmental Performance of Hydrothermal Carbonization of Four Wet Biomass Waste Streams at Industry-Relevant Scales,” ACS Sustainable Chemistry & Engineering, vol. 4, n.º 12, págs. 6783-6791, 2016.
dc.relation.referencesF. Mayer, R. Bhandari y S. A. Gäth, “Life cycle assessment of the treatment of organic waste streams by anaerobic digestion, hydrothermal carbonization and incineration,” Waste Management, vol. 130, págs. 93-106, 2021, issn: 0956-053X.
dc.relation.referencesL. Lombardi, F. T. Dik, M. Sliż, K. Żemżewska, S. Fabrizi y M. Wilk, “Life cycle assessment of the hydrothermal carbonization process applied to wet thermally pretreated and untreated from municipal mixed waste,” Waste Management, vol. 166, págs. 181-193, 2023, issn: 0956-053X.
dc.relation.referencesG. Mannarino, S. Caffaz, R. Gori y L. Lombardi, “Environmental life cycle assessment of hydrothermal carbonization of sewage sludge and its products valorization pathways,” Waste and Biomass Valorization, vol. 13, n.º 9, págs. 3845-3864, 2022.
dc.relation.referencesR. Singh y A. Shukla, “A review on methods of flue gas cleaning from combustion of biomass,” Renewable and Sustainable Energy Reviews, vol. 29, págs. 854-864, 2014, issn: 1364-0321.
dc.relation.referencesS. Donatello y C. R. Cheeseman, “Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review,” Waste Management, vol. 33, n.º 11, págs. 2328-2340, 2013, issn: 0956-053X.
dc.relation.referencesR. Margraf, Flue Gas Treatment for Sewage Sludge Incinerators: Concepts and First Results from Plants in Operation, LUEHR FILTER GmbH, WM, pp. 531-548, 2019.
dc.relation.referencesH. Chang, Y. Zhao, V. Bisinella, A. Damgaard y T. H. Christensen, “Climate change impacts of conventional sewage sludge treatment and disposal,” Water Research, vol. 240, pág. 120109, 2023, issn: 0043-1354.
dc.relation.referencesM. Faraqò, A. Damgaard, I. Logar y M. Rygaard, “Life Cycle Assessment and Cost-Benefit Analysis of Technologies in Water Resource Recovery Facilities: The Case of Sewage Sludge Pyrolysis,” Environmental Science & Technology, vol. 56, n.º 24, 17988-17997, 2022.
dc.relation.referencesL. Espinoza Pérez, A. Espinoza Pérez, E. Pino-Cortés, F. Vallejo y L. A. Díaz-Robles, “An environmental assessment for municipal organic waste and sludge treated by hydrothermal carbonization,” Science of The Total Environment, vol. 828, pág. 154474, 2022, issn: 0048-9697.
dc.relation.referencesH. Yuan, S. Zhai, H. Fu, Z. Li, D. Gao y H. Zhu, “Environmental and economic life cycle assessment of emerging sludge treatment routes,” Journal of Cleaner Production, vol. 449, pág. 141792, 2024, issn: 0959-6526.
dc.relation.referencesK. Meisel, A. Clemens, C. Fühner, M. Breulmann, S. Majer y D. Thrän, “Comparative Life Cycle Assessment of HTC Concepts Valorizing Sewage Sludge for Energetic and Agricultural Use,” Energies, vol. 12, n.º 5, 2019, issn: 1996-1073.
dc.relation.referencesM. Behjat, M. Svanström y G. Peters, “Environmental assessment of phosphorus recovery from dairy sludge: A comparative LCA study,” Waste Management, vol. 187, págs. 50-64, 2024, issn: 0956-053X.
dc.relation.referencesF. Mayer, R. Bhandari y S. A. Gäth, “Life cycle assessment of prospective sewage sludge treatment paths in Germany,” Journal of Environmental Management, vol. 290, pág. 112 557, 2021, issn: 0301-4797.
dc.relation.referencesM. Breulmann, M. van Afferden, R. A. Müller, E. Schulz y C. Fühner, “Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration,” Journal of Analytical and Applied Pyrolysis, vol. 124, págs. 256-265, 2017, issn: 0165-2370.
dc.relation.referencesX. Song, X. Xue, D. Chen, P. He y X. Dai, “Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation,” Chemosphere, vol. 109, págs. 213-220, 2014, issn: 0045-6535.
dc.relation.referencesK. Czerwińska, F. Wiercińska-Wiśniewska, K. Bytnar, J. Mikusińska, M. Śliz y M. Wilk, “The effect of an acidic environment during the hydrothermal carbonization of sewage sludge on solid and liquid products: The fate of heavy metals, phosphorus and other compounds,” Journal of Environmental Management, vol. 365, pág. 121637, 2024.
dc.relation.referencesG. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz y B. Weidema, “The ecoinvent database version 3 (part I): overview and methodology,” International Journal of Life Cycle Assessment, vol. 21, n.º 9, págs. 1218-1230, 2016.
dc.relation.referencesecoinvent Association. “ecoinvent Database.” Visitado: 2024-10-13. (2024). Disponible en: https://ecoinvent.org/ .
dc.relation.referencesJ. Clavreul, D. Guyonnet y T. H. Christensen, “Quantifying uncertainty in LCA-modelling of waste management systems,” Waste Management, vol. 32, n.º 12, 2482-2495, 2012, issn: 0956-053X.
dc.relation.referencesGreat Wall Corporation. “Rotary Kiln.” (2024). Disponible en: https://www.greatwallcorporation.com/product/rotary-kiln/rotary-kiln.html (consultado el 11-08-2024).
dc.relation.referencesAlibaba.com. “Chemical Industrial Packed Bed Reactor.” (2024). Disponible en: https://www.alibaba.com/product-detail/Chemical-Industrial-Packed-Bed-Reactor-1600055093887.html (consultado el 11-08-2024).
dc.relation.referencesEuropean Commission - Joint Research Centre - Institute for Environment and Sustainability, ILCD Handbook: Analysis of existing Environmental Impact Assessment methodologies for use in Life Cycle Assessment, European Commission, informe técnico, 2010.
dc.relation.referencesL. Zamproi, E. Saouter, E. Schau, J. Cristobal, V. Castellani y S. Sala, Guide for Interpreting Life Cycle Assessment Result, Joint Research Centre (JRC), European Commission, informe técnico, EUR 28266 EN, 2016.
dc.relation.referencesF. Schlederer, E. Martín-Hernández y C. Vaneeckhaute, “Ensuring safety standards in sewage sludge-derived biochar: Impact of pyrolysis process temperature and carrier gas on micropollutant removal,” Journal of Environmental Management, vol. 352, pág. 119964, 2024, ISSN: 0301-4797.
dc.relation.referencesA. D. Henderson et al., “USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties,” The International Journal of Life Cycle Assessment, vol. 16, n.º 8, págs. 701-709, 2011.
dc.relation.referencesM. R. Pérez, “Cálculo del Potencial de Agotamiento Abiótico. Aplicación a la Producción de Bioetanol a partir de Caña de Azúcar,” Tesis de mtría., Universidad de Sevilla, Sevilla, España, 2019.
dc.relation.referencesR. Heijungs y R. Kleijn, “Numerical approaches towards life cycle interpretation: five examples,” The International Journal of Life Cycle Assessment, vol. 6, n.º 3, págs. 141-148, 2001.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.bneGestión integrada de residuos sólidos urbanosspa
dc.subject.bneIntegrated solid waste managementeng
dc.subject.bneCarbonizaciónspa
dc.subject.bneEconomía circular - Aspectos ambientalesspa
dc.subject.bneResiduos (Combustible)spa
dc.subject.bneWaste products as fueeng
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.decsBiosólidosspa
dc.subject.decsBiosolidseng
dc.subject.decsPirólisisspa
dc.subject.decsPyrolysiseng
dc.subject.lembRecursos energéticos renovablesspa
dc.subject.lembRenewable energy sourceseng
dc.subject.proposalAnálisis de ciclo de vidaspa
dc.subject.proposalBioenergíaspa
dc.subject.proposalBiosólidosspa
dc.subject.proposalCarbonización hidrotérmicaspa
dc.subject.proposalEconomía circularspa
dc.subject.proposalPirólisisspa
dc.subject.proposalSistemas energéticos sosteniblesspa
dc.subject.proposalLife cycle assessment (LCA)eng
dc.subject.proposalBioenergyeng
dc.subject.proposalSewage sludgeeng
dc.subject.proposalHydrothermal carbonization (HTC)eng
dc.subject.proposalCircular economyeng
dc.subject.proposalPyrolysiseng
dc.subject.proposalSustainable energy systemseng
dc.titleEvaluación comparativa del ciclo de vida de pirólisis y carbonización hidrotérmica para valorización de biosólidosspa
dc.title.translatedComparative life cycle assessment of pyrolysis and hydrothermal carbonization for sewage sludge valorizationeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Evaluación comparativa del ciclo de vida de pirólisis y carbonización hidrotérmica para valorización de biosólidos (4).pdf
Tamaño:
10.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: