Proceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificada

dc.contributor.advisorGonzález Álvarez, Nelfi Gertrudis
dc.contributor.authorVargas Correa, Raquel
dc.date.accessioned2022-03-25T15:36:49Z
dc.date.available2022-03-25T15:36:49Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl análisis de equipos reparables ha sido un tema con gran desarrollo en confiabilidad. Un acercamiento común al modelamiento de este tipo de sistemas es por medio procesos de conteo, entre ellos los procesos Poisson. Dentro de los procesos Poisson existen los homogéneos que tienen tasa constante y los no homogéneos donde la tasa de recurrencia depende del tiempo. En la literatura existen dos modelos de procesos Poisson no homogéneos (NHPP) que son ampliamente difundidos: el modelo ley potencia y el modelo log lineal, pero ambos modelos son incapaces de modelar tasas de recurrencia de procesos falla/reparo en forma de bañera, es decir una tasa de recurrencia caracterizada por tres periodos: “mortalidad infantil”, “vida útil” y “desgaste”. Existen alternativas para modelar tasas de recurrencia en forma de bañera, pero modelar tasas de falla en forma de bañera donde la parte de “vida útil” sea “plana” presenta dificultades. Este trabajo consiste en la adaptación de una distribución de vida con hazard flexible en un modelo NHPP que pueda modelar tasas de falla en forma de bañera con parte plana extendida, y adicional a esto, plantear un modelo de mantenimiento preventivo óptimo bajo el supuesto de reparación mínima con este nuevo modelo NHPP. (Texto tomado de la fuente)spa
dc.description.abstractThe analysis of repairable equipment has been a subject with great development in reliability. A common approach to modeling this type of system is through counting processes, including Poisson processes. Within the Poisson processes there are homogeneous ones that have a constant rate and non-homogeneous ones where the recurrence rate depends on time. In the literature 8 there are two models of non-homogeneous Poisson processes (NHPP) that are widely spread: the power law model and the linear log model, but both models are unable to model recurrence rates of failure/repair processes in the form of a bathtub, that is, say a recurrence rate characterized by three periods: “infant mortality”, “service life” and “attrition”. There are alternatives to modeling bathtub-shaped recurrence rates, but modeling bathtub-shaped failure rates where the “service life” part is “flat” presents difficulties. This work consists of the adaptation of a life distribution with flexible hazard in an NHPP model that can model failure rates in the form of a bathtub with an extended flat part, and in addition to this, propose an optimal preventive maintenance model under the minimum repair assumption with this new NHPP model.eng
dc.description.curricularareaÁrea Curricular Estadísticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ciencias - Estadísticaspa
dc.format.extent84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81385
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAlmalki, S. J. y Yuan, J. (2013). “A new modified Weibull distribution”. En: Reliability Engineering & System Safety 111, págs. 164-170.spa
dc.relation.referencesAscher, H. y Feingold, H. (1984). Repairable systems reliability: modeling, inference, misconceptions and their causes. M. Dekker New York.spa
dc.relation.referencesAven, T. (1983). “Optimal replacement under a minimal repair strategy : A general failure model”. En: Advances in Applied Probability 15(1), págs. 198-211.spa
dc.relation.referencesAven, T. y Jensen, U. (2000). “A general minimal repair model”. En: Journal of Applied Probability 37(1), págs. 187-197.spa
dc.relation.referencesBain, L. J. (1974). “Analysis for the linear failure-rate life-testing distribution”. En: Technometrics 16(4), págs. 551-559.spa
dc.relation.referencesBarlow, R. y Hunter, L. (1960). “Optimum preventive maintenance policies”. En: Operations Research 8(1), págs. 90-100.spa
dc.relation.referencesBlock, H. W., Borges, W. D. S. y Savits, T. H. (1990). “A general age replacement model with minimal repair”. En: Naval Research Logistics (NRL) 35(5), págs. 365-372.spa
dc.relation.referencesBlock, H. W. y Savits, T. H. (1997). “Burn-in”. En: Statistical Science 12(1), págs. 1-19spa
dc.relation.referencesBrent, R. P. (1973). “Algorithms for Minimization without Derivatives”. En: Prentice-Hall, Englewood Cliffs, New Jersey.spa
dc.relation.referencesBrown, M. y Proschan, F. (1983). “Imperfect repair”. En: Journal of Applied Probability 20(4), págs. 851-859.spa
dc.relation.referencesChen, Z. (2000). “A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function”. En: Statistics & Probability Letters 49(2), págs. 155-161.spa
dc.relation.referencesChien, Y.-H. (2019). “The optimal preventive-maintenance policy for a NHPBP repairable system under free-repair warranty”. En: Reliability Engineering & System Safety 188, págs. 444-453.spa
dc.relation.referencesCoetzee, J. L. (1996). “Reliability degradation and the equipment replacement problem”. En: Proceedings of the International Conference of Maintenance Societies.spa
dc.relation.referencesColosimo, E. A., Gilardoni, G. L., Santos, W. B. y Motta, S. B. (2010). “Optimal maintenance time for repairable systems under two types of failures”. En: Communications in Statistics Theory and Methods 39(7), págs. 1289-1298.spa
dc.relation.referencesCoolen-Schrijner, P. y Coolen, F. P. (2007). “Nonparametric adaptive age replacement with a one-cycle criterion”. En: Reliability Engineering & System Safety 92(1), págs. 74-84.spa
dc.relation.referencesDe Carlo, F. y Arleo, M. A. (dic. de 2017). “Imperfect Maintenance Models, from Theory to Practice”. En: System Reliability. InTech. Cap. 18. DOI: 10.5772/intechopen.69286. URL: https://doi.org/10.5772/intechopen.69286.spa
dc.relation.referencesDijoux, Y. (2009). “A virtual age model based on a bathtub shaped initial intensity”. En: Reliability Engineering & System Safety 94(5), págs. 982-989spa
dc.relation.referencesDoyen, L., Drouilhet, R. y Brenière, L. (2020). “A generic framework for generalized virtual age models”. En: IEEE Transactions on Reliability 69(2), págs. 816-832.spa
dc.relation.referencesEbrahimi, N. (1993). “Improvement and Deterioration of a Repairable System”. En: Sankhya: The Indian Journal of Statistics, Series A (1961-2002) 55(2), págs. 233-243. ISSN: 0581572X. URL: http://www.jstor.org/stable/25050930.spa
dc.relation.referencesFinkelstein, M., Cha, J. H. y col. (2013). “Stochastic modeling for reliability”. En: Shocks, burn-in and heterogeneous populations. Springer Series in Reliability Engineering, London: Springerspa
dc.relation.referencesGámiz, M. L., Kulasekera, K. B., Limnios, N. y Lindqvist, B. H. (2011). Applied Nonparametric Statistics in Reliability. Springer-Verlag, London.spa
dc.relation.referencesGertsbakh, I. B. (1977). Models of Preventive Maintenance. Elsevier Publishing, Amsterdam.spa
dc.relation.referencesGilardoni, G. L. y Colosimo, E. A. (2007). “Optimal maintenance time for repairable systems”. En: Journal of Quality Technology 39(1), págs. 48-53.spa
dc.relation.referencesGilardoni, G. L., Guerra De Toledo, M. L., Freitas, M. A. y Colosimo, E. A. (2016). “Dynamics of an optimal maintenance policy for imperfect repair models”. En: European Journal of Operational Research 248(3), págs. 1104-1112spa
dc.relation.referencesGuida, M. y Pulcini, G. (2009). “Reliability analysis of mechanical systems with bounded and bathtub shaped intensity function”. En: IEEE Transactions on Reliability 58(3), págs. 432-443.spa
dc.relation.referencesGuo, H., Mettas, A., Sarakakis, G. y Niu, P. (2010). “Piecewise NHPP models with maximum likelihood estimation for repairable systems”. En: 2010 Proceedings-Annual Reliability and Maintainability Symposium (RAMS), San Jose, págs. 1-7. DOI: 10.1109/RAMS.2010. 5448029spa
dc.relation.referencesHashemi, M., Asadi, M. y Zarezadeh, S. (2020). “Optimal maintenance policies for coherent systems with multi-type components”. En: Reliability Engineering & System Safety 195, pág. 106674.spa
dc.relation.referencesJean, J. (1999). “Inference in nonhomogeneous Poisson process models, with applications to software reliability”. En: Ph.D. Thesis, University of Waterloospa
dc.relation.referencesJohnson, M. A., Lee, S. y Wilson, J. R. (1994). “Experimental evaluation of a procedure for estimating nonhomogeneous Poisson processes having cyclic behavior”. En: ORSA Journal on Computing 6(4), págs. 356-368.spa
dc.relation.referencesKazeminia, M. y Mehrjoo, M. (2013). “A new method for maximum likelihood parameter estimation of Gamma-Gamma distribution”. En: Journal of lightwave technology 31(9), págs. 1347-1353.spa
dc.relation.referencesKijima, M. (1989). “Some results for repairable systems with general repair”. En: Journal of Applied Probability 26(1), págs. 89-102. DOI: 10.2307/3214319.spa
dc.relation.referencesKijima, M. y Nakagawa, T. (1991). “A cumulative damage shock model with imperfect preventive maintenance”. En: Naval Research Logistics (NRL) 38(2), págs. 145-156.spa
dc.relation.referencesKijima, M. y Sumita, U. (1986). “A Useful Generalization of Renewal Theory: Counting Processes Governed by Non-Negative Markovian Increments”. En: Journal of Applied Probability 23(1), págs. 71-88. ISSN: 00219002. URL: http://www.jstor.org/stable/3214117.spa
dc.relation.referencesKim, M. J. y Makis, V. (2009). “Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair”. En: Computers & Industrial Engineering 57(1), págs. 298-303.spa
dc.relation.referencesKrivtsov, V. V. (2007). “Practical extensions to NHPP application in repairable system reliability analysis”. En: Reliability Engineering & System Safety 92(5), págs. 560-562.spa
dc.relation.referencesKumar, U., Klefsjö, B. y Granholm, S. (1989). “Reliability investigation for a fleet of load haul dump machines in a Swedish mine”. En: Reliability Engineering & System Safety 26(4), págs. 341-361spa
dc.relation.referencesLai, C., Xie, M. y Murthy, D. (2003). “A modified Weibull distribution”. En: IEEE Transactions on Reliability 52(1), págs. 33-37.spa
dc.relation.referencesLai, C.-D. y Xie, M. (2006). Stochastic ageing and dependence for reliability. Springer Science & Business Media, New York, págs. 71-107spa
dc.relation.referencesLai, K., Leung, K. N. F., Tao, B. y Wang, S. Y. (2001). “A sequential method for preventive maintenance and replacement of a repairable single-unit system”. En: Journal of the Operational Research Society 52(11), págs. 1276-1283.spa
dc.relation.referencesLam, C. T. y Yeh, R. (1994). “Optimal maintenance-policies for deteriorating systems under various maintenance strategies”. En: IEEE Transactions on Reliability 43(3), págs. 423-430spa
dc.relation.referencesLeemis, L. M. (1991). “Nonparametric estimation of the cumulative intensity function for a nonhomogeneous Poisson process”. En: Management Science 37(7), págs. 886-900.spa
dc.relation.referencesLie, C. H. y Chun, Y. H. (1986). “An algorithm for preventive maintenance policy”. En: IEEE Transactions on Reliability 35(1), págs. 71-75.spa
dc.relation.referencesLindqvist, B. H. (2006). “On the statistical modeling and analysis of repairable systems”. En: Statistical Science 21(4), págs. 532-551.spa
dc.relation.referencesLiu, J. y Wang, Y. (2013). “On Crevecoeur’s bathtub-shaped failure rate model”. En: Computational Statistics & Data Analysis 57(1), págs. 645-660.spa
dc.relation.referencesMalik, M. A. K. (1979). “Reliable preventive maintenance scheduling”. En: AIIE transactions 11(3), págs. 221-228.spa
dc.relation.referencesMazzuchi, T. A. y Soyer, R. (1996). “A Bayesian perspective on some replacement strategies”. En: Reliability Engineering & System Safety 51(3), págs. 295-303.spa
dc.relation.referencesMeeker, W. Q. y Escobar, L. A. (1998). Statistical methods for reliability data. John Wiley & Sons, New York, págs. 393-426.spa
dc.relation.referencesMudholkar, G. S., Asubonteng, K. O. y Hutson, A. D. (2009). “Transformation of the bathtub failure rate data in reliability for using Weibull-model analysis”. En: Statistical Methodology 6(6), págs. 622-633.spa
dc.relation.referencesMun, B. M. y Bae, S. J. (2014). “Nonlinear Mixed-Effects Models for Multiple Repairable Systems”. En: Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, Indonesia.spa
dc.relation.referencesMun, B. M., Bae, S. J. y Kvam, P. H. (2013). “A superposed log-linear failure intensity model for repairable artillery systems”. En: Journal of Quality Technology 45(1), págs. 100-115.spa
dc.relation.referencesMusa, J. D. y Okumoto, K. (1984). “A logarithmic Poisson execution time model for software reliability measurement”. En: Proceedings of the 7th International Conference on Software Engineering. Citeseer, págs. 230-238spa
dc.relation.referencesNair, U., Sankaran, P. y Balakrishnan, N. (2018). Reliability modelling and analysis in discrete time. Academic Press, págs. 247-279.spa
dc.relation.referencesNavarro, J., Arriaza, A. y Suárez-Llorens, A. (2019). “Minimal repair of failed components in coherent systems”. En: European Journal of Operational Research 279(3), págs. 951-964spa
dc.relation.referencesNelder, J. y Singer, S. (2009). “Nelder-Mead algorithm”. En: Scholarpedia 4(7), pág. 2928.spa
dc.relation.referencesPark, D. H., Jung, G. M. y Yum, J. K. (2000). “Cost minimization for periodic maintenance policy of a system subject to slow degradation”. En: Reliability Engineering & System Safety 68(2), págs. 105-112.spa
dc.relation.referencesPatrow, M. L. (1977). A comparison of two algorithms for the simulation of non-homogeneous Poisson processes with degree-two Exponential polynomial intensity function. Inf. téc. NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFspa
dc.relation.referencesPham, H. y Wang, H. (1996). “Imperfect maintenance”. En: European Journal of Operational Research 94(3), págs. 425-438.spa
dc.relation.referencesPham, H. y Wang, H. (2006). Reliability and Optimal Maintenance. Springer-Verlag, Londonspa
dc.relation.referencesPulcini, G. (2001a). “A bounded intensity process for the reliability of repairable equipment”. En: Journal of Quality Technology 33(4), págs. 480-492.spa
dc.relation.referencesPulcini, G. (2001b). “Modeling the failure data of a repairable equipment with bathtub type failure intensity”. En: Reliability Engineering & System Safety 71(2), págs. 209-218.spa
dc.relation.referencesR Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.spa
dc.relation.referencesRigdon, S. E. y Basu, A. P. (2000). Statistical methods for the reliability of repairable systems. John Wiley & Sons New York.spa
dc.relation.referencesSarhan, A. M. y Zaindin, M. (2009). “Modified Weibull distribution.” En: Applied Sciences 11, págs. 123-136spa
dc.relation.referencesShakhatreh, M., Lemonte, A. y Moreno-Arenas, G. (2019). “The Log-normal modified Weibull distribution and it’s reliability implications”. En: Reliability Engineering & System Safety 188, págs. 6-22.spa
dc.relation.referencesSharma, A., Yadava, G. S. y Deshmukh, S. G. (2011). “A literature review and future perspectives on maintenance optimization”. En: Journal of Quality in Maintenance Engineering 17(1), págs. 5-25spa
dc.relation.referencesSherif, Y. y Smith, M. (1981). “Optimal maintenance models for systems subject to failure–a review”. En: Naval Research Logistics Quarterly 28(1), págs. 47-74spa
dc.relation.referencesSheu, S.-H., Tsai, H.-N., Sheu, U.-Y. y Zhang, Z. G. (2019). “Optimal replacement policies for a system based on a one-cycle criterion”. En: Reliability Engineering & System Safety 191, pág. 106527spa
dc.relation.referencesShin, I., Lim, T. y Lie, C. (1996). “Estimating parameters of intensity function and maintenance effect for repairable unit”. En: Reliability Engineering & System Safety 54(1), págs. 1-10.spa
dc.relation.referencesTsai, T.-R., Liu, P.-H. y Lio, Y. L. (2011). “Optimal maintenance time for imperfect maintenance actions on repairable product”. En: Computers & Industrial Engineering 60(4), págs. 744-749.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembDistribution (probability theory)
dc.subject.lembDistribución (Teoría de probabilidades)
dc.subject.lembDistribución de Paisson
dc.subject.lembPoisson distribution
dc.subject.proposalIntensidad de falla en forma de bañeraspa
dc.subject.proposalReparación imperfectaspa
dc.subject.proposalReparación mínimaspa
dc.subject.proposalProceso de Poisson no homogéneospa
dc.subject.proposalMantenimiento preventivo óptimospa
dc.subject.proposalModelo proporcional de reducción de la edadspa
dc.subject.proposalBathtub-Shaped Failure Intensityeng
dc.subject.proposalImperfect Repaireng
dc.subject.proposalMinimal Repaireng
dc.subject.proposalNonhomogeneous Poisson Processeng
dc.subject.proposalOptimal Preventive Maintenanceeng
dc.subject.proposalProportional Age-Reduction Modeleng
dc.titleProceso NHPP y política óptima de mantenimiento sobre sistemas reparables con función de intensidad de falla Log-normal Weibull modificadaspa
dc.title.translatedNHPP process and optimal policy of maintenance on repairable systems with fault intensity function log-normal Modified Weibulleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017232120.2021.pdf
Tamaño:
720.26 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: