Método para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentación

dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.authorMosquera González, Davinson
dc.date.accessioned2022-06-24T20:12:14Z
dc.date.available2022-06-24T20:12:14Z
dc.date.issued2022-06
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa presente tesis de investigación, tiene como objetivo proponer un método para la segmentación de clientes, incorporando la predicción del valor monetario del cliente como una variable de segmentación, para tal fin, se propone una metodología cuantitativa, en la que los datos a utilizar corresponden a las transacciones de una tienda en línea de regalos para toda ocasión de Reino Unido, denominada “Online Retail II”, que consta de un total de 5.833 clientes y 1.067.371 registros; a partir de los cuales se realiza un proceso de caracterización de los datos, seguido de la predicción del valor monetario de cada cliente utilizando técnicas estadísticas y de aprendizaje de máquinas, que posteriormente se incluye como variable en el proceso de segmentación. Finalmente, se hace un comparativo entre los resultados de segmentar clientes sin incorporar la predicción del valor monetario y la segmentación de clientes incorporando la predicción del valor monetario; con lo que se concluye que el método propuesto, utilizando el algoritmo de Vecinos más cercanos para la predicción del valor monetario del cliente, al incorporarlo en la segmentación de clientes, logra un desempeño económico entre 10% y 20% mejor que segmentar sin incorporar esta variable. (Texto tomado de la fuente)spa
dc.description.abstractThis research thesis aims to propose a method for customer segmentation, incorporating the prediction of the customer's monetary value as a segmentation variable, for this purpose, a quantitative methodology is proposed, in which the data to be used correspond to the transactions of an online all-occasion gifts store in the United Kingdom, called “Online Retail II”, consisting of a total of 5.833 customers and 1.067.371 registrations; from which a data characterization process is carried out, followed by the prediction of the monetary value of each client using statistical and machine learning techniques, which is later included as a variable in the segmentation process. Finally, a comparison is made between the results of segmenting customers without incorporating the prediction of the monetary value and the customer segmentation incorporating the prediction of the monetary value; with which it is concluded that the proposed method, using the Nearest Neighbors algorithm for the prediction of the monetary value of the client, when incorporating it into the client segmentation, achieves an economic performance between 10% and 20% better than segmenting without incorporating this variable.spa
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.methodsInvestigación Cuantitativaspa
dc.format.extent94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81631
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.referencesAlipour, S. P. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129–1157. https://doi.org/10.1108/K-07-2015-0180spa
dc.relation.referencesArdanuy, J. (2012). Breve introducción a la bibliometría. In Universitat de Barcelona (pp. 1–25). https://doi.org/10.1038/nmat3485spa
dc.relation.referencesAria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007spa
dc.relation.referencesBauer, J., & Jannach, D. (2021). Improved Customer Lifetime Value Prediction with Sequence-To-Sequence Learning and Feature-Based Models. ACM Transactions on Knowledge Discovery from Data, 1(1). https://doi.org/10.1145/3441444spa
dc.relation.referencesBreunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. SIGMOD Rec., 29(2), 93–104. https://doi.org/10.1145/335191.335388spa
dc.relation.referencesCadavid, L., Awad, G., & Franco, C. (2012). Análisis bibliométrico del campo modelado de difusión de innovaciones. Estudios Gerenciales, 28(EE), 213–236. http://www.scielo.org.co/pdf/eg/v28nspe/v28nspea12.pdfspa
dc.relation.referencesCamps, D. (2008). Limitaciones de los indicadores bibliométricos en la evaluación de la actividad científica biomédica. In Colombia Médica (Vol. 39, pp. 74–79). scieloco.spa
dc.relation.referencesCancer Research UK. (2022). Cancer Research UK Together we will beat cancer. https://www.cancerresearchuk.org/spa
dc.relation.referencesChanna, H. S. (2019). Customer lifetime value: An ensemble model approach. Advances in Intelligent Systems and Computing, 808, 353–363. https://doi.org/10.1007/978-981-13-1402-5_27spa
dc.relation.referencesChatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205–219. https://doi.org/10.1016/j.indmarman.2021.07.013spa
dc.relation.referencesChen, D. (2019). Online Retail II Data Set. UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Online+Retail+IIspa
dc.relation.referencesChen, D., Sain, S. L., & Guo, K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing and Customer Strategy Management, 19(3), 197–208. https://doi.org/10.1057/dbm.2012.17spa
dc.relation.referencesChen, P. P., Guitart, A., Del Río, A. F., & Periáñez, A. (2019). Customer Lifetime Value in Video Games Using Deep Learning and Parametric Models. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2134–2140. https://doi.org/10.1109/BigData.2018.8622151spa
dc.relation.referencesChristy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2018). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University - Computer and Information Sciences, 1–7. https://doi.org/10.1016/j.jksuci.2018.09.004spa
dc.relation.referencesDhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. TQM Journal, 32(4), 869–896. https://doi.org/10.1108/TQM-10-2019-0243spa
dc.relation.referencesFader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). “Counting your customers” the easy way: An alternative to the Pareto/NBD model. Marketing Science, 24(2), 275–284. https://doi.org/10.1287/mksc.1040.0098spa
dc.relation.referencesForliano, C., De Bernardi, P., & Yahiaoui, D. (2021). Entrepreneurial universities: A bibliometric analysis within the business and management domains. Technological Forecasting and Social Change, 165, 1–16. https://doi.org/10.1016/j.techfore.2020.120522spa
dc.relation.referencesGuadarrama, T., & Rosales, E. M. (2015). Marketing relacional: valor, satisfacción, lealtad y retención del cliente. Análisis y reflexión teórica. Ciencia y Sociedad, 40(2), 307–340.spa
dc.relation.referencesGutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2018). Some bibliometric procedures for analyzing and evaluating research fields. Applied Intelligence, 48(5), 1275–1287. https://doi.org/10.1007/s10489-017-1105-yspa
dc.relation.referencesHall, C. M. (2011). Publish and perish? Bibliometric analysis, journal ranking and the assessment of research quality in tourism. Tourism Management, 32(1), 16–27. https://doi.org/10.1016/J.TOURMAN.2010.07.001spa
dc.relation.referencesHeldt, R., Silveira, C. S., & Luce, F. B. (2021). Predicting customer value per product: From RFM to RFM/P. Journal of Business Research, 127(March 2019), 444–453. https://doi.org/10.1016/j.jbusres.2019.05.001spa
dc.relation.referencesHerrera-Franco, G., Montalván-Burbano, N., Carrión-Mero, P., Apolo-Masache, B., & Jaya-Montalvo, M. (2020). Research trends in geotourism: A bibliometric analysis using the scopus database. Geosciences (Switzerland), 10(10), 1–29. https://doi.org/10.3390/geosciences10100379spa
dc.relation.referencesHirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 1–5. https://doi.org/10.1073/pnas.0507655102spa
dc.relation.referencesHurwitz, J., & Kirsch, D. (2018). Machine Learning for dummies (IBM Limite).spa
dc.relation.referencesJasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2018). Modeling and application of customer lifetime value in online retail. Informatics, 5(1), 1–22. https://doi.org/10.3390/informatics5010002spa
dc.relation.referencesJasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2019). Comparative analysis of selected probabilistic customer lifetime value models in online shopping. Journal of Business Economics and Management, 20(3), 398–423. https://doi.org/10.3846/jbem.2019.9597spa
dc.relation.referencesKansal, T., Bahuguna, S., Singh, V., & Choudhury, T. (2018). Customer Segmentation using K-means Clustering. 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 135–139. https://doi.org/10.1109/CTEMS.2018.8769171spa
dc.relation.referencesLinnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678spa
dc.relation.referencesLiu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17spa
dc.relation.referencesNita, A. (2019). Empowering impact assessments knowledge and international research collaboration - A bibliometric analysis of Environmental Impact Assessment Review journal. Environmental Impact Assessment Review, 78(March), 106283. https://doi.org/10.1016/j.eiar.2019.106283spa
dc.relation.referencesOblander, E. S., Gupta, S., Mela, C. F., Winer, R. S., & Lehmann, D. R. (2020). The past, present, and future of customer management. Marketing Letters, 31(2–3), 125–136. https://doi.org/10.1007/s11002-020-09525-9spa
dc.relation.referencesPareto, V. (1896). Cours d’économie politique. Université de Lausanne.spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.htmlspa
dc.relation.referencesPeralta, M. J., Frías, M., & Gregorio, O. (2015). Criterios, clasificaciones y tendencias de los indicadores bibliométricos en la evaluación de la ciencia. Revista Cubana de Información En Ciencias de La Salud, 26(3), 290–309. http://scielo.sld.cuspa
dc.relation.referencesPlatzer, M. (2021). Customer Base Analysis with BTYDplus (pp. 1–33). https://cran.r-project.org/web/packages/BTYDplus/vignettes/BTYDplus-HowTo.pdfspa
dc.relation.referencesRathi, T., & Ravi, V. (2017). Customer Lifetime Value Measurement using Machine Learning Techniques. In Artificial Intelligence: Concepts, Methodologies, Tools, and Applications (pp. 3013–3022). https://doi.org/10.4018/978-1-5225-1759-7.ch124spa
dc.relation.referencesRoy-García, I., Rivas-Ruiz, R., Pérez-Rodríguez, M., & Palacios-Cruz, L. (2019). Correlation: Not all correlation entails causality. Revista Alergia Mexico, 66(3), 354–360. https://doi.org/10.29262/ram.v66i3.651spa
dc.relation.referencesRueda, G., Gerdsri, P., & Kocaoglu, D. F. (2007). Bibliometrics and Social Network Analysis of the Nanotechnology Field. PICMET ’07 - 2007 Portland International Conference on Management of Engineering & Technology, 2905–2911. https://doi.org/10.1109/PICMET.2007.4349633spa
dc.relation.referencesSifa, R., Runge, J., Bauckhage, C., & Klapper, D. (2018). Customer Lifetime Value Prediction in Non-Contractual Freemium Settings: Chasing High-Value Users Using Deep Neural Networks and SMOTE. Hawaii International Conference on System Sciences, 923–932.spa
dc.relation.referencesSimeone, O. (2018). A Brief Introduction to Machine Learning for Engineers. Foundations and Trends® in Signal Processing, 12(3–4), 200–431. https://doi.org/10.1561/2000000102spa
dc.relation.referencesSodhi, P., Awasthi, N., & Sharma, V. (2019). Introduction to Machine Learning and Its Basic Application in Python. SSRN Electronic Journal, 1354–1375. https://doi.org/10.2139/ssrn.3323796spa
dc.relation.referencesSrivastava, R. (2017). Identification of customer clusters using RFM model: a case of diverse purchaser classification. International Journal of Information, Business and Management, 9(4), 201–208.spa
dc.relation.referencesTsai, T. Y., Lin, C. T., & Prasad, M. (2019). An Intelligent Customer Churn Prediction and Response Framework. Proceedings of IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2019, 928–935. https://doi.org/10.1109/ISKE47853.2019.9170380spa
dc.relation.referencesValérie, D., & Pierre, A. G. (2010). Bibliometric idicators: Quality masurements of sientific publication. Radiology, 255(2), 342–351. https://doi.org/10.1148/radiol.09090626spa
dc.relation.referencesVelasco, B., Eiros Bouza, J. M., Pinilla, J. M., & San Román, J. A. (2012). La utilización de los indicadores bibliométricos para evaluar la actividad investigadora. Aula Abierta, 40(2), 75–84. http://dialnet.unirioja.es/servlet/articulo?codigo=3920967&info=resumen&idioma=ENGspa
dc.relation.referencesVilla, E., Ruiz, L., Valencia, A., & Picón, E. (2018). Electronic commerce: factors involved in its adoption from a bibliometric analysis. Journal of Theoretical and Applied Electronic Commerce Research, 13(1), 39–70. https://doi.org/10.4067/S0718-18762018000100104spa
dc.relation.referencesWin, T. T., & Bo, K. S. (2020). Predicting Customer Class using Customer Lifetime Value with Random Forest Algorithm. Proceedings of the 4th International Conference on Advanced Information Technologies, ICAIT 2020, 236–241. https://doi.org/10.1109/ICAIT51105.2020.9261792spa
dc.relation.referencesYoseph, F., & Heikkila, M. (2019). Segmenting retail customers with an enhanced RFM and a hybrid regression/clustering method. Proceedings - International Conference on Machine Learning and Data Engineering, ICMLDE 2018, 77–82. https://doi.org/10.1109/iCMLDE.2018.00029spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcInternet marketing
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::001 - Conocimientospa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc650 - Gerencia y servicios auxiliares::659 - Publicidad y relaciones públicasspa
dc.subject.lembComercio electrónico
dc.subject.lembMercadeo por internet
dc.subject.lembElectronic commerce
dc.subject.proposalSegmentación de clientesspa
dc.subject.proposalValor monetariospa
dc.subject.proposalAprendizaje de máquinasspa
dc.subject.proposalModelos paramétricosspa
dc.subject.proposalCustomer segmentationeng
dc.subject.proposalCustomer lifetime value (CLV)eng
dc.subject.proposalMachine learningeng
dc.subject.proposalParametric modelseng
dc.titleMétodo para la segmentación de clientes incorporando la predicción del valor monetario del cliente como una variable de segmentaciónspa
dc.title.translatedMethod for customer segmentation incorporating the prediction of the customer's monetary value as a segmentation variableeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152704626.2022.pdf
Tamaño:
2.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: