On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes

dc.contributor.advisorMonsalve Mejía, Gaspar
dc.contributor.authorAvellaneda Jiménez, David Santiago
dc.date.accessioned2022-08-25T19:46:38Z
dc.date.available2022-08-25T19:46:38Z
dc.date.issued2022-08-24
dc.description.abstractThe crust-mantle transition beneath the northwestern Andes is expected to be complex given its accretionary tectonic history. Considering that research on this matter remains scarce, especially in the Colombian region, this thesis presents new insights into the structure and nature of the crust-mantle transition in several parts of the orogen. Four chapters are presented, discussing: (1) variations in Moho depth along the orogen using inversion of gravity data; (2) latitudinal heterogeneity and anisotropy in the uppermost mantle beneath the modern arc using Pn and Sn wave speed estimates, and thermo-compositional modeling; (3) the nature of the arc root beneath the modern arc by means of a receiver function analysis; and (4) intra-continental deformation beneath the Eastern Cordillera plateau from a joint inversion of arrival times of local earthquakes and gravity data. Integrated results suggest three main features associated with a thickened crust: along the northwestern foreland region (influenced by the adjacent thickened Eastern Cordillera), along the axis of the Eastern Cordillera (related to its shortening history and magmatic additions), and in the southern part of the modern arc, in the Andes of southern Colombia and northern Ecuador (likely a combined result of mafic addition to the base of the crust, foundering tectonics, and lateral displacement of the lower crust). Investigations on the upper mantle beneath the modern arc suggest a well-developed anisotropy, showing a latitudinal dissimilarity in wave speeds and temperature. The northern part (north of 4°N; <75 km wide arc) is seismically slower, and has a higher degree of anisotropy, suggesting warmer conditions. The southern part (south of 2°N; >120 km wide arc) is faster, less anisotropic, and consistent with a colder state. Beneath the volcanic gap region (2°-4°N), seismic speeds are similar to those in the north, yet a colder thermal state is suggested. The controlling factor of the anisotropy is the preferred orientation of olivine and pyroxene. Latitudinal anisotropy and temperature dissimilarities are likely influenced by the Caldas tear to the north, prompting hot mantle influx, and the Carnegie ridge interaction to the south, prompting shallower subduction. Additional investigations on the arc domain, using the teleseismic receiver function technique, which looks for P to S phase conversions, indicate that the crustal root beneath the arc is characterized by high velocities and a latitudinally variable thickness, which coupled with documented xenoliths supports an arclogite nature. This high-velocity and high-density arc root suggest an offset between the seismic Moho and the crust-mantle boundary of around 8.5-14 km. Finally, beneath the Eastern Cordillera plateau, a well-imaged anomaly is identified at depths of 40-60 km beneath the western flank of the plateau, at a latitude of ~5.7°N. The slow velocity anomaly is interpreted as crustal materials eastwardly underthrusting beneath the western flank. This process is thought to be prompting the abrupt change in topography between the adjacent low-elevated basin and the orogenic plateau. This thesis shows how the crust-mantle transition along the northwestern Andes follows the idea that a heterogenous Moho vicinity is the rule rather than the exception for Andean-type orogens.eng
dc.description.abstractLa transición corteza-manto bajo los Andes noroccidentales se espera que sea compleja, dada su historia tectónica que involucra la acreción de bloques. Teniendo en cuenta que la investigación sobre este tema sigue siendo escasa, especialmente en la región colombiana, esta tesis presenta nuevos conocimientos sobre la estructura y la naturaleza de la transición corteza-manto en varias partes del orógeno. Se presentan cuatro capítulos, en los que se analizan: (1) las variaciones en la profundidad del Moho a lo largo del orógeno mediante la inversión de datos de gravedad; (2) la heterogeneidad latitudinal en el manto superior bajo el arco moderno mediante estimaciones de velocidad de las ondas Pn y Sn, anisotropía y modelamiento termo-composicional; (3) la naturaleza de la raíz del arco debajo el arco moderno mediante el análisis de la función receptora; y (4) la deformación intra-continental bajo la meseta de la Cordillera Oriental a partir de la inversión conjunta de tiempos de llegada de terremotos locales y datos de gravedad. Los resultados integrados sugieren tres rasgos principales de engrosamiento de la corteza a lo largo del orógeno: en la región noroccidental del antepaís (influenciada por la adyacente Cordillera Oriental con corteza engrosada), a lo largo del eje de la Cordillera Oriental (relacionado con su historia de acortamiento y adición magmática), y en la parte sur del arco moderno, en los Andes al sur de Colombia y norte de Ecuador (probablemente el resultado combinado de adición magmática a la base de la corteza, la tectónica de hundimiento/delaminación, y del desplazamiento lateral de la corteza inferior). Investigaciones en el manto superior bajo el arco moderno sugiere que es anisotrópico, mostrando una disimilitud latitudinal en las velocidades de ondas sísmicas y la temperatura. La parte norte (al norte de 4°N; arco <75 km de ancho) es sísmicamente más lenta, tiene una mayor anisotropía y sugiere condiciones más cálidas. La parte sur (al sur de 2°N; arco >120 km de ancho) es más rápida, menos anisotrópica y sugiere condiciones más frías. Por debajo de la región con ausencia magmática (2°-4°N), las velocidades sísmicas son similares a las del norte, pero se sugiere un estado térmico más frío. El factor que controla la anisotropía es la orientación preferente del olivino y el piroxeno. La anisotropía latitudinal y las disimilitudes de temperatura están probablemente influenciadas por el desgarro litosférico de Caldas al norte, que provoca la entrada de manto caliente, y la interacción de la dorsal de Carnegie al sur, que permite una subducción menos profunda. Adicionalmente, investigaciones sobre la región del arco, utilizando la técnica de función de receptora telesísmica, que busca conversiones de fase P a S, sugiere que la raíz cortical bajo el arco moderno muestra altas velocidades con un grosor variable en latitud, que, junto con xenolitos documentados, apoyan una naturaleza arclogítica. Esta capa de alta velocidad y densidad sugiere un desfase entre el Moho sísmico y el límite corteza-manto de unos 8.5-14 km. Por último, debajo de la meseta de la Cordillera Oriental, se identifica una anomalía bien constreñida a profundidades de 40-60 km bajo el flanco occidental de la meseta, a una latitud de ~5.7°N. La anomalía de velocidad lenta se interpreta como una inyección de materiales corticales hacia el este por debajo del flanco occidental. Este proceso provoca un cambio abrupto en la topografía entre la cuenca adyacente de baja elevación y la meseta orogénica. Esta tesis muestra cómo la transición corteza-manto a lo largo de los Andes noroccidentales es una región heterogénea y compleja en orógenos de tipo andino.spa
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaTectonophysicsspa
dc.description.sponsorshipFundación para la Promoción de la Investigación y la Tecnología (Project 4.634)spa
dc.format.extentxxi, 146 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82115
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesAbers, G.A., Hacker, B.R., 2016. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochemistry, Geophys. Geosystems 17, 616–624. https://doi.org/10.1002/2015GC006171spa
dc.relation.referencesAbratis, M., Wörner, G., 2001. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29, 127–130. https://doi.org/10.1130/0091-7613spa
dc.relation.referencesAfonso, J.C., Schutt, D.L., 2012. The effects of polybaric partial melting on density and seismic velocities of mantle restites. Lithos 134–135, 289–303. https://doi.org/10.1016/j.lithos.2012.01.009spa
dc.relation.referencesAitken, A.R.A., Salmon, M.L., Kennett, B.L.N., 2013. Australia’s Moho: A test of the usefulness of gravity modelling for the determination of Moho depth. Tectonophysics 609, 468–479. https://doi.org/10.1016/j.tecto.2012.06.049spa
dc.relation.referencesAmante, C., Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Tech. Memo. NESDIS NGDC-24 19. https://doi.org/10.1594/PANGAEA.769615spa
dc.relation.referencesAmmon, C.J., Randall, G.E., Zandt, G., 1990. On the Nonuniqueness of Receiver Function Inversions. J. Geophys. Res. 95. https://doi.org/10.1029/jb095ib10p15303spa
dc.relation.referencesAnderson, D.L., 2005. Large Igneous Provinces, Delamination, and Fertile Mantle. Elements 1, 271–275. https://doi.org/10.2113/gselements.1.5.271spa
dc.relation.referencesArmijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, R., Kausel, E., 2010. The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile. Tectonics 29. https://doi.org/10.1029/2008tc002427spa
dc.relation.referencesAvellaneda-Jiménez, D.S., Monsalve, G., León, S., Gómez-García, A.M., 2022. Insights into Moho depth beneath the northwestern Andean region from gravity data inversion. Geophys. J. Int. 229, 1964–1977. https://doi.org/https://doi.org/10.1093/gji/ggac041spa
dc.relation.referencesBarthelmes, F., 2009. Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). Dtsch. Geo-ForschungsZentrum GFZ 1–5. https://doi.org/10.2312/GFZ.b103-0902-26spa
dc.relation.referencesBaumont, D., Paul, A., Zandt, G., Beck, S.L., Pedersen, H., 2002. Lithospheric structure of the central Andes based on surface wave dispersion. J. Geophys. Res. Solid Earth 107, ESE 18-1-ESE 18-13. https://doi.org/10.1029/2001jb000345spa
dc.relation.referencesBayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J.J., Reyes-Harker, A., 2008. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Bull. Geol. Soc. Am. 120, 1171–1197. https://doi.org/10.1130/B26187.1spa
dc.relation.referencesBeck, S.L., Zandt, G., 2002. The nature of orogenic crust in the central Andes. J. Geophys. Res. Solid Earth 107, ESE 7-1-ESE 7-16. https://doi.org/10.1029/2000jb000124spa
dc.relation.referencesBeghoul, N., Barazangi, M., 1989. Mapping high Pn velocity beneath the Colorado Plateau constrains uplift models. J. Geophys. Res. 94, 7083–7104. https://doi.org/10.1029/JB094iB06p07083spa
dc.relation.referencesBernal-Olaya, R., Mann, P., Vargas, C.A., 2015. Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the caribbean margin of Northwestern Colombia. AAPG Mem. 108, 247–269. https://doi.org/10.1306/13531939M1083642spa
dc.relation.referencesBernard, R.E., Schulte-Pelkum, V., Behr, W.M., 2021. The competing effects of olivine and orthopyroxene CPO on seismic anisotropy. Tectonophysics 814, 228954. https://doi.org/10.1016/j.tecto.2021.228954spa
dc.relation.referencesBernet, M., Urueña, C., Amaya, S., Peña, M.L., 2016. New thermo and geochronological constraints on the Pliocene-Pleistocene eruption history of the Paipa-Iza volcanic complex, Eastern Cordillera, Colombia. J. Volcanol. Geotherm. Res. 327, 299–309. https://doi.org/10.1016/j.jvolgeores.2016.08.013spa
dc.relation.referencesBishop, B.T., Beck, S.L., Zandt, G., Wagner, L., Long, M., Antonijevic, S.K., Kumar, A., Tavera, H., 2017. Causes and consequences of flat-slab subduction in southern Peru. Geosphere 13, 1392–1407. https://doi.org/10.1130/GES01440.1spa
dc.relation.referencesBlanco, J.F., Vargas, C.A., Monsalve, G., 2017. Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophys. Geosystems 18, 1376–1387. https://doi.org/10.1002/2016GC006785spa
dc.relation.referencesBloch, E., Ibañez-Mejia, M., Murray, K., Vervoort, J., Müntener, O., 2017. Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone. Earth Planet. Sci. Lett. 476, 47–58. https://doi.org/10.1016/j.epsl.2017.07.041spa
dc.relation.referencesBorrero, C.A., Castillo, H., 2006. Vulcanitas del S-SE de Colombia: Retro-arco alcalino y su posible relacion con una ventana astenosferica. Boletín Geol. 28, 23–34spa
dc.relation.referencesBowman, E.E., Ducea, M.N., Triantafyllou, A., 2021. Arclogites in the subarc lower crust: effects of crystallization, partial melting, and retained melt on the foundering ability of residual roots. J. Petrol. https://doi.org/10.1093/petrology/egab094/6424248spa
dc.relation.referencesBrocher, T.M., 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 95, 2081–2092. https://doi.org/10.1785/0120050077spa
dc.relation.referencesCardona, A., León, S., Jaramillo, J.S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., Echeverri, S., 2018. The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032spa
dc.relation.referencesCardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C., Niño, H., Ramirez, V., Valencia, V., Rincón, D., Vervoort, J., Zapata, S., 2012. From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary. Tectonophysics 580, 58–87. https://doi.org/10.1016/j.tecto.2012.08.039spa
dc.relation.referencesCase, J.E., Duran S, L.G., Alfonso, L.R., Moore, W.R., 1971. Tectonic investigations in western Colombia and eastern Panama. Bull. Geol. Soc. Am. 82, 2685–2712. https://doi.org/10.1130/0016-7606(1971)82[2685:TIIWCA]2.0.CO;2spa
dc.relation.referencesCastellanos, J.C., Clayton, R.W., Pérez-Campos, X., 2018. Imaging the Eastern Trans-Mexican Volcanic Belt With Ambient Seismic Noise: Evidence for a Slab Tear. J. Geophys. Res. Solid Earth 123, 7741–7759. https://doi.org/10.1029/2018JB015783spa
dc.relation.referencesChiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry Geophys. Geosystems 17, 16–27. https://doi.org/10.1002/2015GC006048spa
dc.relation.referencesChiaradia, M., Müntener, O., Beate, B., Fontignie, D., 2009. Adakite-like volcanism of Ecuador: Lower crust magmatic evolution and recycling. Contrib. to Mineral. Petrol. 158, 563–588. https://doi.org/10.1007/s00410-009-0397-2spa
dc.relation.referencesChristensen, N.I., 2004. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816. https://doi.org/10.2747/0020-6814.46.9.795spa
dc.relation.referencesClark, M.K., Bush, J.W.M., Royden, L.H., 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys. J. Int. 162, 575–590. https://doi.org/10.1111/j.1365-246X.2005.02580.xspa
dc.relation.referencesCollins, J.A., Molnar, P., 2014. Pn anisotropy beneath the South Island of New Zealand and implications for distributed deformation in continental lithosphere. AGU J. Geophys. Res. Solid Earth 119, 7745–7767. https://doi.org/doi:10.1002/ 2014JB011233spa
dc.relation.referencesConnolly, J.A.D., 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541. https://doi.org/10.1016/j.epsl.2005.04.033spa
dc.relation.referencesCook, F.A., White, D.J., Jones, A.G., Eaton, D.W.S., Hall, J., Clowes, R.M., 2010. How the crust meets the mantle: Lithoprobe perspectives on the mohorovičić discontinuity and crust-mantle transition. Can. J. Earth Sci. 47, 315–351. https://doi.org/10.1139/E09-076spa
dc.relation.referencesCorrea-Tamayo, A.M., Pulgarín-Alzate, B.A., Ancochea-Soto, E., 2020. The Nevado del Huila Volcanic Complex, in: Gómez, J., Pinilla-Pachon, A.O. (Eds.), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológias Especiales 38, Bogotá, pp. 227–265. https://doi.org/https://doi.org/10.32685/pub.esp.38.2019.06spa
dc.relation.referencesCortés, M., Angelier, J., 2005. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403, 29–58. https://doi.org/10.1016/j.tecto.2005.03.020spa
dc.relation.referencesCortés, M., Colletta, B., Angelier, J., 2006. Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. J. South Am. Earth Sci. 21, 437–465. https://doi.org/10.1016/j.jsames.2006.07.004spa
dc.relation.referencesCrotwell, H.P., Owens, T.J., Ritsema, J., 1999. The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismol. Res. Lett. 70, 154–160. https://doi.org/10.1785/gssrl.70.2.154spa
dc.relation.referencesCurrie, C.A., Ducea, M.N., DeCelles, P.G., Beaumont, C., 2015. Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots. Mem. Geol. Soc. Am. 212, 1–22. https://doi.org/10.1130/2015.1212(01)spa
dc.relation.referencesDeCelles, P.G., Zandt, G., Beck, S.L., Currie, C.A., Ducea, M.N., Kapp, P., Gehrels, G.E., Carrapa, B., Quade, J., Schoenbohm, L.M., 2015. Cyclical orogenic processes in the Cenozoic central Andes. Mem. Geol. Soc. Am. 212, 459–490. https://doi.org/10.1130/2015.1212(22)spa
dc.relation.referencesDelph, J.R., Ward, K.M., Zandt, G., Ducea, M.N., Beck, S.L., 2017. Imaging a magma plumbing system from MASH zone to magma reservoir. Earth Planet. Sci. Lett. 457, 313–324. https://doi.org/10.1016/j.epsl.2016.10.008spa
dc.relation.referencesDucea, M.N., Chapman, A.D., Bowman, E., Balica, C., 2021a. Arclogites and their role in continental evolution; part 2: Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle. Earth-Science Rev. 214. https://doi.org/10.1016/j.earscirev.2020.103476spa
dc.relation.referencesDucea, M.N., Chapman, A.D., Bowman, E., Triantafyllou, A., 2021b. Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Science Rev. 214. https://doi.org/10.1016/j.earscirev.2020.103375spa
dc.relation.referencesErdman, M.E., Lee, C.T.A., Levander, A., Jiang, H., 2016. Role of arc magmatism and lower crustal foundering in controlling elevation history of the Nevadaplano and Colorado Plateau: A case study of pyroxenitic lower crust from central Arizona, USA. Earth Planet. Sci. Lett. 439, 48–57. https://doi.org/10.1016/j.epsl.2016.01.032spa
dc.relation.referencesFeng, M., An, M., Dong, S., 2017. Tectonic history of the Ordos Block and Qinling Orogen inferred from crustal thickness. Geophys. J. Int. 210, 303–320. https://doi.org/10.1093/gji/ggx163spa
dc.relation.referencesFerrari, L., Orozco-Esquivel, T., Manea, V., Manea, M., 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523, 122–149. https://doi.org/10.1016/j.tecto.2011.09.018spa
dc.relation.referencesFontaine, F.R., Tkalčić, H., Kennett, B.L.N., 2013. Imaging crustal structure variation across southeastern Australia. Tectonophysics 582, 112–125. https://doi.org/10.1016/j.tecto.2012.09.031spa
dc.relation.referencesFörste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.M., Marty, J.C., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R., 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Serv. https://doi.org/https://doi.org/10.5880/icgem.2015.1spa
dc.relation.referencesFurlong, K.P., Fountain, D.M., 1986. Continental crustal underplating: Thermal considerations and seismic-petrologic consequences. J. Geophys. Res. 91, 8285. https://doi.org/10.1029/jb091ib08p08285spa
dc.relation.referencesGao, X., Sun, S., 2019. Comment on “3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm.” Comput. Geosci. 127, 133–137. https://doi.org/10.1016/j.cageo.2019.01.013spa
dc.relation.referencesGómez-García, A.M., Le Breton, E., Scheck-Wenderoth, M., Monsalve, G., Anikiev, D., 2021. The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models. Solid Earth 12, 275–298. https://doi.org/10.5194/se-12-275-2021spa
dc.relation.referencesGómez-Ortiz, D., Agarwal, B.N.P., 2005. 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Comput. Geosci. 31, 513–520. https://doi.org/10.1016/j.cageo.2004.11.004spa
dc.relation.referencesGómez-Ortiz, D., Tejero-López, R., Babín-Vich, R., Rivas-Ponce, A., 2005. Crustal density structure in the Spanish Central System derived from gravity data analysis (Central Spain). Tectonophysics 403, 131–149. https://doi.org/10.1016/j.tecto.2005.04.006spa
dc.relation.referencesGraterol, V., Vargas, A., 2010. Mapa de anomalia de Bouguer total de la Republica de Colombia. ANH (Agencia Nac. Hidrocarburos Colomb. Bogota Magna/Colombia-Magna Bogota Zo. 1850000spa
dc.relation.referencesGreen, E., Holland, T., Powell, R., 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. Am. Mineral. 92, 1181–1189. https://doi.org/10.2138/am.2007.2401spa
dc.relation.referencesGreen, E., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B., Palin, R.M., 2016. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34, 845–869. https://doi.org/10.1111/jmg.12211spa
dc.relation.referencesGriffin, W.L., O’Reilly, S.Y., Afonso, J.C., Begg, G.C., 2009. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204. https://doi.org/10.1093/petrology/egn033spa
dc.relation.referencesGuerri, M., Cammarano, F., Connolly, J.A.D., 2015. Geochemistry, Geophysics, Geosystems. Geochemistry Geophys. Geosystems 18, 1541–1576. https://doi.org/10.1002/2015GC005746.Dynamicsspa
dc.relation.referencesGutscher, M.A., Malavieille, J., Lallemand, S., Collot, J.Y., 1999. Tectonic segmentation of the North Andean margin: Impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 168, 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6spa
dc.relation.referencesGutscher, M.A., Maury, F., Eissen, J.P., Bourdon, E., 2000. Can slab melting be caused by flat subduction? Geology 28, 535–538. https://doi.org/10.1130/0091-7613spa
dc.relation.referencesHacker, B.R., Abers, G.A., 2012. Subduction Factory 5: Unusually low Poisson’s ratios in subduction zones from elastic anisotropy of peridotite. J. Geophys. Res. Solid Earth 117, 1–15. https://doi.org/10.1029/2012JB009187spa
dc.relation.referencesHacker, B.R., Abers, G.A., Peacock, S.M., 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res. Solid Earth 108, 1–26. https://doi.org/10.1029/2001jb001127spa
dc.relation.referencesHammond, J.O.S., Kendall, J.M., Wookey, J., Stuart, G.W., Keir, D., Ayele, A., 2014. Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia. Geochemistry, Geophys. Geosystems 15, 1878–1894. https://doi.org/10.1002/2013GC005185spa
dc.relation.referencesHammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. J. Geophys. Res. Solid Earth 105, 10975–10986. https://doi.org/https://doi.org/10.1029/2000JB900041spa
dc.relation.referencesHayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science (80-. ). 362(6410), 58–61spa
dc.relation.referencesHerrmann, R.B., 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088. https://doi.org/10.1785/0220110096spa
dc.relation.referencesHole, J.A., Zelt, B.C., 1995. 3-D finite-difference reflection traveltimes. Geophys. J. Int. 121, 427–434. https://doi.org/https://doi.org/10.1111/j.1365-246X.1995.tb05723.xspa
dc.relation.referencesHolland, T.J.B., Powell, R., 2003. Activity-compositions relations for phases in petrological calculations: An asymetric multicomponent formulation. Contrib. to Mineral. Petrol. 145, 492–501. https://doi.org/10.1007/s00410-003-0464-zspa
dc.relation.referencesHolland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.xspa
dc.relation.referencesHorton, B.K., Parra, M., Mora, A., 2020. Insights from the Sedimentary Record Chapter 3. Geol. Colomb. 3, 1–22spa
dc.relation.referencesHuang, Y., Chubakov, V., Mantovani, F., Rudnick, R.L., McDonough, W.F., 2013. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochemistry, Geophys. Geosystems 14, 2003–2029. https://doi.org/10.1002/ggge.20129spa
dc.relation.referencesHyndman, R.D., Peacock, S.M., 2003. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432. https://doi.org/10.1016/S0012-821X(03)00263-2spa
dc.relation.referencesIdárraga-García, J., Kendall, J.M., Vargas, C.A., 2016. Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophys. Geosystems 17, 3655–3673. https://doi.org/doi:10.1002/2016GC006323spa
dc.relation.referencesInce, E.S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., Schuh, H., 2019. ICGEM - 15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst. Sci. Data Discuss. 1–61. https://doi.org/10.5194/essd-2019-17spa
dc.relation.referencesJeffreys, H., Bullen, K.E., 1940. Seismological Tables, British Association for the Advancement of Science, Londonspa
dc.relation.referencesJennings, E.S., Holland, T.J.B., 2015. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56, 869–892. https://doi.org/10.1093/petrology/egv020spa
dc.relation.referencesJones, C.H., Reeg, H., Zandt, G., Gilbert, H., Owens, T.J., Stachnik, J., 2014. P-wave tomography of potential convective downwellings and their source regions, Sierra Nevada, California. Geosphere 10, 505–533. https://doi.org/10.1130/GES00961.1spa
dc.relation.referencesJulià, J., Ammon, C.J., Herrmann, R.B., Correig, A.M., 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143, 99–112. https://doi.org/10.1046/j.1365-246X.2000.00217.xspa
dc.relation.referencesKarabulut, H., Paul, A., Erg, T.A., Hatzfeld, D., Childs, D.M., Aktar, M., 2013. Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia 450–464. https://doi.org/10.1093/gji/ggt100spa
dc.relation.referencesKay, S.M., Mpodozis, C., Gardeweg, M., 2014. Magma sources and tectonic setting of Central Andean andesites (25.5-28°S) related to crustal thickening, forearc subduction erosion and delamination. Geol. Soc. Spec. Publ. 385, 303–334. https://doi.org/10.1144/SP385.11spa
dc.relation.referencesKellogg, J.N., Camelio, G.B.F., Mora-Páez, H., 2019. Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy, Andean Tectonics. https://doi.org/10.1016/b978-0-12-816009-1.00006-xspa
dc.relation.referencesKennett, B.L.N., Engdahl, E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.xspa
dc.relation.referencesKennett, B.L.N., Engdahl, E.R., Buland, R., 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.xspa
dc.relation.referencesKoch, C.D., Delph, J., Beck, S.L., Lynner, C., Ruiz, M., Hernandez, S., Samaniego, P., Meltzer, A., Mothes, P., Hidalgo, S., 2021. Crustal thickness and magma storage beneath the Ecuadorian arc. J. South Am. Earth Sci. 110, 103331. https://doi.org/10.1016/j.jsames.2021.103331spa
dc.relation.referencesKoulakov, I., 2009. Out-of-network events can be of great importance for improving results of local earthquake tomography. Bull. Seismol. Soc. Am. 99, 2556–2563. https://doi.org/10.1785/0120080365spa
dc.relation.referencesKoulakov, I., Sobolev, S. V., Asch, G., 2006. P - And S-velocity images of the lithosphere-asthenosphere system in the Central Andes from local-source tomographic inversion. Geophys. J. Int. 167, 106–126. https://doi.org/10.1111/j.1365-246X.2006.02949.xspa
dc.relation.referencesLarkin, S.P., Levander, A., Henstock, T.J., Pullammanappallil, S., 1997. the northern Basin and Range Is the Moho flat ? Seismic evidence for a rough crust-mantle interface beneath the northern Basin and Range 7613. https://doi.org/10.1130/0091-7613(1997)025<0451spa
dc.relation.referencesLaske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. EGU Gen. Assem. 2013 15, 2658spa
dc.relation.referencesLee, C.. T.A., 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle. J. Geophys. Res. Solid Earth 108. https://doi.org/10.1029/2003jb002413spa
dc.relation.referencesLee, C.T.A., 2014. Physics and Chemistry of Deep Continental Crust Recycling, 2nd ed, Treatise on Geochemistry: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00314-4spa
dc.relation.referencesLee, C.T.A., Anderson, D.L., 2015. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Sci. Bull. 60, 1141–1156. https://doi.org/10.1007/s11434-015-0828-6spa
dc.relation.referencesLee, C.T.A., Cheng, X., Horodyskyj, U., 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California. Contrib. to Mineral. Petrol. 151, 222–242. https://doi.org/10.1007/s00410-005-0056-1spa
dc.relation.referencesLeón, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V.A., Chew, D., Montes, C., Posada, G., Monsalve, G., Pardo-Trujillo, A., 2018. Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca-South America Interactions. Tectonics 37, 119–139. https://doi.org/10.1002/2017TC004785spa
dc.relation.referencesLeón, S., Monsalve, G., Bustamante, C., 2021. How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophys. Res. Lett. 48, 1–11. https://doi.org/10.1029/2021gl093362spa
dc.relation.referencesLigorría, J.P., Ammon, C.J., 1999. Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89, 1395–1400. https://doi.org/10.1785/bssa0890051395spa
dc.relation.referencesLondoño, J.M., Bohorquez, O.P., Ospina, L.F., 2010. Tomografía Sísmica 3D Del Sector De Cúcuta, Colombia. Bol. Geol. 32, 107–124spa
dc.relation.referencesLondoño, J.M., Sudo, Y., 2003. Velocity structure and a seismic model for Nevado del Ruiz Volcano (Colombia). J. Volcanol. Geotherm. Res. 119, 61–87. https://doi.org/10.1016/S0377-0273(02)00306-2spa
dc.relation.referencesLonsdale, P., 2005. Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404, 237–264. https://doi.org/10.1016/j.tecto.2005.05.011spa
dc.relation.referencesMahan, K.H., Schulte-Pelkum, V., Blackburn, T.J., Bowring, S.A., Dudas, F.O., 2012. Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA. Geochemistry, Geophys. Geosystems 13. https://doi.org/10.1029/2012GC004332spa
dc.relation.referencesMainprice, D., 2015. Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective, in: Schubert, G. (Ed.), Treatise on Geophysics. Oxford: Elsevier, pp. 487–538spa
dc.relation.referencesManea, V.C., Manea, M., 2011. Flat-slab thermal structure and evolution beneath central Mexico. Pure Appl. Geophys. 168, 1475–1487. https://doi.org/10.1007/s00024-010-0207-9spa
dc.relation.referencesMarín-Cerón, M.I., Leal-Mejía, H., Bernet, M., Mesa-García, J., 2019. Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review, Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_8spa
dc.relation.referencesMarot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., Pardo, M., 2014. Flat versus normal subduction zones: A comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°-35°S). Geophys. J. Int. 199, 1633–1654. https://doi.org/10.1093/gji/ggu355spa
dc.relation.referencesMcKenzie, D., Jackson, J., 2002. Conditions for flow in the continental crust. Tectonics 21, 5-1-5–7. https://doi.org/10.1029/2002tc001394spa
dc.relation.referencesMeissnar, R.O., Flueh, E.R., Stibane, F., Berg, E., 1976. Dynamics of the active plate boundary in southwest colombia according to recent geophysical measurements. Tectonophysics 35, 115–136. https://doi.org/10.1016/0040-1951(76)90032-9spa
dc.relation.referencesMonsalve-Bustamante, M.L., 2020. The volcanic front in Colombia: Segmentation and recent and historical activity, in: Gómez, J., Pinilla-Pachon, A.O. (Eds.), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, Bogotá, pp. 97–159. https://doi.org/10.32685/pub.esp.38.2019.03spa
dc.relation.referencesMonsalve-Bustamante, M.L., Gómez-Tapias, J., Núñez-Tello, A., 2020. Rear–arc small–volume basaltic volcanism in Colombia: Monogenetic volcanic fields. The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombia- no, Publicaciones Geológicas Especiales, Bogotá. https://doi.org/https://doi.org/10.32685/pub. esp.38.2019.10spa
dc.relation.referencesMonsalve, G., Jaramillo, J.S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., Poveda, E., 2019. Deep Crustal Faults, Shear Zones, and Magmatism in the Eastern Cordillera of Colombia: Growth of a Plateau From Teleseismic Receiver Function and Geochemical Mio-Pliocene Volcanism Constraints. J. Geophys. Res. Solid Earth 124, 9833–9851. https://doi.org/10.1029/2019JB017835spa
dc.relation.referencesMonsalve, H., Pacheco, J.F., Vargas, C.A., Morales, Y.A., 2013. Crustal velocity structure beneath the western Andes of Colombian using receiver-function inversion. J. South Am. Earth Sci. 48, 106–122. https://doi.org/10.1016/j.jsames.2013.09.001spa
dc.relation.referencesMonsalve, M.L., Correa-Tamayo, A.M., Arcila, M., Dixon, J., 2015. Firma Adakítica en los productos recientes de los volcanes Nevado del Huila y Puracé, Colombia. Boletín Geológico 23–40. https://doi.org/10.32685/0120-1425/boletingeo.43.2015.27spa
dc.relation.referencesMontes, C., Rodriguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019. Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Rev. 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903spa
dc.relation.referencesMooney, W.D., 2021. The Moho Discontinuity, 2nd ed, Encyclopedia of Geology. Elsevier Inc. https://doi.org/10.1016/b978-0-08-102908-4.00049-7spa
dc.relation.referencesMora-Páez, H., Kellogg, J.N., Frymueller, J.T., Mencin, D., Fernandes, R.M.S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., Corchuelo-Cuervo, Y., 2019. Crustal deformation in the northern Andes - A new GPS velocity field. J. South Am. Earth Sci. 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002spa
dc.relation.referencesMora-Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J.R., Corchuelo-Cuervo, Y., 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett. 43, 8407–8416. https://doi.org/10.1002/2016GL069795spa
dc.relation.referencesMora, A., Parra, M., Rodriguez Forero, G., Blanco, V., Moreno, N., Caballero, V., Stockli, D., Duddy, I., Ghorbal, B., 2015. What drives orogenic asymmetry in the northern Andes?: A case study from the apex of the northern Andean orocline. AAPG Mem. 108, 547–586. https://doi.org/10.1306/13531949M1083652spa
dc.relation.referencesMora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V., Jaramillo, J. V., 2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Bull. Geol. Soc. Am. 120, 930–949. https://doi.org/10.1130/B26186.1spa
dc.relation.referencesMora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J.C., Parra, M., Caballero, V., Mora, J.P., Quintero, I., Valencia, V., Ibañez, M., Horton, B.K., Stockli, D.F., 2013. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geol. Soc. Spec. Publ. 377, 411–442. https://doi.org/10.1144/SP377.6spa
dc.relation.referencesMora, A., Villagómez, D., Parra, M., Caballero, V.M., Spikings, R., Horton, B.K., Mora-Bohórquez, J.A., Ketcham, R.A., Arias-Martínez, J.P., 2020. Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications, in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológias Especiales 37, Bogotá, pp. 89–121. https://doi.org/htpps://doi.org/10.32685/pub.exp.37.2019.04spa
dc.relation.referencesMotaghi, K., Shabanian, E., Kalvandi, F., 2017. Underplating along the northern portion of the Zagros suture zone, Iran. Geophys. J. Int. 210, 375–389. https://doi.org/10.1093/gji/ggx168spa
dc.relation.referencesMyers, S.C., Beck, S., Zandt, G., Wallace, T., 1998. Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. System 103, 21,233-21,252spa
dc.relation.referencesOjeda, A., Havskov, J., 2001. Crustal structure and local seismicity in Colombia. J. Seismol. 5, 575–593. https://doi.org/10.1023/A:1012053206408spa
dc.relation.referencesOldenburg, D.W., 1974. The inversion and interpretation of gravity anomalies. Geophysics 39, 526–536spa
dc.relation.referencesOwens, T., Zandt, G., 1985. The response of the continental crust-Mantle boundary observed on broadband teleseismic receiver functions. Geophys. Res. Lett. 12, 705–708. https://doi.org/https://doi.org/10.1029/GL012i010p00705spa
dc.relation.referencesPaige, C.C., Saunders, M.A., 1982. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 8, 43–71. https://doi.org/10.1145/355993.356000spa
dc.relation.referencesPardo-Trujillo, A., Cardona, A., Giraldo, A.S., León, S., Vallejo, D.F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G.E., Celis, S.A., Osorio-Granada, E., Giraldo-Villegas, C.A., 2020. Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sediment. Geol. 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627spa
dc.relation.referencesParker, R.L., 1973. The Rapid Calculation of Potential Anomalies. Geophys. J. R. Astron. Soc. 31, 447–455. https://doi.org/10.1111/j.1365-246X.1973.tb06513.xspa
dc.relation.referencesParra, M., Mora, A., Lopez, C., Rojas, L.E., Horton, B.K., 2012. Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology 40, 175–178. https://doi.org/10.1130/G32519.1spa
dc.relation.referencesPavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 117, 1–38. https://doi.org/10.1029/2011JB008916spa
dc.relation.referencesPedraza-Garcia, P., Vargas, C.A., Monsalve, H., 2007. Geometric model of the Nazca plate subduction in Southwest Colombia. Earth Sci. Res. J. 11, 118–131spa
dc.relation.referencesPennington, W.D., 1981. Subduction of the Eastern Panama Basin and Seismotectonics of Northwestern South America 86, 10753–10770. https://doi.org/doi:10.1029/JB086iB11p10753spa
dc.relation.referencesPorritt, R.W., Becker, T.W., Monsalve, G., 2014. Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett. 41, 8775–8783. https://doi.org/10.1002/2014GL061958spa
dc.relation.referencesPoveda, E., 2013. Discontinuidades sísmicas en la litósfera bajo la zona andina y el occidente colombianos a partir de formas de onda de sismos distantes. Universidad Nacional de Colombiaspa
dc.relation.referencesPoveda, E., Julià, J., Schimmel, M., Perez-Garcia, N., 2018. Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate. J. Geophys. Res. Solid Earth 123, 1459–1485. https://doi.org/10.1002/2017JB014688spa
dc.relation.referencesPrasanna, H.M.I., Chen, W., Iz, H.B., 2013. High resolution local Moho determination using gravity inversion: A case study in Sri Lanka. J. Asian Earth Sci. 74, 62–70. https://doi.org/10.1016/j.jseaes.2013.06.005spa
dc.relation.referencesReguzzoni, M., Sampietro, D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf. 35, 31–43. https://doi.org/10.1016/j.jag.2014.04.002spa
dc.relation.referencesRiesner, M., Lacassin, R., Simoes, M., Carrizo, D., Armijo, R., 2018a. Revisiting the Crustal Structure and Kinematics of the Central Andes at 33.5°S: Implications for the Mechanics of Andean Mountain Building. Tectonics 37, 1347–1375. https://doi.org/10.1002/2017TC004513spa
dc.relation.referencesRiesner, M., Lacassin, R., Simoes, M., Carrizo, D., Armijo, R., 2018b. Revisiting the Crustal Structure and Kinematics of the Central Andes at 33.5°S: Implications for the Mechanics of Andean Mountain Building. Tectonics 37, 1347–1375. https://doi.org/10.1002/2017TC004513spa
dc.relation.referencesRodriguez-Vargas, A., Koester, E., Mallmann, G., Conceição, R. V., Kawashita, K., Weber, M.B.I., 2005. Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: Constraints from Sr and Nd isotopes. Lithos 82, 471–484. https://doi.org/10.1016/j.lithos.2004.09.027spa
dc.relation.referencesRoecker, S., Ebinger, C., Tiberi, C., Mulibo, G., Ferdinand-Wambura, R., Mtelela, K., Kianji, G., Muzuka, A., Gautier, S., Albaric, J., Peyrat, S., 2017. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: Investigating the role of fluids in early-stage continental rifting. Geophys. J. Int. 210, 931–950. https://doi.org/10.1093/gji/ggx220spa
dc.relation.referencesRoecker, S., Thurber, C., Roberts, K., Powell, L., 2006. Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Tectonophysics 426, 189–205. https://doi.org/10.1016/j.tecto.2006.02.026spa
dc.relation.referencesRondenay, S., Montési, L.G.J., Abers, G.A., 2010. New geophysical insight into the origin of the Denali volcanic gap. Geophys. J. Int. 182, 613–630. https://doi.org/10.1111/j.1365-246X.2010.04659.xspa
dc.relation.referencesSaeid, E., Bakioglu, K.B., Kellogg, J., Leier, A., Martinez, J.A., Guerrero, E., 2017. Garzón Massif basement tectonics: Structural control on evolution of petroleum systems in upper Magdalena and Putumayo basins, Colombia. Mar. Pet. Geol. 88, 381–401. https://doi.org/10.1016/j.marpetgeo.2017.08.035spa
dc.relation.referencesSahoo, S.D., Pal, S.K., 2021. Crustal structure and Moho topography of the southern part (18° S–25° S) of Central Indian Ridge using high-resolution EIGEN6C4 global gravity model data. Geo-Marine Lett. 41. https://doi.org/10.1007/s00367-020-00679-zspa
dc.relation.referencesSánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A., Stockli, D.F., 2012. Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics 31, 1–24. https://doi.org/10.1029/2011TC003089spa
dc.relation.referencesSarmiento-Rojas, L.F., 2019. Cretaceous stratigraphy and paleo-facies maps of northwestern South America, Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_10spa
dc.relation.referencesSchreiber, D., Lardeaux, J.M., Martelet, G., Courrioux, G., Guillen, A., 2010. 3-D modelling of Alpine Mohos in Southwestern Alps. Geophys. J. Int. 180, 961–975. https://doi.org/10.1111/j.1365-246X.2009.04486.xspa
dc.relation.referencesSchulte-Pelkum, V., Mahan, K.H., 2014. Imaging Faults and Shear Zones Using Receiver Functions. Pure Appl. Geophys. 171, 2967–2991. https://doi.org/10.1007/s00024-014-0853-4spa
dc.relation.referencesSchurr, B., Rietbrock, A., Asch, G., Kind, R., Oncken, O., 2006. Evidence for lithospheric detachment in the central Andes from local earthquake tomography. Tectonophysics 415, 203–223. https://doi.org/10.1016/j.tecto.2005.12.007spa
dc.relation.referencesShearer, P.M., 2009. Introduction to Seismology, 2nd ed. Cambridge University Press, New Yorkspa
dc.relation.referencesShi, Z., Gao, R., Li, W., Lu, Z., Li, H., 2020. Tectonophysics Cenozoic crustal-scale duplexing and flat Moho in southern Tibet: Evidence from reflection seismology. Tectonophysics 790, 228562. https://doi.org/10.1016/j.tecto.2020.228562spa
dc.relation.referencesSippl, C., Schurr, B., Tympel, J., Angiboust, S., Mechie, J., Yuan, X., Schneider, F.M., Sobolev, S. V., Ratschbacher, L., Haberland, C., 2013. Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography. Earth Planet. Sci. Lett. 384, 165–177. https://doi.org/10.1016/j.epsl.2013.10.013spa
dc.relation.referencesSiravo, G., Faccenna, C., Gérault, M., Becker, T.W., Fellin, M.G., Herman, F., Molin, P., 2019. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth Planet. Sci. Lett. 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002spa
dc.relation.referencesSiravo, G., Fellin, M.G., Faccenna, C., Bayona, G., Lucci, F., Molin, P., Maden, C., 2018a. Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics 37, 4311–4337. https://doi.org/10.1029/2018TC005162spa
dc.relation.referencesSiravo, G., Fellin, M.G., Faccenna, C., Bayona, G., Lucci, F., Molin, P., Maden, C., 2018b. Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics 37, 4311–4337. https://doi.org/10.1029/2018TC005162spa
dc.relation.referencesSiravo, G., Molin, P., Sembroni, A., Fellin, M.G., Faccenna, C., 2021. Tectonically driven drainage reorganization in the Eastern Cordillera, Colombia. Geomorphology 389, 107847. https://doi.org/10.1016/j.geomorph.2021.107847spa
dc.relation.referencesSjöberg, L.E., Bagherbandi, M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys. 59, 502–525. https://doi.org/10.2478/s11600-011-0004-6spa
dc.relation.referencesSobolev, S. V., Babeyko, A.Y., 2005. What drives orogeny in the Andes? Geology 33, 617–620. https://doi.org/10.1130/G21557.1spa
dc.relation.referencesSobolev, S. V., Babeyko, A.Y., Koulakov, I., Oncken, O., 2006. Mechanism of the Andean Orogeny: Insight from Numerical Modeling, in: The Andes. Springer, Berlin, Heidelberg, pp. 513–535. https://doi.org/10.1007/978-3-540-48684-8_25spa
dc.relation.referencesSpada, M., Bianchi, I., Kissling, E., Agostinetti, N.P., Wiemer, S., 2013. Combining controlled-source seismology and receiver function 1050–1068. https://doi.org/10.1093/gji/ggt148spa
dc.relation.referencesSteffen, R., Strykowski, G., Lund, B., 2017. High-resolution Moho model for Greenland from EIGEN-6C4 gravity data. Tectonophysics 706–707, 206–220. https://doi.org/10.1016/j.tecto.2017.04.014spa
dc.relation.referencesStorchak, D.A., Schweitzer, J., Bormann, P., 2003. The IASPEI standard seismic phase list. Seismol. Res. Lett. 74, 761–772. https://doi.org/10.1785/gssrl.74.6.761spa
dc.relation.referencesSun, M., Bezada, M.J., Cornthwaite, J., Prieto, G.A., Niu, F., Levander, A., 2022. Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth Planet. Sci. Lett. 577, 117253. https://doi.org/10.1016/j.epsl.2021.117253spa
dc.relation.referencesSyracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet. Sci. Lett. 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050spa
dc.relation.referencesTang, M., Lee, C.T.A., Chen, K., Erdman, M., Costin, G., Jiang, H., 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nat. Commun. 10. https://doi.org/10.1038/s41467-018-08198-3spa
dc.relation.referencesTesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibáñez-Mejía, M., Valencia, V.A., 2013. Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geol. Soc. Spec. Publ. 377, 257–283. https://doi.org/10.1144/SP377.10spa
dc.relation.referencesThybo, H., Artemieva, I.M., 2013. Moho and magmatic underplating in continental lithosphere. Tectonophysics 609, 605–619. https://doi.org/10.1016/j.tecto.2013.05.032spa
dc.relation.referencesTirel, C., Gueydan, F., Tiberi, C., Brun, J.P., 2004. Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet. Sci. Lett. 228, 267–280. https://doi.org/10.1016/j.epsl.2004.10.023spa
dc.relation.referencesTkalčić, H., Chen, Y., Liu, R., Zhibin, H., Sun, L., Chan, W., 2011. Multistep modelling of teleseismic receiver functions combined with constraints from seismic tomography: Crustal structure beneath southeast China. Geophys. J. Int. 187, 303–326. https://doi.org/10.1111/j.1365-246X.2011.05132.xspa
dc.relation.referencesUieda, L., Barbosa, V.C.F., 2017. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho. Geophys. J. Int. 208, 162–176. https://doi.org/10.1093/gji/ggw390spa
dc.relation.referencesvan der Meijde, M., Julià, J., Assumpção, M., 2013. Gravity derived Moho for South America. Tectonophysics 609, 456–467. https://doi.org/10.1016/j.tecto.2013.03.023spa
dc.relation.referencesVargas, C.A., 2020. Subduction Geometries in Northwestern South America. Geol. Colomb. Vol. 4 Quat. 4, 397–422spa
dc.relation.referencesVargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103, 2025–2046. https://doi.org/10.1785/0120120328spa
dc.relation.referencesVargas, C.A., Ochoa, L.H., Caneva, A., 2019. Estimation of the Thermal Structure Beneath the Volcanic Arc of the Northern Andes by Coda Wave Attenuation Tomography. Front. Earth Sci. 7, 1–13. https://doi.org/10.3389/feart.2019.00208spa
dc.relation.referencesVargas, C.A., Pujades, L., Caneva, A., 2012. Attenuation structure of the Galeras volcano, Colombia. Bol. Geol. 34, 149–161spa
dc.relation.referencesVargas, C.A., Pujades, L.G., Montes, L., 2007. Seismic structure of South-Central Andes of Colombia by tomographic inversion. Geofis. Int. 46, 117–127. https://doi.org/10.22201/igeof.00167169p.2007.46.2.21spa
dc.relation.referencesVauchez, A., Tommasi, A., Mainprice, D., 2012. Faults (shear zones) in the Earth’s mantle. Tectonophysics 558–559, 1–27. https://doi.org/10.1016/j.tecto.2012.06.006spa
dc.relation.referencesVeloza, G., Styron, R., Taylor, M., 2012. Open-source archive of active faults for northwest South America. GSA Today 22, 4–10. https://doi.org/10.1130/GSAT-G156A.1spa
dc.relation.referencesVidale, J.E., 1990. Finite‐difference calculation of traveltimes in three dimensions. Geophysics 55, 521–526. https://doi.org/10.1190/1.1442863spa
dc.relation.referencesVietor, T., Oncken, O., 2005. Controls on the shape and kinematics of the Central Andean plateau flanks: Insights from numerical modeling. Earth Planet. Sci. Lett. 236, 814–827. https://doi.org/10.1016/j.epsl.2005.06.004spa
dc.relation.referencesVillagómez, D., Spikings, R., 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos 160–161, 228–249. https://doi.org/10.1016/j.lithos.2012.12.008spa
dc.relation.referencesWagner, L.S., Anderson, M.L., Jackson, J.M., Beck, S.L., Zandt, G., 2008. Seismic evidence for orthopyroxene enrichment in the continental lithosphere. Geology 36, 935–938. https://doi.org/10.1130/G25108A.1spa
dc.relation.referencesWagner, L.S., Beck, S., Zandt, G., 2005. Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). J. Geophys. Res. Solid Earth 110, 1–20. https://doi.org/10.1029/2004JB003238spa
dc.relation.referencesWagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L.F., Monsalve, G., Cardona, A., Becker, T.W., 2017. Transient slab flattening beneath Colombia. Geophys. Res. Lett. 44, 6616–6623. https://doi.org/10.1002/2017GL073981spa
dc.relation.referencesWang, C., Liang, Y., Xu, W., 2021. Formation of Amphibole-Bearing Peridotite and Amphibole-Bearing Pyroxenite Through Hydrous Melt-Peridotite Reaction and In Situ Crystallization: An Experimental Study. J. Geophys. Res. Solid Earth 126, 1–22. https://doi.org/10.1029/2020JB019382spa
dc.relation.referencesWang, Q., Bagdassarov, N., Ji, S., 2013. The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics 609, 395–422. https://doi.org/10.1016/j.tecto.2013.08.041spa
dc.relation.referencesWard, K.M., Zandt, G., Beck, S.L., Wagner, L.S., Tavera, H., 2016. Lithospheric structure beneath the northern Central Andean Plateau from the joint inversion of ambient noise and earthquake-generated surface waves. J. Geophys. Res. Solid Earth 121, 8217–8238. https://doi.org/10.1002/2016JB013237spa
dc.relation.referencesWeber, M.B., 1998. The Mercaderes-Rio Mayo xenoliths, Colombia: their bearing on mantle and crustal processes in the Northern Andes PhD Thesis.spa
dc.relation.referencesWeber, M.B., Tarney, J., Kempton, P.D., Kent, R.W., 2002. Crustal make-up of the Northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics 345, 49–82. https://doi.org/10.1016/S0040-1951(01)00206-2spa
dc.relation.referencesWhite, R.W., Powell, R., Johnson, T.E., 2014. The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals. J. Metamorph. Geol. 32, 809–828. https://doi.org/10.1111/jmg.12spa
dc.relation.referencesWhitman, D., 1994. Moho geometry beneath the eastern margin of the Andes, northwest Argentina, and its implications to the effective elastic thickness of the Andean foreland. J. Geophys. Res. 99, 15277–15289spa
dc.relation.referencesXuan, S., Jin, S., Chen, Y., 2020. Determination of the isostatic and gravity Moho in the East China Sea and its implications. J. Asian Earth Sci. 187, 104098. https://doi.org/10.1016/j.jseaes.2019.104098spa
dc.relation.referencesYarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D., Ordoñez-Carmona, O., 2014. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006spa
dc.relation.referencesYdri, A., Idres, M., Ouyed, M., Samai, S., 2020. Moho geometry beneath northern Algeria from gravity data inversion. J. African Earth Sci. 168, 103851. https://doi.org/10.1016/j.jafrearsci.2020.103851spa
dc.relation.referencesZandt, G., Gilbert, H., Owens, T.J., Ducea, M., Saleeby, J., Jones, C.H., 2004. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46. https://doi.org/10.1038/nature02847spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.lembGeofísica
dc.subject.proposalNorthern Andeseng
dc.subject.proposalCrustal thickeningeng
dc.subject.proposalMantle anisotropyeng
dc.subject.proposalArclogite arc-rooteng
dc.subject.proposalIntra-continental underthrustingeng
dc.subject.proposalMulti-technique geophysicseng
dc.subject.proposalAndes del Nortespa
dc.subject.proposalEngrosamiento corticalspa
dc.subject.proposalAnisotropía del mantospa
dc.subject.proposalRaíz cortical arclogíticaspa
dc.subject.proposalDeformación intra-continentalspa
dc.subject.proposalGeofísica multitécnicaspa
dc.titleOn the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andeseng
dc.title.translatedSobre la estructura de la transición corteza baja al manto en un margen andino con herencia de acreción, Andes noroccidentalesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFundación para la Promoción de la Investigación y la Tecnologíaspa

Archivos

Bloque original

Mostrando 1 - 5 de 6
Cargando...
Miniatura
Nombre:
1098714003.2022.pdf
Tamaño:
5.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en ingeniería
Cargando...
Miniatura
Nombre:
Supplementary Material S2-1.xls
Tamaño:
51.5 KB
Formato:
Microsoft Excel
Descripción:
Material suplementario S2-1
Cargando...
Miniatura
Nombre:
Supplementary Material S3-1.xlsx
Tamaño:
891.34 KB
Formato:
Microsoft Excel XML
Descripción:
Material suplementario S3-1
Cargando...
Miniatura
Nombre:
Supplementary Material S3-2.xlsx
Tamaño:
4.29 MB
Formato:
Microsoft Excel XML
Descripción:
Material suplementario S3-2
Cargando...
Miniatura
Nombre:
Supplementary Material S4-1.xlsx
Tamaño:
313.64 KB
Formato:
Microsoft Excel XML
Descripción:
Material suplementario S4-1

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: