Modelo Meso-Mecánico del Proceso de Fractura del Concreto Simple
| dc.contributor.advisor | Linero Segrera, Dorian Luis | |
| dc.contributor.author | Amaya Arciniegas, Marco Antonio | |
| dc.contributor.researchgroup | Grupo de Investigación Análisis, Diseño y Materiales – GIES | spa |
| dc.date.accessioned | 2021-06-25T03:55:24Z | |
| dc.date.available | 2021-06-25T03:55:24Z | |
| dc.date.issued | 2021-06-24 | |
| dc.description | Ilustraciones, gráficos | spa |
| dc.description.abstract | La presente investigación tiene como objetivo formular, implementar y validar un modelo numérico que represente el proceso de fractura en el concreto simple, considerándolo un material compuesto, conformado por agregados gruesos, embebidos en una matriz de mortero. La definición de los dominios de los materiales constituyentes del concreto fue realizada a una escala mesoscópica, formulando e implementado un procedimiento numérico que ubica las esferas de agregado dentro de un cilindro de mortero. Dada la fracción de volumen y la granulometría del agregado grueso, este procedimiento determina la distribución de conjuntos de partículas esféricas de diferente diámetro en la matriz de mortero de forma aleatoria. El proceso de fractura del concreto se describe mediante el criterio de fallo de William – Warnke y el modelo material de Microplanos, los cuales han sido formulados en el método de los elementos finitos, considerando deformaciones infinitesimales y cargas estáticas. Se simuló el ensayo estandarizado de compresión de cilindros de concreto con 20% de participación volumétrica del agregado, considerando agregado grueso de arenisca o de caliza blanda, y 20 distribuciones granulométricas aleatorias. Como resultado se obtuvo la evolución de la fractura del mortero y el agregado, y la respuesta mecánica del concreto. Lo anterior permitió: identificar la inclinación de la fisura a escala macroscópica, observar las zonas de compresión triaxial y los conos de corte, y definir una ecuación del módulo de elasticidad del concreto en función de los respectivos módulos de sus componentes. | spa |
| dc.description.abstract | The present research aims to formulate, implement and validate a numerical model that represents the fracture process in simple concrete, considering it a composite material, made up of coarse aggregates, embedded in a mortar matrix. The definition of the domains of the constituent materials of concrete was carried out on a mesoscopic scale, formulating and implementing a numerical procedure that locates the aggregate spheres within a mortar cylinder. Given the volume fraction and the granulometry of the coarse aggregate, this procedure determines the random distribution of sets of spherical particles of different diameter in the mortar matrix. The concrete fracture process is described by the William - Warnke failure criterion and the Microplanes material model, which have been formulated in the finite element method, considering infinitesimal strain and static loads. The standardized concrete cylinder compression test was simulated with 20% volumetric participation of the aggregate, considering coarse aggregate of sandstone or soft limestone, and 20 random granulometric distributions. As a result, the fracture evolution of mortar and aggregate was obtained, as well as the mechanical response of the concrete. This allows to: identify the inclination of the crack on a macroscopic scale, observe the triaxial compression zones and shear cones, and define an equation for the elasticity modulus of concrete as a function of the modulus of its components. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magister en Ingeniería - Estructuras | spa |
| dc.description.researcharea | Análisis Estructural | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79723 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Ingeniería Civil y Agrícola | spa |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras | spa |
| dc.relation.references | A. Caballero, C.M. López, I. Carol, 3D Meso-structural analysis of concrete specimens under uniaxial tension. Computer Methods in Applied Mechanics and Engineering, 195 (2006) 7182 - 7195. doi:10.1016/j.cma.2005.05.052 | spa |
| dc.relation.references | M. Amaya, Modelación numérica de la superficie de fluencia de una mezcla hipotética de arena y metano hidratado, Master Thesis (In Spanish), Universidad Nacional de Colombia, (2016). | spa |
| dc.relation.references | Carlos M. López, Ignacio Carol, and Antonio Aguado (2000), Microstructural Analysis of Concrete Fracture Using Interface Elements, European Congress on Computational Methods in Applied Science and Engineering, 18 pág. | spa |
| dc.relation.references | Manuel Alejandro Caicedo Silva (2010), Modelación Numérica con Elementos Finitos del Concreto Reforzado con Fibras Cortas Mediante un Modelo Constitutivo de Daño - Plasticidad, Tesis de Maestría en Ingeniería – Estructuras, Universidad Nacional de Colombia, 305 pág. | spa |
| dc.relation.references | Lina Andrea Herrera Chaparro (2011), Modelación Numérica del Concreto Simple con Elementos Finitos Usando un Modelo Constitutivo de Daño, Tesis de Maestría en Ingeniería – Estructuras, Universidad Nacional de Colombia, 148 pág. | spa |
| dc.relation.references | Luis Enrique Rodríguez Fajardo (2011), Modelación Numérica del Concreto Simple con Elementos Finitos Usando un Modelo Constitutivo de Plasticidad, Tesis de Maestría en Ingeniería – Estructuras, Universidad Nacional de Colombia, 168 pág. | spa |
| dc.relation.references | Víctor O García-Álvarez, Ravindra Gettu, And Ignacio Carol (2012), Analysis of MixedMode Fracture in Concrete Using Interface Elements and a Cohesive Crack Model, Indian Academic of Science, Sadhana Vol 37, Part 1, February 2012, pp 187 – 205. | spa |
| dc.relation.references | F. Gatuingt, L. Snozzi, and J. F. Molinari (2013), Numerical determination of the tensile response and the dissipated fracture energy of concrete: role of the mesostructure and influence of the loading rate, Int. J. Numer. Anal. Meth. Geomech. 2013; 37:3112–3130, DOI: 10.1002/nag.2181. | spa |
| dc.relation.references | Reglamento Colombiano de Construcción Sismo Resistente NSR-10, Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Viceministerio de Vivienda y Desarrollo Territorial, Dirección del Sistema Habitacional, Republica de Colombia, 2010. | spa |
| dc.relation.references | Instituto Colombiano de Normas Técnicas y Certificación – ICONTEC, Especificaciones de los Agregados para Concreto NTC – 174, Editada por el Instituto Colombiano de Normas Técnicas y Certificación, Quinta actualización, 2000. | spa |
| dc.relation.references | American Society for Testing and Materials, Standard Specification for Concrete Aggregates ASTM C 33-03. United States, 2003. | spa |
| dc.relation.references | A. Caballero, C.M. López, I. Carol, 3D Meso-structural analysis of concrete specimens under uniaxial tension. Computer Methods in Applied Mechanics and Engineering, 195 (2006) 7182 - 7195. doi:10.1016/j.cma.2005.05.052. | spa |
| dc.relation.references | L. Obert and W. I. Duvall. Rock Mechanics and the Design of structures in rock. John Wiley and Sons, Inc., United States, 1967 | spa |
| dc.relation.references | E. Rivva, Naturaleza y Materiales del Concreto, II Congreso Nacional de Estructuras y Construcción, Lima - Perú, 2000. | spa |
| dc.relation.references | Z.T. Bieniawski. Estimating the strength of rock materials, Journal of the south African institute of mining and metallurgy, 1974. | spa |
| dc.relation.references | J.G.M. van Mier. Failure of Concrete Under Uniaxial Compression: An Overview. Fracture Mechanics of Concrete Structures, Proceedings FRAMCOS-3, AEDIFICATIO Publishers, D-79104 Freiburg, Germany. (2014):1169-1182. | spa |
| dc.relation.references | J.G.M. van Mier, S. P. Shah, M. Arnaud, J.P. Balayssac, A. Bascoul, S. Choi, D. Dasenbrock, G. Ferrara, C. French, M.E. Gobbi, B.L. Karihaloo, G. König, M.D. Kotsovos, J. Labuz, D. Lange-Kornbak, G. Markeset, M.N. Pavlovic, G. Simsch, K-C. Thienel, A. Turatsinze, M. Ulmer, H.J.G.M. van Geel, M.R.A. van Vliet, D. Zissopoulos. Strain-softening of concrete in uniaxial compression. Materials and Structures, Vol. 30. (1997):195-209. | spa |
| dc.relation.references | Arthur H. Nilson. Diseño de Estructuras de Concreto. ISBN-13: 978-9586009539, Mc Graw Hill, Inc. 2000. | spa |
| dc.relation.references | Sun-Myung Kim, Rashid K. Abu Al-Rub, Meso-scale computational modeling of the plastic-damage response of cementitious composites, Cement and Concrete Research, Volume 41, Issue 3, 2011, Pages 339-358. | spa |
| dc.relation.references | R.L. Taylor, FEAP: a finite element analysis program for engineering workstation, (Draft version), Rep. No. UCB/SEMM-92Department of Civil Engineering, University of California, Berkeley, 1992. | spa |
| dc.relation.references | I.D. Karsan, J.O. Jirsa, Behavior of concrete under compressive loadings, Journal of the Engineering Mechanics Division (ASCE) 95, 1969, Pages 2535 -2563. | spa |
| dc.relation.references | American Society for Testing and Materials, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM C 39/C39M - 14. United States, 2014. | spa |
| dc.relation.references | A. Munjiza, The Combined Finite-Discrete Element Method. John Wiley & Sons, Ltd, 2004, ISBN 0-470-84199-0. | spa |
| dc.relation.references | A. Munjiza, Earl E. Knight & Esteban Rougier, Computational Mechanics of Discontinua, Wiley, 2011, ISBN 0-470-97080-4 | spa |
| dc.relation.references | L. Obert and W. I. Duvall. Rock Mechanics and the Design of structures in rock. John Wiley and Sons, Inc., United States, 1967. | spa |
| dc.relation.references | A. Caballero, C.M. López, I. Carol, 3D Meso-structural analysis of concrete specimens under uniaxial tension. Computer Methods in Applied Mechanics and Engineering, 195 (2006) 7182 - 7195. doi:10.1016/j.cma.2005.05.052. | spa |
| dc.relation.references | D.L. Linero, M.A. Amaya, Determination of the concrete elastic modulus by means of a mesoscopic approach with the finite element methods, Sexto Simposio Nacional en Mecanica de Materiales y Estructuras Continuas – SMEC, Cartagena – Colombia, 2018. | spa |
| dc.relation.references | K. J. William and E. D. Warnke. Constitutive Model for the Triaxial Behavior of Concrete. Proceedings, International Association for Bridge and Structural Engineering. Vol. 19. ISMES. Bergamo, Italy. p. 174. 1975 | spa |
| dc.relation.references | Ansys® Help System, Mechanical APDL, Release 19.2, Material Reference, Nonlinear Material Properties, Microplane, ANSYS, Inc | spa |
| dc.relation.references | Zdenek P Bazant, Ferhun C Caner, Ignacio Carol, Mark D Adley, and Stephen A Akers. Microplane Model M4 for Concrete, I: Formulation with Work-Conjugate Deviatoric Stress. Journal of Engineering Mechanics. (2000):944-953. | spa |
| dc.relation.references | Zreid, I., M. Kaliske. "Regularization of Microplane Damage Models Using an Implicit Gradient Enhancement." International Journal of Solids and Structures. 51.19 (2014): 3480-3489 | spa |
| dc.relation.references | Zreid, I., M. Kaliske. "An Implicit Gradient Formulation for Microplane Drucker-Prager Plasticity." International Journal of Plasticity. 83 (2016): 252-272. | spa |
| dc.relation.references | Zreid, I., Kaliske, M. A gradient enhanced plasticity–damage microplane model for concrete. Comput Mech 62, 1239–1257 (2018). https://doi.org/10.1007/s00466-018-1561-1. | spa |
| dc.relation.references | Bažant, Z. P., G. Pijaudier-Cabot. "Measurement of Characteristic Length of Nonlocal Continuum." Journal of Engineering Mechanics. 115.4 (1989): 755-767. | spa |
| dc.relation.references | Bazant, Z. P., P.G. Gambarova. "Crack Shear in Concrete: Crack Band Microplane Model." Journal of Structural Engineering. 110 (1984): 2015-2036. | spa |
| dc.relation.references | Pere Prat. “Ecuaciones Constitutivas – Elasticidad y Plasticidad”. Universidad Politécnica de Cataluña. (2006):31-59. | spa |
| dc.relation.references | . Bazant, Z. P., B. H. Oh. "Microplane Model for Progressive Fracture of Concrete and Rock." Journal for Engineering Mechanics. 111 (1985): 559-582. | spa |
| dc.relation.references | Jiang, H., J. Zhao. "Calibration of the Continuous Surface Cap Model for Concrete." Finite Elements in Analysis and Design. 97 (2015): 1-19 | spa |
| dc.relation.references | Le Bellégo, C., J. F. Dubé, G. Pijaudier-Cabot, B. Gérard. "Calibration of Nonlocal Damage Model from Size Effect Tests." European Journal of Mechanics-A/Solids. 22.1 (2003): 33-46. | spa |
| dc.relation.references | Xenos, D., D. Grégoire, S. Morel, P. Grassl. "Calibration of Nonlocal Models for Tensile Fracture in Quasi-brittle Heterogeneous Materials." Journal of the Mechanics and Physics of Solids. 82 (2015). | spa |
| dc.relation.references | K. J. William and E. D. Warnke. Constitutive Model for the Triaxial Behavior of Concrete. Proceedings, International Association for Bridge and Structural Engineering. Vol. 19. ISMES. Bergamo, Italy. p. 174. 1975. | spa |
| dc.relation.references | F. Hernández. Esfuerzos y Deformaciones Equivalentes. Ingeniería e Investigación – Universidad Nacional de Colombia, Departamento de Ingeniería, Bogotá - Colombia. | spa |
| dc.relation.references | Peter Kohnke. ANSYS Theory Reference for the Mechanical APDL and Mechanical Applications, Release 12.0. SAS IP, Inc, Published in the U.S.A, 2009. | spa |
| dc.relation.references | C. Aire. Estudio Experimental del Comportamiento del Hormigón Confinado Sometido a Compresión – Capítulo 3, Tesis Doctoral, Universidad Politécnica de Cataluña, Barcelona, 2002. | spa |
| dc.relation.references | M. Gerez, S. Gutierrez, and D. Sfer. Placas de Hormigon Reforzado con Fibras de Acero, Jornadas Argentinas de Ingeniera Estructural, Argentina, 2014. | spa |
| dc.relation.references | M. A. Musmar, M.I Rjoub, and M.A Abdel Hadi. Nonlinear Finite Element Analysis of Shallow Reinforced Concrete Beams Using Solid65 Element, ARPN Journal of Engineering and Applied Sciences, Vol 9, No2, 2014. | spa |
| dc.relation.references | T. Paulay and M.J.N. Priestley. Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, INC. ISBN: 978-0-471-54915-4, United States of America, 1992. | spa |
| dc.relation.references | R. H. G. Parry. Mohr Circles, Stress Paths and Geotechnics, Spon Press, ISBN: 0-415-27297-1, United Kingdom, London, 2004. | spa |
| dc.relation.references | J.G.M. van Mier. Failure of Concrete Under Uniaxial Compression: An Overview. Fracture Mechanics of Concrete Structures, Proceedings FRAMCOS-3, AEDIFICATIO Publishers, D-79104 Freiburg, Germany. (2014):1169-1182. | spa |
| dc.relation.references | J.G.M. van Mier, S. P. Shah, M. Arnaud, J.P. Balayssac, A. Bascoul, S. Choi, D. Dasenbrock, G. Ferrara, C. French, M.E. Gobbi, B.L. Karihaloo, G. König, M.D. Kotsovos, J. Labuz, D. Lange-Kornbak, G. Markeset, M.N. Pavlovic, G. Simsch, K-C. Thienel, A. Turatsinze, M. Ulmer, H.J.G.M. van Geel, M.R.A. van Vliet, D. Zissopoulos. Strain-softening of concrete in uniaxial compression. Materials and Structures, Vol. 30. (1997):195-209 | spa |
| dc.relation.references | Guevara, R. D. & Vargas, J. A. Process capability analysis for nonlinear profiles using depth functions. Quality and Rebiality Engineering International. (2013). | spa |
| dc.relation.references | Lamus Báez. Fabián Augusto. Modelo numérico del comportamiento inelástico del concreto reforzado con fibras cortas de acero, PHD Thesis (In Spanish), Universidad Nacional de Colombia. (2014). | spa |
| dc.relation.references | [1] A. Munjiza, The Combined Finite-Discrete Element Method. John Wiley & Sons, Ltd, 2004, ISBN 0-470-84199-0. | spa |
| dc.relation.references | [2] A. Munjiza, Earl E. Knight & Esteban Rougier, Computational Mechanics of Discontinua, Wiley, 2011, ISBN 0-470-97080-4. | spa |
| dc.relation.references | [1] Ansys® Help System, Mechanical APDL, Release 19.2, ANSYS, Inc. | spa |
| dc.rights | Derechos reservados de autor, 2021 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
| dc.subject.proposal | Método de los elementos finitos | spa |
| dc.subject.proposal | comportamiento mecánico del concreto | spa |
| dc.subject.proposal | mecánica de la fractura | spa |
| dc.subject.proposal | modelos mesoscópicos | spa |
| dc.subject.proposal | criterio de william-warnke | spa |
| dc.subject.proposal | modelo de microplanos | spa |
| dc.subject.proposal | Finite element method | eng |
| dc.subject.proposal | mechanical behavior of concrete | eng |
| dc.subject.proposal | fracture mechanics | eng |
| dc.subject.proposal | mesoscopic model | eng |
| dc.subject.proposal | william-warnke criteria | eng |
| dc.subject.proposal | microplane model | eng |
| dc.subject.unesco | Ingeniería de la construcción | |
| dc.subject.unesco | Materiales de construcción | |
| dc.subject.unesco | Construction engineering | |
| dc.subject.unesco | Building materials | |
| dc.title | Modelo Meso-Mecánico del Proceso de Fractura del Concreto Simple | |
| dc.title.translated | Meso-mechanical model of the fracture process of unreinforced concrete | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience | General | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

