Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo
dc.contributor.advisor | Villegas Bolaños, Nancy Liliana | spa |
dc.contributor.author | Martínez Pedraza, Alexander | spa |
dc.contributor.corporatename | Universidad Nacional de Colombia | spa |
dc.contributor.researchgroup | CENIT | spa |
dc.date.accessioned | 2020-08-19T05:28:09Z | spa |
dc.date.available | 2020-08-19T05:28:09Z | spa |
dc.date.issued | 2019-06-03 | spa |
dc.description.abstract | A statistical forecast of the occurrence of extreme climatic events was performed in the Colombian Caribbean Sea Basin (CMCC), through the so-called “return periods” (RP), estimated by adjusting the Generalized Extreme Value (GEV) distribution. The correlation of extreme events with the North Atlantic Oscillation (OAN), El Niño Southern Oscillation (ENOS) and the Pacific Decadal Oscillation (ODP) was estimated. Monthly series of Sea Level Height (ANM), Sea Surface Temperature (TSM) and Wind Speed (VV) for the period 1960 - 2016 were used. In each analyzed series, the RP of the 90th percentile and the 10th percentile, corresponding respectively to the thresholds of the maximum extreme values (VEmax) and the minimum extreme values (VEmin), were estimated. It was concluded that the VEmax of the ANM can be overcome in less than PR = 3 years and the VEmin have a small probability of occurrence. It was evidenced that, in the TSM, the occurrence of VEmax in the southwestern zone is expected before PR = 3 years and in the north it could be expected between PR = 4 and 5 years. It was found that for the VV the VEmax in the north and the south are expected to be exceeded at least once before PR = 9 years and in the center of the region, after PR = 20 years. The PR of VEmin in VV predominate between PR = 7 and 8 years in the eastern zone and PR = 11 years in the eastern south. The correlation of extremes with the indices of the analyzed phenomena determined that only ENSO has significant associations, presented in the VEmax of ANM and the VEmin of TSM. | spa |
dc.description.abstract | Se realizó en la Cuenca del Mar Caribe Colombiano (CMCC) un pronóstico estadístico de la ocurrencia de eventos extremos climáticos, a través de los llamados “periodos de retorno” (PR), estimados mediante el ajuste de la distribución de Valores Extremos Generalizada (GEV). Se estimó la correlación de los eventos extremos con la Oscilación Atlántico Norte (OAN), El Niño Oscilación del Sur (ENOS) y la Oscilación Decadal del Pacífico (ODP). Se utilizó series mensuales de la Altura del Nivel del Mar (ANM), la Temperatura Superficial del Mar (TSM) y la Velocidad del Viento (VV) del periodo 1960 – 2016. En cada serie analizada, se estimaron los periodos de retorno del percentil 90 y el percentil 10, correspondientes respectivamente a los umbrales de los valores extremos máximos (VEmax) de los valores extremos mínimos (VEmin). Se concluyó que los VEmax de la ANM pueden ser superados en menos de PR=3 años y los VEmin tienen una pequeña probabilidad de ocurrencia. Se evidenció que, en la TSM la ocurrencia de VEmax en la zona suroccidental se espera antes de PR=3 años y en el norte podría ser entre PR=4 y 5 años. Se encontró que para la VV los VEmax en el norte y el sur se espera sean superados al menos una vez antes de PR=9 años y en el centro de la región, luego de PR=20 años. Los PR de VEmin en VV predominan entre PR=7 y 8 años en la zona oriental y PR=11 años en la sur oriental. La correlación de extremos con los índices de los fenómenos analizados, determinó que solamente ENOS tiene asociaciones significativas, presentadas en los VEmax de ANM y los VEmin de TSM. | spa |
dc.description.additional | Línea de Investigación: Meteorología Marina | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 203 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78084 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Geociencias | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Meteorología | spa |
dc.relation.references | AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., & Sorooshian, S. (2013). Extremes in a changing climate: detection, analysis and uncertainty (1st ed., Vol. 65). https://doi.org/10.1007/978-94-007-4479-0 | spa |
dc.relation.references | AghaKouchak, A., & Nasrollahi, N. (2010). Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resources Management, 24(6), 1229–1249. https://doi.org/10.1007/s11269-009-9493-3 | spa |
dc.relation.references | Alvarez, R., Aguilera, J., Andrade, C. A., & Nowak, P. (1995). Caracterizacion general de la zona de surgencia en la guajira colombiana. Rev. Acad. Colornb. Cienc., 19(75), 679–694. | spa |
dc.relation.references | Amador, J. A. (2008). The Intra-Americas Sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146, 153–188. https://doi.org/10.1196/annals.1446.012 | spa |
dc.relation.references | Andrade, C. A. (2008). Cambios recientes del nivel del mar en Colombia. Deltas de Colombia: Morfodinámica y Vulnerabilidad Ante El Cambio Global, 103e122. | spa |
dc.relation.references | Andrade, C. (1993). Análisis de la velocidad del viento en el mar Caribe. Boletín Científico CIOH, 13, 33–44. | spa |
dc.relation.references | Andrade, C. (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25(96), 321–335. | spa |
dc.relation.references | Andrade, C. A., & Barton, E. D. (2005). The Guajira upwelling system. Continental Shelf Research, 25(9), 1003–1022. https://doi.org/10.1016/j.csr.2004.12.012 | spa |
dc.relation.references | Andrade, C., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research, 105(C11), 26191. https://doi.org/10.1029/2000JC000300 | spa |
dc.relation.references | Andrade, C., Barton, E. D., & Mooers, C. N. K. (2003). Evidence for an eastward flow along the Central and South American Caribbean Coast. Journal of Geophysical Research: Oceans, 108(C6). https://doi.org/10.1029/2002JC001549 | spa |
dc.relation.references | Balmaseda, M. A., Mogensen, K., & Weaver, A. T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674), 1132–1161. https://doi.org/10.1002/qj.2063 | spa |
dc.relation.references | Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: theory and applications. John Wiley & Sons. | spa |
dc.relation.references | Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). Patrones de variabilidad de las temperaturas superficiales del mar en la costa caribe colombiana. Ciencias de La Tierra, 30(115), 195–208. | spa |
dc.relation.references | Church, J. a., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., … Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). https://doi.org/10.1017/CB09781107415315.026 | spa |
dc.relation.references | Church, J. A., White, N. J., Coleman, R., Lambeck, K., & Mitrovica, J. X. (2004). Estimates of the regional distribution of sea level rise over the 1950-2000 period. Journal of Climate, 17(13), 2609–2625. https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2 | spa |
dc.relation.references | Climate Prediction Center. (2000). Climate Prediction Center (CPC) Monthly North Atlantic Oscillation (NAO) teleconnection index. Retrieved from https://data.noaa.gov/harvest/object/e9707083-6cb0-4c74-9e26-9a7e7cffd1de/html | spa |
dc.relation.references | Coelho, C. a S., Ferro, C. a T., Stephenson, D. B., & Steinskog, D. J. (2008). Methods for Exploring Spatial and Temporal Variability of Extreme Events in Climate Data. Journal of Climate, 21(10), 2072–2092. https://doi.org/10.1175/2007JCLI1781.1 | spa |
dc.relation.references | Coles, S. G. (2001). An introduction to Statistical Modeling of Extreme Values. In Springer Series in Statistics (1st ed.). https://doi.org/10.1007/978-1-4471-3675-0 | spa |
dc.relation.references | Cowpertwait, P. S. P., & Metcalfe, A. V. (2009). Introductory time series with R (1st ed.). https://doi.org/10.1007/978-0-387-88698-5 | spa |
dc.relation.references | Derryberry, D. R. (2014). Basic Data Analysis for Time Series with R. https://doi.org/10.1002/9781118593233 | spa |
dc.relation.references | Deser, C., Alexander, M. A., Xie, S.-P., & Phillips, A. S. (2010). Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2(1), 115–143. https://doi.org/10.1146/annurev-marine-120408-151453 | spa |
dc.relation.references | Devis-Morales, A., Montoya-Sánchez, R. A., Bernal, G., & Osorio, A. F. (2017). Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Applied Ocean Research, 69, 10–26. https://doi.org/10.1016/j.apor.2017.09.012 | spa |
dc.relation.references | Enfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296 | spa |
dc.relation.references | Giannini, a., Kushnir, Y., & Cane, M. a. (2001). Seasonality in the impact of ENSO and the North Atlantic High on Caribbean rainfall. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(2), 143–147. https://doi.org/10.1016/S1464-1909(00)00231-8 | spa |
dc.relation.references | González-Herrera, F. J. (2013). Modelización estadística de eventos extremos de oleaje y nivel del mar. Universidad de las Palmas de Gran Canaria. | spa |
dc.relation.references | Griffies, S. M., Schmidt, M., & Herzfeld, M. (2010). Elements of mom4p1. In GFDL Ocean Group Technical Report No. 6 (Vol. 6). Retrieved from http://gfdl.noaa.gov/cms-filesystem-action/model$%5C_$development/ocean/mom-guide4p1.pdf | spa |
dc.relation.references | Griffies, S. M. (2012). Elements of the Modular Ocean Model (MOM): 2012 release. GFDL Ocean Group Technical Report No. 7, 3(C), 1–631. Retrieved from http://mom-ocean.org/web/docs/project/MOM5%5C_elements.pdf$%5C$npapers3: | spa |
dc.relation.references | Grimm, A. M., & Tedeschi, R. G. (2009). ENSO and Extreme Rainfall Events in South America. Journal of Climate, 22(7), 1589–1609. https://doi.org/10.1175/2008JCLI2429.1 | spa |
dc.relation.references | Hartmann, D. J., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V, Brönnimann, S., Charabi, Y. A.-R., … Zhai, P. (2013). Observations: Atmosphere and Surface. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 159–254). https://doi.org/10.1017/CBO9781107415324.008 | spa |
dc.relation.references | Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269(5224), 676–679. | spa |
dc.relation.references | Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the North Atlantic oscillation. In J. W. Hurrell, Y. Kushnir, G. Ottersen, & M. Visbeck (Eds.), The North Atlantic Oscillation Climatic Significance and Environmental Impact (pp. 1–35). Washington, DC: Wiley Online Library. | spa |
dc.relation.references | Ibañez, A. (2011). Análisis estad\’{\i}stico de valores extremos y aplicaciones. 102. | spa |
dc.relation.references | IDEAM. (2006). Pronóstico Pleamares y Bajamares Costa Caribe Colombiana 2007. | spa |
dc.relation.references | IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, … P. M. Midgley, Eds.). Cambridge, UK, and New York, NY, USA: Cambridge University Press. | spa |
dc.relation.references | IPCC. (2013). Annex III: Glossary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1447–1466). | spa |
dc.relation.references | IPCC. (2013). CAMBIO CLIMÁTICO 2013 Bases f\’{\i}sicas Resumen para responsables de pol\’{\i}ticas Cambio Climático 2013 Bases f\’{\i}sicas. Contribución Del Grupo de Trabajo I Al Quinto Informe de Evaluación Del Grupo Intergubermental de Expertos Sobre El Cambio Climático - Resumen Para Responsables de Pol\’{\i}ticas. | spa |
dc.relation.references | Jones, P. D., Trenberth, K. E., Ambenje, P., Bojariu, R., Easterling, D., Klein, T., … Soden, B. (2007). Observations: surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, … H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 235–336). United Kingdom and New York, NY, USA.: Cambridge University Press, Cambridge. | spa |
dc.relation.references | Jouanno, J., Sheinbaum, J., Barnier, B., Molines, J. M., & Candela, J. (2012). Seasonal and Interannual Modulation of the Eddy Kinetic Energy in the Caribbean Sea. Journal of Physical Oceanography, 42(11), 2041–2055. https://doi.org/10.1175/JPO-D-12-048.1 | spa |
dc.relation.references | Jouanno, J., Sheinbaum, J., Barnier, B., Molines, J. M., Debreu, L., & Lemarié, F. (2008). The mesoscale variability in the Caribbean Sea. Part I: Simulations and characteristics with an embedded model. Ocean Modelling, 23(3–4), 82–101. https://doi.org/10.1016/j.ocemod.2008.04.002 | spa |
dc.relation.references | Kenyon, J., & Hegerl, G. C. (2008). Influence of Modes of Climate Variability on Global Temperature Extremes. Journal of Climate, 21(15), 3872–3889. https://doi.org/10.1175/2008JCLI2125.1 | spa |
dc.relation.references | Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., … Fiorino, M. (2001). The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bulletin of the American Meteorological Society, 82(2), 247–267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 | spa |
dc.relation.references | Kuleshov, Y., Qi, L., Fawcett, R., & Jones, D. (2008). On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophysical Research Letters, 35(14). https://doi.org/10.1029/2007GL032983 | spa |
dc.relation.references | Letetrel, C., Marcos, M., Martín Míguez, B., & Woppelmann, G. (2010). Sea level extremes in Marseille (NW Mediterranean) during 1885-2008. Continental Shelf Research, 30(12), 1267–1274. https://doi.org/10.1016/j.csr.2010.04.003 | spa |
dc.relation.references | Losada, I. J., Reguero, B. G., Méndez, F. J., Castanedo, S., Abascal, a. J., & Mínguez, R. (2013). Long-term changes in sea-level components in Latin America and the Caribbean. Global and Planetary Change, 104, 34–50. https://doi.org/10.1016/j.gloplacha.2013.02.006 | spa |
dc.relation.references | Maldonado, T., Rutgersson, A., Amador, J., Alfaro, E., & Claremar, B. (2016). Variability of the Caribbean low-level jet during boreal winter: Large-scale forcings. International Journal of Climatology, 36(4), 1954–1969. https://doi.org/10.1002/joc.4472 | spa |
dc.relation.references | Mantua, N. J. (1999). The Pacific decadal oscillation and climate forecasting for North America. Climate Risk Solutions, 1(1), 10–13. | spa |
dc.relation.references | Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6), 1069–1079. | spa |
dc.relation.references | Martin, E. R., & Schumacher, C. (2011). The caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. Journal of Climate, 24(22), 5935–5950. https://doi.org/10.1175/JCLI-D-11-00134.1 | spa |
dc.relation.references | Masina, M., & Lamberti, A. (2013). A nonstationary analysis for the Northern Adriatic extreme sea levels. Journal of Geophysical Research: Oceans, 118(9), 3999–4016. https://doi.org/10.1002/jgrc.20313 | spa |
dc.relation.references | Matthew B. Alkire, Craig Lee, Eric D’Asaro, Mary Jane Perry, Nathan Briggs, Ivona Cetinic´, and A. G. (2014). Journal of Geophysical Research : Oceans. Journal of Geophysical Research: Oceans, 119(1), 6121–6139. https://doi.org/10.1002/2014JC010105.Received | spa |
dc.relation.references | Minobe, S. (1997). A 50-70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters, 24(6), 683–686. | spa |
dc.relation.references | Mochales, I. S. (2013). Modelos estadísticos para valores extremos. Universidad Autonoma de Barcelona. | spa |
dc.relation.references | Montealegre, J. (2007). Modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia. In Instituto De Hidrologia, Meteorologia Y Estudios Ambientales, Ideam. Bogotá, Colombia. | spa |
dc.relation.references | Mudelsee, M. (2013). Climate time series analysis: Classical Statistical and Bootstrap Methods (2nd ed.). https://doi.org/10.1007/978-3-319-04450-7 | spa |
dc.relation.references | National Centers for Environmental Information. (2016). Pacific Decadal Oscillation (PDO). Retrieved from https://www.ncdc.noaa.gov/teleconnections/pdo/ | spa |
dc.relation.references | Navia, J. D., Villegas, N. L., & Rodriguez, A. T. (2015). Identificación de anomalías de la temperatura superficial del mar en el Caribe colombiano relacionadas con eventos extremos de largo período entre 1960-2014. {XVI} Congreso Latinoamericano de Ciencias Del Mar (COLACMAR) - {XVI} Seminario Nacional de Ciencias y Tecnologías Del Mar (SENALMAR). Santa Marta, Colombia. | spa |
dc.relation.references | Pareja Román, L. F., Díaz Guevara, D. C., Rodríguez Tobar, Á. T., Villegas Bolaños, N. L., & Pérez Santos, I. E. (2013). Análisis del transporte y bombeo de Ekman en el Caribe colombiano entre 1999 y 2009. Boletín Científico CIOH, 31(November 2009), 3–12. | spa |
dc.relation.references | Peña, D. (2002). Análisis de datos multivariantes. Alianza editorial. | spa |
dc.relation.references | Peterson, T. C., Anderson, D. M., Cohen, S. J., Cortez-Vázquez, M., Murnane, R. J., Parmesan, C., … Stone, J. M. R. (2008). Why weather and climate extremes matter. In T. R. Karl, G. A. Meehl, C. D. Miller, S. J. Hassol, A. M. Waple, & W. L. Murray (Eds.), Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and US Pacific Islands (pp. 11–33). A Report by the US Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC. | spa |
dc.relation.references | Philander, S. G. (1990). El Niño, La Niña, and the Southern Oscillation. Academic Press. | spa |
dc.relation.references | Pruscha, H. (2013). Statistical Analysis of Climate Series: Analyzing, Plotting, Modeling, and Predicting with R (1st ed.). https://doi.org/10.1007/978-3-642-32084-2 | spa |
dc.relation.references | Rasmusson, E. M., & Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Monthly Weather Review, 110(5), 354–384. | spa |
dc.relation.references | Reiss, R. D., & Thomas, M. (2007). Statistical analysis of extreme values: with applications to insurance, finance, hydrology and other fields (3rd ed.). https://doi.org/10.1007/978-3-7643-7399-3 | spa |
dc.relation.references | Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., … Wang, F. (2013). Observations: Ocean. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. | spa |
dc.relation.references | Ricaurte-Villota, C., & Bastidas-Salamanca, M. L. (2017). Regionalización oceanográfica: una visión dinámica del Caribe. Instituto De Investigaciones Marinas y Costeras José Benito Vives de Andreis …. | spa |
dc.relation.references | Rodríguez, L. J. (2011). Identificación de zonas homogéneas en la interfase mar-aire del mar Caribe Colombiano y relación entre la variabilidad de parámetros oceánicos y atmosféricos de algunos puntos representativos de estas zonas y la oscilación atlántico norte. UNIVERSIDAD NACIONAL DE COLOMBIA. | spa |
dc.relation.references | Ropelewski, C. F., & Bell, M. A. (2008). Shifts in the Statistics of Daily Rainfall in South America Conditional on ENSO Phase. Journal of Climate, 21(5), 849–865. https://doi.org/10.1175/2007JCLI1617.1 | spa |
dc.relation.references | Rueda-Roa, D. T., & Muller-Karger, F. E. (2013). The southern Caribbean upwelling system: Sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep-Sea Research Part I: Oceanographic Research Papers, 78, 102–114. https://doi.org/10.1016/j.dsr.2013.04.008 | spa |
dc.relation.references | Ruiz-Ochoa, M. (2011). Variabilidad de la cuenca Colombia (mar Caribe) asociada con El Niño-Oscilación del sur, vientos alisisos y procesos locales. Universidad Nacional de Colombia, Sede Medellín. | spa |
dc.relation.references | Ruiz-Ochoa, M., Beier, E., Bernal, G., & Barton, E. D. (2012). Sea surface temperature variability in the Colombian Basin, Caribbean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 64, 43–53. https://doi.org/10.1016/j.dsr.2012.01.013 | spa |
dc.relation.references | Ruiz-Ochoa, M., & Bernal, G. (2009). Variabilidad estacional e interanual del viento en los datos del reanálisis NCEP/NCAR en la cuenca Colombia, mar Caribe. Avances Recursos Hidráulicos, 20, 7–20. | spa |
dc.relation.references | Sarmiento-Devia, R. a., López-Escobar, Á. V., Mejías, M. B., Dávila, P. M., & Franco-Herrera, A. (2013). Variabilidad intra-anual del régimen climático en sectores de surgencia en el sudeste del Mar Caribe, usando ERA Interim. Revista de Biologia Marina y Oceanografia, 48(3), 471–485. https://doi.org/10.4067/S0718-19572013000300006 | spa |
dc.relation.references | Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., … Zhang, X. (2012). Changes in climate extremes and their impacts on the natural physical environment. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, … P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation (pp. 109–230). Cambridge, UK, and New York, NY, USA: Cambridge University Press. | spa |
dc.relation.references | Shumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications With R Examples. In G. Casella, S. Fienberg, & I. Olkin (Eds.), Textbook (3rd ed., Vol. 97). https://doi.org/10.1007/978-1-4419-7865-3 | spa |
dc.relation.references | Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., … Miller, H. L. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press. | spa |
dc.relation.references | Soukissian, T. H., & Tsalis, C. (2015). The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction. Natural Hazards, 78(3), 1777–1809. https://doi.org/10.1007/s11069-015-1800-0 | spa |
dc.relation.references | Stewart, R. H. (2008). Introduction to physical oceanography. Retrieved from http://oceanworld.tamu.edu/resources/ocng$%5C_$textbook/PDF$%5C_$files/book$%5C_$PDF$%5C_$files.html | spa |
dc.relation.references | Taylor, M. A., Whyte, F. S., Stephenson, T. S., & Campbell, J. D. (2013). Why dry? Investigating the future evolution of the Caribbean Low Level Jet to explain projected Caribbean drying. International Journal of Climatology, 33(3), 784–792. https://doi.org/10.1002/joc.3461 | spa |
dc.relation.references | Teena, N. V, Sanil Kumar, V., Sudheesh, K., & Sajeev, R. (2012). Statistical analysis on extreme wave height. Natural Hazards, 64(1), 223–236. https://doi.org/10.1007/s11069-012-0229-y | spa |
dc.relation.references | Thevasiyani, T., & Perera, K. (2014). Statistical analysis of extreme ocean waves in Galle, Sri Lanka. Weather and Climate Extremes, 5–6, 40–47. https://doi.org/10.1016/j.wace.2014.07.003 | spa |
dc.relation.references | Thomson, R. E., & Emery, W. J. (2014). Data analysis methods in physical oceanography (3rd ed.). Elsevier Science. | spa |
dc.relation.references | Torres, R. R., & Tsimplis, M. N. (2014). Sea level extremes in the Caribbean Sea. Journal of Geophysical Research: Oceans, 119(8), 4714–4731. | spa |
dc.relation.references | Torres, R. R., & Tsimplis, M. N. (2013). Sea-level trends and interannual variability in the Caribbean Sea. Journal of Geophysical Research: Oceans, 118(6), 2934–2947. https://doi.org/10.1002/jgrc.20229 | spa |
dc.relation.references | Trenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78(12), 2771–2777. | spa |
dc.relation.references | Trenberth, K. E. (1984). Signal versus noise in the Southern Oscillation. Monthly Weather Review, 112(2), 326–332. | spa |
dc.relation.references | Trenberth, K. E., & Hoar, T. J. (1996). The 1990-1995 El Niño-Southern Oscillation event: Longest on record. Geophysical Research Letters, 23(1), 57–60. | spa |
dc.relation.references | Trenberth, K. E., & Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9(6), 303–319. | spa |
dc.relation.references | Vides, M. (2008). Adaptación costera al ascenso del nivel del mar. NCAP: Colombia Project. Invemar, Ministerio de Ambiente, Vivienda y Desarrollo Territorial, NCAP-The Netherlands Climate Assistance Programme. ETC Group, SEI-Stockholm Environment Institute and Ecoversa. | spa |
dc.relation.references | Wang, C. (2007). Variability of the Caribbean Low-Level Jet and its relations to climate. Climate Dynamics, 29(4), 411–422. https://doi.org/10.1007/s00382-007-0243-z | spa |
dc.relation.references | Wei, W. W. S. (2005). Time Series Analysis : Univariate and Multivariate Methods (2n (2nd ed.). Addison Wesley. | spa |
dc.relation.references | Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R. J., Umgiesser, G., & Willems, P. (2014). Changing extreme sea levels along European coasts. Coastal Engineering, 87, 4–14. https://doi.org/10.1016/j.coastaleng.2013.10.017 | spa |
dc.relation.references | Whyte, F. S., Taylor, M. A., Stephenson, T. S., & Campbell, J. D. (2008). Features of the Caribbean low level jet. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(1), 119–128. | spa |
dc.relation.references | Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (3rd ed.). Academic press. | spa |
dc.relation.references | Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Eric Freeman, J., Berry, D. I., … Wilkinson, C. (2011). ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. International Journal of Climatology, 31(7), 951–967. https://doi.org/10.1002/joc.2103 | spa |
dc.relation.references | Wu, R., & Kirtman, B. P. (2011). Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST. Climate Dynamics, 37(7–8), 1533–1550. https://doi.org/10.1007/s00382-010-0927-7 | spa |
dc.relation.references | Wyrtki, K. (1975). El Nino-the dynamic response of the equatorial Pacific oceanto atmospheric forcing. Journal of Physical Oceanography, 5(4), 572–584. | spa |
dc.relation.references | Young, I. R., Zieger, S., & Babanin, A. V. (2011). Global Trends in Wind Speed and Wave Height. Science, 332(6028), 451–455. https://doi.org/10.1126/science.1197219 | spa |
dc.relation.references | Yu, L., Jin, X., & Weller, R. A. (2008). Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Technical Report. OA-2008-01, 64pp. In OAFlux Project Technical Report. OA-2008-01. Retrieved from http://oaflux.whoi.edu/publications.html | spa |
dc.relation.references | Zhang, X., Wang, J., Zwiers, F. W., & Groisman, P. Y. (2010). The Influence of Large-Scale Climate Variability on Winter Maximum Daily Precipitation over North America. Journal of Climate, 23(11), 2902–2915. https://doi.org/10.1175/2010JCLI3249.1 | spa |
dc.relation.references | Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900-93. Journal of Climate, 10(5), 1004–1020. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.ddc | 550 - Ciencias de la tierra | spa |
dc.subject.ddc | 551 - Geología, hidrología, meteorología | spa |
dc.subject.ddc | 986 - Colombia y Ecuador | spa |
dc.subject.proposal | GEV | spa |
dc.subject.proposal | GEV | eng |
dc.subject.proposal | extremos climáticos | spa |
dc.subject.proposal | climatic extremes | eng |
dc.subject.proposal | Sea surfece level | eng |
dc.subject.proposal | temperatura superficial del mar | spa |
dc.subject.proposal | altura superficial del mar | spa |
dc.subject.proposal | Sea Surface Height | eng |
dc.subject.proposal | wind speed | eng |
dc.subject.proposal | velocidad del viento | spa |
dc.subject.proposal | PDO | eng |
dc.subject.proposal | ODP | spa |
dc.subject.proposal | ENSO | eng |
dc.subject.proposal | ENOS | spa |
dc.subject.proposal | OAN | spa |
dc.subject.proposal | NAO | eng |
dc.title | Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |