Modelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodo

dc.contributor.advisorVillegas Bolaños, Nancy Lilianaspa
dc.contributor.authorMartínez Pedraza, Alexanderspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupCENITspa
dc.date.accessioned2020-08-19T05:28:09Zspa
dc.date.available2020-08-19T05:28:09Zspa
dc.date.issued2019-06-03spa
dc.description.abstractA statistical forecast of the occurrence of extreme climatic events was performed in the Colombian Caribbean Sea Basin (CMCC), through the so-called “return periods” (RP), estimated by adjusting the Generalized Extreme Value (GEV) distribution. The correlation of extreme events with the North Atlantic Oscillation (OAN), El Niño Southern Oscillation (ENOS) and the Pacific Decadal Oscillation (ODP) was estimated. Monthly series of Sea Level Height (ANM), Sea Surface Temperature (TSM) and Wind Speed (VV) for the period 1960 - 2016 were used. In each analyzed series, the RP of the 90th percentile and the 10th percentile, corresponding respectively to the thresholds of the maximum extreme values (VEmax) and the minimum extreme values (VEmin), were estimated. It was concluded that the VEmax of the ANM can be overcome in less than PR = 3 years and the VEmin have a small probability of occurrence. It was evidenced that, in the TSM, the occurrence of VEmax in the southwestern zone is expected before PR = 3 years and in the north it could be expected between PR = 4 and 5 years. It was found that for the VV the VEmax in the north and the south are expected to be exceeded at least once before PR = 9 years and in the center of the region, after PR = 20 years. The PR of VEmin in VV predominate between PR = 7 and 8 years in the eastern zone and PR = 11 years in the eastern south. The correlation of extremes with the indices of the analyzed phenomena determined that only ENSO has significant associations, presented in the VEmax of ANM and the VEmin of TSM.spa
dc.description.abstractSe realizó en la Cuenca del Mar Caribe Colombiano (CMCC) un pronóstico estadístico de la ocurrencia de eventos extremos climáticos, a través de los llamados “periodos de retorno” (PR), estimados mediante el ajuste de la distribución de Valores Extremos Generalizada (GEV). Se estimó la correlación de los eventos extremos con la Oscilación Atlántico Norte (OAN), El Niño Oscilación del Sur (ENOS) y la Oscilación Decadal del Pacífico (ODP). Se utilizó series mensuales de la Altura del Nivel del Mar (ANM), la Temperatura Superficial del Mar (TSM) y la Velocidad del Viento (VV) del periodo 1960 – 2016. En cada serie analizada, se estimaron los periodos de retorno del percentil 90 y el percentil 10, correspondientes respectivamente a los umbrales de los valores extremos máximos (VEmax) de los valores extremos mínimos (VEmin). Se concluyó que los VEmax de la ANM pueden ser superados en menos de PR=3 años y los VEmin tienen una pequeña probabilidad de ocurrencia. Se evidenció que, en la TSM la ocurrencia de VEmax en la zona suroccidental se espera antes de PR=3 años y en el norte podría ser entre PR=4 y 5 años. Se encontró que para la VV los VEmax en el norte y el sur se espera sean superados al menos una vez antes de PR=9 años y en el centro de la región, luego de PR=20 años. Los PR de VEmin en VV predominan entre PR=7 y 8 años en la zona oriental y PR=11 años en la sur oriental. La correlación de extremos con los índices de los fenómenos analizados, determinó que solamente ENOS tiene asociaciones significativas, presentadas en los VEmax de ANM y los VEmin de TSM.spa
dc.description.additionalLínea de Investigación: Meteorología Marinaspa
dc.description.degreelevelMaestríaspa
dc.format.extent203spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78084
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Meteorologíaspa
dc.relation.referencesAghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., & Sorooshian, S. (2013). Extremes in a changing climate: detection, analysis and uncertainty (1st ed., Vol. 65). https://doi.org/10.1007/978-94-007-4479-0spa
dc.relation.referencesAghaKouchak, A., & Nasrollahi, N. (2010). Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resources Management, 24(6), 1229–1249. https://doi.org/10.1007/s11269-009-9493-3spa
dc.relation.referencesAlvarez, R., Aguilera, J., Andrade, C. A., & Nowak, P. (1995). Caracterizacion general de la zona de surgencia en la guajira colombiana. Rev. Acad. Colornb. Cienc., 19(75), 679–694.spa
dc.relation.referencesAmador, J. A. (2008). The Intra-Americas Sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146, 153–188. https://doi.org/10.1196/annals.1446.012spa
dc.relation.referencesAndrade, C. A. (2008). Cambios recientes del nivel del mar en Colombia. Deltas de Colombia: Morfodinámica y Vulnerabilidad Ante El Cambio Global, 103e122.spa
dc.relation.referencesAndrade, C. (1993). Análisis de la velocidad del viento en el mar Caribe. Boletín Científico CIOH, 13, 33–44.spa
dc.relation.referencesAndrade, C. (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25(96), 321–335.spa
dc.relation.referencesAndrade, C. A., & Barton, E. D. (2005). The Guajira upwelling system. Continental Shelf Research, 25(9), 1003–1022. https://doi.org/10.1016/j.csr.2004.12.012spa
dc.relation.referencesAndrade, C., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research, 105(C11), 26191. https://doi.org/10.1029/2000JC000300spa
dc.relation.referencesAndrade, C., Barton, E. D., & Mooers, C. N. K. (2003). Evidence for an eastward flow along the Central and South American Caribbean Coast. Journal of Geophysical Research: Oceans, 108(C6). https://doi.org/10.1029/2002JC001549spa
dc.relation.referencesBalmaseda, M. A., Mogensen, K., & Weaver, A. T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674), 1132–1161. https://doi.org/10.1002/qj.2063spa
dc.relation.referencesBeirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: theory and applications. John Wiley & Sons.spa
dc.relation.referencesBernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). Patrones de variabilidad de las temperaturas superficiales del mar en la costa caribe colombiana. Ciencias de La Tierra, 30(115), 195–208.spa
dc.relation.referencesChurch, J. a., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., … Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1137–1216). https://doi.org/10.1017/CB09781107415315.026spa
dc.relation.referencesChurch, J. A., White, N. J., Coleman, R., Lambeck, K., & Mitrovica, J. X. (2004). Estimates of the regional distribution of sea level rise over the 1950-2000 period. Journal of Climate, 17(13), 2609–2625. https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2spa
dc.relation.referencesClimate Prediction Center. (2000). Climate Prediction Center (CPC) Monthly North Atlantic Oscillation (NAO) teleconnection index. Retrieved from https://data.noaa.gov/harvest/object/e9707083-6cb0-4c74-9e26-9a7e7cffd1de/htmlspa
dc.relation.referencesCoelho, C. a S., Ferro, C. a T., Stephenson, D. B., & Steinskog, D. J. (2008). Methods for Exploring Spatial and Temporal Variability of Extreme Events in Climate Data. Journal of Climate, 21(10), 2072–2092. https://doi.org/10.1175/2007JCLI1781.1spa
dc.relation.referencesColes, S. G. (2001). An introduction to Statistical Modeling of Extreme Values. In Springer Series in Statistics (1st ed.). https://doi.org/10.1007/978-1-4471-3675-0spa
dc.relation.referencesCowpertwait, P. S. P., & Metcalfe, A. V. (2009). Introductory time series with R (1st ed.). https://doi.org/10.1007/978-0-387-88698-5spa
dc.relation.referencesDerryberry, D. R. (2014). Basic Data Analysis for Time Series with R. https://doi.org/10.1002/9781118593233spa
dc.relation.referencesDeser, C., Alexander, M. A., Xie, S.-P., & Phillips, A. S. (2010). Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2(1), 115–143. https://doi.org/10.1146/annurev-marine-120408-151453spa
dc.relation.referencesDevis-Morales, A., Montoya-Sánchez, R. A., Bernal, G., & Osorio, A. F. (2017). Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Applied Ocean Research, 69, 10–26. https://doi.org/10.1016/j.apor.2017.09.012spa
dc.relation.referencesEnfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296spa
dc.relation.referencesGiannini, a., Kushnir, Y., & Cane, M. a. (2001). Seasonality in the impact of ENSO and the North Atlantic High on Caribbean rainfall. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(2), 143–147. https://doi.org/10.1016/S1464-1909(00)00231-8spa
dc.relation.referencesGonzález-Herrera, F. J. (2013). Modelización estadística de eventos extremos de oleaje y nivel del mar. Universidad de las Palmas de Gran Canaria.spa
dc.relation.referencesGriffies, S. M., Schmidt, M., & Herzfeld, M. (2010). Elements of mom4p1. In GFDL Ocean Group Technical Report No. 6 (Vol. 6). Retrieved from http://gfdl.noaa.gov/cms-filesystem-action/model$%5C_$development/ocean/mom-guide4p1.pdfspa
dc.relation.referencesGriffies, S. M. (2012). Elements of the Modular Ocean Model (MOM): 2012 release. GFDL Ocean Group Technical Report No. 7, 3(C), 1–631. Retrieved from http://mom-ocean.org/web/docs/project/MOM5%5C_elements.pdf$%5C$npapers3:spa
dc.relation.referencesGrimm, A. M., & Tedeschi, R. G. (2009). ENSO and Extreme Rainfall Events in South America. Journal of Climate, 22(7), 1589–1609. https://doi.org/10.1175/2008JCLI2429.1spa
dc.relation.referencesHartmann, D. J., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V, Brönnimann, S., Charabi, Y. A.-R., … Zhai, P. (2013). Observations: Atmosphere and Surface. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 159–254). https://doi.org/10.1017/CBO9781107415324.008spa
dc.relation.referencesHurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269(5224), 676–679.spa
dc.relation.referencesHurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the North Atlantic oscillation. In J. W. Hurrell, Y. Kushnir, G. Ottersen, & M. Visbeck (Eds.), The North Atlantic Oscillation Climatic Significance and Environmental Impact (pp. 1–35). Washington, DC: Wiley Online Library.spa
dc.relation.referencesIbañez, A. (2011). Análisis estad\’{\i}stico de valores extremos y aplicaciones. 102.spa
dc.relation.referencesIDEAM. (2006). Pronóstico Pleamares y Bajamares Costa Caribe Colombiana 2007.spa
dc.relation.referencesIPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, … P. M. Midgley, Eds.). Cambridge, UK, and New York, NY, USA: Cambridge University Press.spa
dc.relation.referencesIPCC. (2013). Annex III: Glossary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1447–1466).spa
dc.relation.referencesIPCC. (2013). CAMBIO CLIMÁTICO 2013 Bases f\’{\i}sicas Resumen para responsables de pol\’{\i}ticas Cambio Climático 2013 Bases f\’{\i}sicas. Contribución Del Grupo de Trabajo I Al Quinto Informe de Evaluación Del Grupo Intergubermental de Expertos Sobre El Cambio Climático - Resumen Para Responsables de Pol\’{\i}ticas.spa
dc.relation.referencesJones, P. D., Trenberth, K. E., Ambenje, P., Bojariu, R., Easterling, D., Klein, T., … Soden, B. (2007). Observations: surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, … H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 235–336). United Kingdom and New York, NY, USA.: Cambridge University Press, Cambridge.spa
dc.relation.referencesJouanno, J., Sheinbaum, J., Barnier, B., Molines, J. M., & Candela, J. (2012). Seasonal and Interannual Modulation of the Eddy Kinetic Energy in the Caribbean Sea. Journal of Physical Oceanography, 42(11), 2041–2055. https://doi.org/10.1175/JPO-D-12-048.1spa
dc.relation.referencesJouanno, J., Sheinbaum, J., Barnier, B., Molines, J. M., Debreu, L., & Lemarié, F. (2008). The mesoscale variability in the Caribbean Sea. Part I: Simulations and characteristics with an embedded model. Ocean Modelling, 23(3–4), 82–101. https://doi.org/10.1016/j.ocemod.2008.04.002spa
dc.relation.referencesKenyon, J., & Hegerl, G. C. (2008). Influence of Modes of Climate Variability on Global Temperature Extremes. Journal of Climate, 21(15), 3872–3889. https://doi.org/10.1175/2008JCLI2125.1spa
dc.relation.referencesKistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., … Fiorino, M. (2001). The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bulletin of the American Meteorological Society, 82(2), 247–267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2spa
dc.relation.referencesKuleshov, Y., Qi, L., Fawcett, R., & Jones, D. (2008). On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophysical Research Letters, 35(14). https://doi.org/10.1029/2007GL032983spa
dc.relation.referencesLetetrel, C., Marcos, M., Martín Míguez, B., & Woppelmann, G. (2010). Sea level extremes in Marseille (NW Mediterranean) during 1885-2008. Continental Shelf Research, 30(12), 1267–1274. https://doi.org/10.1016/j.csr.2010.04.003spa
dc.relation.referencesLosada, I. J., Reguero, B. G., Méndez, F. J., Castanedo, S., Abascal, a. J., & Mínguez, R. (2013). Long-term changes in sea-level components in Latin America and the Caribbean. Global and Planetary Change, 104, 34–50. https://doi.org/10.1016/j.gloplacha.2013.02.006spa
dc.relation.referencesMaldonado, T., Rutgersson, A., Amador, J., Alfaro, E., & Claremar, B. (2016). Variability of the Caribbean low-level jet during boreal winter: Large-scale forcings. International Journal of Climatology, 36(4), 1954–1969. https://doi.org/10.1002/joc.4472spa
dc.relation.referencesMantua, N. J. (1999). The Pacific decadal oscillation and climate forecasting for North America. Climate Risk Solutions, 1(1), 10–13.spa
dc.relation.referencesMantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6), 1069–1079.spa
dc.relation.referencesMartin, E. R., & Schumacher, C. (2011). The caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. Journal of Climate, 24(22), 5935–5950. https://doi.org/10.1175/JCLI-D-11-00134.1spa
dc.relation.referencesMasina, M., & Lamberti, A. (2013). A nonstationary analysis for the Northern Adriatic extreme sea levels. Journal of Geophysical Research: Oceans, 118(9), 3999–4016. https://doi.org/10.1002/jgrc.20313spa
dc.relation.referencesMatthew B. Alkire, Craig Lee, Eric D’Asaro, Mary Jane Perry, Nathan Briggs, Ivona Cetinic´, and A. G. (2014). Journal of Geophysical Research : Oceans. Journal of Geophysical Research: Oceans, 119(1), 6121–6139. https://doi.org/10.1002/2014JC010105.Receivedspa
dc.relation.referencesMinobe, S. (1997). A 50-70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters, 24(6), 683–686.spa
dc.relation.referencesMochales, I. S. (2013). Modelos estadísticos para valores extremos. Universidad Autonoma de Barcelona.spa
dc.relation.referencesMontealegre, J. (2007). Modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia. In Instituto De Hidrologia, Meteorologia Y Estudios Ambientales, Ideam. Bogotá, Colombia.spa
dc.relation.referencesMudelsee, M. (2013). Climate time series analysis: Classical Statistical and Bootstrap Methods (2nd ed.). https://doi.org/10.1007/978-3-319-04450-7spa
dc.relation.referencesNational Centers for Environmental Information. (2016). Pacific Decadal Oscillation (PDO). Retrieved from https://www.ncdc.noaa.gov/teleconnections/pdo/spa
dc.relation.referencesNavia, J. D., Villegas, N. L., & Rodriguez, A. T. (2015). Identificación de anomalías de la temperatura superficial del mar en el Caribe colombiano relacionadas con eventos extremos de largo período entre 1960-2014. {XVI} Congreso Latinoamericano de Ciencias Del Mar (COLACMAR) - {XVI} Seminario Nacional de Ciencias y Tecnologías Del Mar (SENALMAR). Santa Marta, Colombia.spa
dc.relation.referencesPareja Román, L. F., Díaz Guevara, D. C., Rodríguez Tobar, Á. T., Villegas Bolaños, N. L., & Pérez Santos, I. E. (2013). Análisis del transporte y bombeo de Ekman en el Caribe colombiano entre 1999 y 2009. Boletín Científico CIOH, 31(November 2009), 3–12.spa
dc.relation.referencesPeña, D. (2002). Análisis de datos multivariantes. Alianza editorial.spa
dc.relation.referencesPeterson, T. C., Anderson, D. M., Cohen, S. J., Cortez-Vázquez, M., Murnane, R. J., Parmesan, C., … Stone, J. M. R. (2008). Why weather and climate extremes matter. In T. R. Karl, G. A. Meehl, C. D. Miller, S. J. Hassol, A. M. Waple, & W. L. Murray (Eds.), Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and US Pacific Islands (pp. 11–33). A Report by the US Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC.spa
dc.relation.referencesPhilander, S. G. (1990). El Niño, La Niña, and the Southern Oscillation. Academic Press.spa
dc.relation.referencesPruscha, H. (2013). Statistical Analysis of Climate Series: Analyzing, Plotting, Modeling, and Predicting with R (1st ed.). https://doi.org/10.1007/978-3-642-32084-2spa
dc.relation.referencesRasmusson, E. M., & Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Monthly Weather Review, 110(5), 354–384.spa
dc.relation.referencesReiss, R. D., & Thomas, M. (2007). Statistical analysis of extreme values: with applications to insurance, finance, hydrology and other fields (3rd ed.). https://doi.org/10.1007/978-3-7643-7399-3spa
dc.relation.referencesRhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., … Wang, F. (2013). Observations: Ocean. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.spa
dc.relation.referencesRicaurte-Villota, C., & Bastidas-Salamanca, M. L. (2017). Regionalización oceanográfica: una visión dinámica del Caribe. Instituto De Investigaciones Marinas y Costeras José Benito Vives de Andreis ….spa
dc.relation.referencesRodríguez, L. J. (2011). Identificación de zonas homogéneas en la interfase mar-aire del mar Caribe Colombiano y relación entre la variabilidad de parámetros oceánicos y atmosféricos de algunos puntos representativos de estas zonas y la oscilación atlántico norte. UNIVERSIDAD NACIONAL DE COLOMBIA.spa
dc.relation.referencesRopelewski, C. F., & Bell, M. A. (2008). Shifts in the Statistics of Daily Rainfall in South America Conditional on ENSO Phase. Journal of Climate, 21(5), 849–865. https://doi.org/10.1175/2007JCLI1617.1spa
dc.relation.referencesRueda-Roa, D. T., & Muller-Karger, F. E. (2013). The southern Caribbean upwelling system: Sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep-Sea Research Part I: Oceanographic Research Papers, 78, 102–114. https://doi.org/10.1016/j.dsr.2013.04.008spa
dc.relation.referencesRuiz-Ochoa, M. (2011). Variabilidad de la cuenca Colombia (mar Caribe) asociada con El Niño-Oscilación del sur, vientos alisisos y procesos locales. Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesRuiz-Ochoa, M., Beier, E., Bernal, G., & Barton, E. D. (2012). Sea surface temperature variability in the Colombian Basin, Caribbean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 64, 43–53. https://doi.org/10.1016/j.dsr.2012.01.013spa
dc.relation.referencesRuiz-Ochoa, M., & Bernal, G. (2009). Variabilidad estacional e interanual del viento en los datos del reanálisis NCEP/NCAR en la cuenca Colombia, mar Caribe. Avances Recursos Hidráulicos, 20, 7–20.spa
dc.relation.referencesSarmiento-Devia, R. a., López-Escobar, Á. V., Mejías, M. B., Dávila, P. M., & Franco-Herrera, A. (2013). Variabilidad intra-anual del régimen climático en sectores de surgencia en el sudeste del Mar Caribe, usando ERA Interim. Revista de Biologia Marina y Oceanografia, 48(3), 471–485. https://doi.org/10.4067/S0718-19572013000300006spa
dc.relation.referencesSeneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., … Zhang, X. (2012). Changes in climate extremes and their impacts on the natural physical environment. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, … P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation (pp. 109–230). Cambridge, UK, and New York, NY, USA: Cambridge University Press.spa
dc.relation.referencesShumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications With R Examples. In G. Casella, S. Fienberg, & I. Olkin (Eds.), Textbook (3rd ed., Vol. 97). https://doi.org/10.1007/978-1-4419-7865-3spa
dc.relation.referencesSolomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., … Miller, H. L. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.spa
dc.relation.referencesSoukissian, T. H., & Tsalis, C. (2015). The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction. Natural Hazards, 78(3), 1777–1809. https://doi.org/10.1007/s11069-015-1800-0spa
dc.relation.referencesStewart, R. H. (2008). Introduction to physical oceanography. Retrieved from http://oceanworld.tamu.edu/resources/ocng$%5C_$textbook/PDF$%5C_$files/book$%5C_$PDF$%5C_$files.htmlspa
dc.relation.referencesTaylor, M. A., Whyte, F. S., Stephenson, T. S., & Campbell, J. D. (2013). Why dry? Investigating the future evolution of the Caribbean Low Level Jet to explain projected Caribbean drying. International Journal of Climatology, 33(3), 784–792. https://doi.org/10.1002/joc.3461spa
dc.relation.referencesTeena, N. V, Sanil Kumar, V., Sudheesh, K., & Sajeev, R. (2012). Statistical analysis on extreme wave height. Natural Hazards, 64(1), 223–236. https://doi.org/10.1007/s11069-012-0229-yspa
dc.relation.referencesThevasiyani, T., & Perera, K. (2014). Statistical analysis of extreme ocean waves in Galle, Sri Lanka. Weather and Climate Extremes, 5–6, 40–47. https://doi.org/10.1016/j.wace.2014.07.003spa
dc.relation.referencesThomson, R. E., & Emery, W. J. (2014). Data analysis methods in physical oceanography (3rd ed.). Elsevier Science.spa
dc.relation.referencesTorres, R. R., & Tsimplis, M. N. (2014). Sea level extremes in the Caribbean Sea. Journal of Geophysical Research: Oceans, 119(8), 4714–4731.spa
dc.relation.referencesTorres, R. R., & Tsimplis, M. N. (2013). Sea-level trends and interannual variability in the Caribbean Sea. Journal of Geophysical Research: Oceans, 118(6), 2934–2947. https://doi.org/10.1002/jgrc.20229spa
dc.relation.referencesTrenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78(12), 2771–2777.spa
dc.relation.referencesTrenberth, K. E. (1984). Signal versus noise in the Southern Oscillation. Monthly Weather Review, 112(2), 326–332.spa
dc.relation.referencesTrenberth, K. E., & Hoar, T. J. (1996). The 1990-1995 El Niño-Southern Oscillation event: Longest on record. Geophysical Research Letters, 23(1), 57–60.spa
dc.relation.referencesTrenberth, K. E., & Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9(6), 303–319.spa
dc.relation.referencesVides, M. (2008). Adaptación costera al ascenso del nivel del mar. NCAP: Colombia Project. Invemar, Ministerio de Ambiente, Vivienda y Desarrollo Territorial, NCAP-The Netherlands Climate Assistance Programme. ETC Group, SEI-Stockholm Environment Institute and Ecoversa.spa
dc.relation.referencesWang, C. (2007). Variability of the Caribbean Low-Level Jet and its relations to climate. Climate Dynamics, 29(4), 411–422. https://doi.org/10.1007/s00382-007-0243-zspa
dc.relation.referencesWei, W. W. S. (2005). Time Series Analysis : Univariate and Multivariate Methods (2n (2nd ed.). Addison Wesley.spa
dc.relation.referencesWeisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R. J., Umgiesser, G., & Willems, P. (2014). Changing extreme sea levels along European coasts. Coastal Engineering, 87, 4–14. https://doi.org/10.1016/j.coastaleng.2013.10.017spa
dc.relation.referencesWhyte, F. S., Taylor, M. A., Stephenson, T. S., & Campbell, J. D. (2008). Features of the Caribbean low level jet. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(1), 119–128.spa
dc.relation.referencesWilks, D. S. (2011). Statistical methods in the atmospheric sciences (3rd ed.). Academic press.spa
dc.relation.referencesWoodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Eric Freeman, J., Berry, D. I., … Wilkinson, C. (2011). ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. International Journal of Climatology, 31(7), 951–967. https://doi.org/10.1002/joc.2103spa
dc.relation.referencesWu, R., & Kirtman, B. P. (2011). Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST. Climate Dynamics, 37(7–8), 1533–1550. https://doi.org/10.1007/s00382-010-0927-7spa
dc.relation.referencesWyrtki, K. (1975). El Nino-the dynamic response of the equatorial Pacific oceanto atmospheric forcing. Journal of Physical Oceanography, 5(4), 572–584.spa
dc.relation.referencesYoung, I. R., Zieger, S., & Babanin, A. V. (2011). Global Trends in Wind Speed and Wave Height. Science, 332(6028), 451–455. https://doi.org/10.1126/science.1197219spa
dc.relation.referencesYu, L., Jin, X., & Weller, R. A. (2008). Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Technical Report. OA-2008-01, 64pp. In OAFlux Project Technical Report. OA-2008-01. Retrieved from http://oaflux.whoi.edu/publications.htmlspa
dc.relation.referencesZhang, X., Wang, J., Zwiers, F. W., & Groisman, P. Y. (2010). The Influence of Large-Scale Climate Variability on Winter Maximum Daily Precipitation over North America. Journal of Climate, 23(11), 2902–2915. https://doi.org/10.1175/2010JCLI3249.1spa
dc.relation.referencesZhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900-93. Journal of Climate, 10(5), 1004–1020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc986 - Colombia y Ecuadorspa
dc.subject.proposalGEVspa
dc.subject.proposalGEVeng
dc.subject.proposalextremos climáticosspa
dc.subject.proposalclimatic extremeseng
dc.subject.proposalSea surfece leveleng
dc.subject.proposaltemperatura superficial del marspa
dc.subject.proposalaltura superficial del marspa
dc.subject.proposalSea Surface Heighteng
dc.subject.proposalwind speedeng
dc.subject.proposalvelocidad del vientospa
dc.subject.proposalPDOeng
dc.subject.proposalODPspa
dc.subject.proposalENSOeng
dc.subject.proposalENOSspa
dc.subject.proposalOANspa
dc.subject.proposalNAOeng
dc.titleModelos de pronóstico para eventos extremos en el Mar Caribe Colombiano identificados en el nivel del mar, temperatura superficial del mar y velocidad del viento, y su relación con fenómenos de interacción océano atmósfera de largo periodospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80830945.2020.pdf
Tamaño:
17.73 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: