Pronóstico de la demanda de energía en Colombia a corto plazo basado en un modelo híbrido adaptativo.

dc.contributor.advisorVelásquez Henao, Juan David
dc.contributor.authorMontoya Cardona, José Fernando
dc.coverage.countryColombia
dc.date.accessioned2021-10-16T16:07:01Z
dc.date.available2021-10-16T16:07:01Z
dc.date.issued2021-10
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa precisión del pronóstico de la demanda horaria de energía eléctrica es fundamental para realizar una planificación adecuada de los recursos de generación, ya que las desviaciones altas en el pronóstico generan sobrecostos en la operación del sistema. En este trabajo se propone una metodología novedosa de pronóstico basada en el agrupamiento de series de tiempo y los modelos ARIMA; específicamente, el modelo realiza el agrupamiento por tipos de día; seguidamente, agrega las series pertenecientes a un mismo grupo; luego, descompone las series agregadas usando descomposición aditiva; después, se pronostican las series con modelos ARIMA donde se utilizan como variables exógenas las componentes espectrales de Fourier para considerar la estacionalidad y finalmente, se combinan los pronósticos. El modelo propuesto fue utilizado para pronosticar la demanda horaria desde el 13 de enero de 2020 hasta el 15 de marzo de 2020. Los pronósticos del modelo propuesto fueron comparados con los pronósticos del modelo del Centro Nacional de Despacho (Colombia), encontrándose mejoras de hasta un 50% en la precisión con el modelo propuesto. (Texto tomado de la fuente)spa
dc.description.abstractThe forecasting accuracy of the hourly electricity demand is essential for planning the resources of generation, since high deviations in the forecast generate cost overruns in the system’s operation. In this research, a novel forecasting methodology based in clustering time series and ARIMA models is proposed; specifically, the model performs the clustering by types of day, then adds the time series belonging to the same cluster; it later decomposes the aggregate series using additive decomposition, then time series are forecasted with ARIMA models where the Fourier spectral components are used as exogenous variables to consider seasonality and finally, the results of the forecast are combined. The proposed model was used to forecast hourly demand from January 13, 2020 to March 15, 2020. The results of the proposed model were compared with the model of the National Dispatch Center (Colombia), getting improvements of up to 50% of accuracy with the proposed model.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.researchareaAnalítica de Mercados de Energíaspa
dc.format.extentxiv, 39 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80568
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.referencesP. Ledesma, «Regulacion de frecuencia y potencia», p. 33.spa
dc.relation.referencesT.-Y. Kim y S.-B. Cho, «Predicting residential energy consumption using CNN-LSTM neural networks», Energy, vol. 182, pp. 72-81, 2019, doi: 10.1016/j.energy.2019.05.230.spa
dc.relation.referencesJ. Davidvelásquez, C. J. Franco, y H. A. García, «A non-linear model for forecasting the monthly demand for electricity in Colombia», Estud. Gerenciales, vol. 25, n.o 112, pp. 37-54, 2009, doi: 10.1016/S0123-5923(09)70079-8.spa
dc.relation.referencesA. S. Ahmad et al., «A review on applications of ANN and SVM for building electrical energy consumption forecasting», Renew. Sustain. Energy Rev., vol. 33, pp. 102-109, 2014, doi: 10.1016/j.rser.2014.01.069.spa
dc.relation.referencesR. Y. M. Li, S. Fong, y K. W. S. Chong, «Forecasting the REITs and stock indices: Group method of data handling neural network approach», Pac. Rim Prop. Res. J., vol. 23, n.o 2, pp. 123-160, 2017, doi: 10.1080/14445921.2016.1225149.spa
dc.relation.references«Acuerdo 1303 Por el cual se actualizan los procedimientos para la gestión integral de la demanda C.N.O». https://www.cno.org.co/content/acuerdo-1303-por-el-cual-se-actualizan-los-procedimientos-para-la-gestion-integral-de-la (accedido jun. 29, 2020)spa
dc.relation.referencesE. G. Tajeuna, M. Bouguessa, y S. Wang, «A network-based approach to enhance electricity load forecasting», 2019, vol. 2018-November, pp. 266-275. doi: 10.1109/ICDMW.2018.00046.spa
dc.relation.referencesL. N. Ferreira y L. Zhao, «A time series clustering technique based on community detection in networks», 2015, vol. 53, n.o 1, pp. 183-190. doi: 10.1016/j.procs.2015.07.293.spa
dc.relation.referencesM. E. J. Newman, «Fast algorithm for detecting community structure in networks», Phys. Rev. E - Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 69, n.o 6, p. 5, 2004, doi: 10.1103/PhysRevE.69.066133.spa
dc.relation.referencesG. Le Ray y P. Pinson, «Online adaptive clustering algorithm for load profiling», Sustain. Energy Grids Netw., vol. 17, 2019, doi: 10.1016/j.segan.2018.100181.spa
dc.relation.referencesL. F. S. Vilela, R. C. Leme, C. A. M. Pinheiro, y O. A. S. Carpinteiro, «Forecasting financial series using clustering methods and support vector regression», Artif. Intell. Rev., vol. 52, n.o 2, pp. 743-773, 2019, doi: 10.1007/s10462-018-9663-x.spa
dc.relation.referencesK. Gajowniczek y T. Zabkowski, «Simulation Study on Clustering Approaches for Short-Term Electricity Forecasting», Complexity, vol. 2018, 2018, doi: 10.1155/2018/3683969.spa
dc.relation.referencesP. Laurinec, M. Lóderer, M. Lucká, y V. Rozinajová, «Density-based unsupervised ensemble learning methods for time series forecasting of aggregated or clustered electricity consumption», J. Intell. Inf. Syst., vol. 53, n.o 2, pp. 219-239, 2019, doi: 10.1007/s10844-019-00550-3.spa
dc.relation.referencesS. Sun, J. Fu, y A. Li, «A compound wind power forecasting strategy based on clustering, two-stage decomposition, parameter optimization, and optimal combination of multiple machine learning approaches», Energies, vol. 12, n.o 18, 2019, doi: 10.3390/en12183586.spa
dc.relation.referencesY. Wang, Y. Shen, S. Mao, X. Chen, y H. Zou, «LASSO and LSTM integrated temporal model for short term solar intensity forecasting», IEEE Internet Things J., vol. 6, n.o 2, pp. 2933-2944, 2019, doi: 10.1109/JIOT.2018.2877510.spa
dc.relation.referencesP. Laurinec y M. Lucká, «Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting», Data Min. Knowl. Discov., vol. 33, n.o 2, pp. 413-445, 2019, doi: 10.1007/s10618-018-0598-2.spa
dc.relation.referencesR. Jain, N. Jain, Y. Gupta, T. Chugh, T. Chugh, y D. J. Hemanth, «A Modified Fuzzy Logic Relation Based Approach for Electricity Consumption Forecasting in India», Int. J. Fuzzy Syst., vol. 22, n.o 2, pp. 461-475, 2020, doi: 10.1007/s40815-019-00704-z.spa
dc.relation.referencesS. Singh y A. Yassine, «Big data mining of energy time series for behavioral analytics and energy consumption forecasting», Energies, vol. 11, n.o 2, 2018, doi: 10.3390/en11020452.spa
dc.relation.referencesE. Y. Shchetinin, «Cluster-based energy consumption forecasting in smart grids», Commun. Comput. Inf. Sci., vol. 919, pp. 445-456, 2018, doi: 10.1007/978-3-319-99447-5_38.spa
dc.relation.referencesB. Auder, J. Cugliari, Y. Goude, y J.-M. Poggi, «Scalable clustering of individual electrical curves for profiling and bottom-up forecasting», Energies, vol. 11, n.o 7, 2018, doi: 10.3390/en11071893.spa
dc.relation.referencesL. Li, K. Ota, y M. Dong, «Everything is image: CNN-based short-term electrical load forecasting for smart grid», 2017, vol. 2017-November, pp. 344-351. doi: 10.1109/ISPAN-FCST-ISCC.2017.78.spa
dc.relation.referencesM. Ghofrani, R. Azimi, F. M. Najafabadi, y N. Myers, «A new day-ahead hourly electricity price forecasting framework», presentado en 2017 North American Power Symposium, NAPS 2017, 2017. doi: 10.1109/NAPS.2017.8107269.spa
dc.relation.referencesJ. Yang et al., «k-Shape clustering algorithm for building energy usage patterns analysis and forecasting model accuracy improvement», Energy Build., vol. 146, pp. 27-37, 2017, doi: 10.1016/j.enbuild.2017.03.071.spa
dc.relation.referencesI. P. Panapakidis, «Clustering based day-ahead and hour-ahead bus load forecasting models», Int. J. Electr. Power Energy Syst., vol. 80, pp. 171-178, 2016, doi: 10.1016/j.ijepes.2016.01.035.spa
dc.relation.referencesX. Liang, T. Hong, y G. Q. Shen, «Occupancy data analytics and prediction: A case study», Build. Environ., vol. 102, pp. 179-192, 2016, doi: 10.1016/j.buildenv.2016.03.027.spa
dc.relation.referencesY. H. Chen, W.-C. Hong, W. Shen, y N. N. Huang, «Electric load forecasting based on a least squares support vector machine with fuzzy time series and global harmony search algorithm», Energies, vol. 9, n.o 2, pp. 1-13, 2016, doi: 10.3390/en9020070.spa
dc.relation.referencesM. Chaouch, «Clustering-based improvement of nonparametric functional time series forecasting: Application to intra-day household-level load curves», IEEE Trans. Smart Grid, vol. 5, n.o 1, pp. 411-419, 2014, doi: 10.1109/TSG.2013.2277171.spa
dc.relation.referencesH. Mori y M. Takahashi, «Application of preconditioned Generalized radial Basis Function Network to prediction of photovoltaic power generation», presentado en IEEE PES Innovative Smart Grid Technologies Conference Europe, 2012. doi: 10.1109/ISGTEurope.2012.6465877.spa
dc.relation.referencesB. Kitchenham, «Procedures for Performing Systematic Reviews», p. 33.spa
dc.relation.referencesM. R. Cogollo y J. D. Velásquez, «Methodological advances in artificial neural networks for time series forecasting», IEEE Lat. Am. Trans., vol. 12, n.o 4, pp. 764-771, 2014, doi: 10.1109/TLA.2014.6868881.spa
dc.relation.referencesW. Zhang, G. Mu, C. Song, G. Yan, y V. Heuveline, «Extraction of Spatialoral Features of Bus Loads in Electric Grids Through Clustering in a Dynamic Model Space», IEEE Access, vol. 8, pp. 5852-5861, 2020, doi: 10.1109/ACCESS.2019.2963071.spa
dc.relation.referencesW. Sun y C. Zhang, «A hybrid BA-ELM model based on factor analysis and similar-day approach for short-term load forecasting», Energies, vol. 11, n.o 5, 2018, doi: 10.3390/en11051282.spa
dc.relation.referencesM. Ghofrani, D. Carson, y M. Ghayekhloo, «Hybrid clustering-time series-Bayesian neural network short term load forecasting method», presentado en NAPS 2016 - 48th North American Power Symposium, Proceedings, 2016. doi: 10.1109/NAPS.2016.7747865.spa
dc.relation.referencesP. Laurinec, M. Loderer, P. Vrablecova, M. Lucka, V. Rozinajova, y A. B. Ezzeddine, «Adaptive Time Series Forecasting of Energy Consumption Using Optimized Cluster Analysis», 2016, vol. 0, pp. 398-405. doi: 10.1109/ICDMW.2016.0063.spa
dc.relation.referencesA. Laouafi, M. Mordjaoui, F. Laouafi, y T. E. Boukelia, «Daily peak electricity demand forecasting based on an adaptive hybrid two-stage methodology», Int. J. Electr. Power Energy Syst., vol. 77, pp. 136-144, 2016, doi: 10.1016/j.ijepes.2015.11.046.spa
dc.relation.referencesR. L. Talavera-Llames, R. Pérez-Chacón, M. Martínez-Ballesteros, A. Troncoso, y F. Martínez-Álvarez, «A nearest neighbours-based algorithm for big time series data forecasting», Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol. 9648, pp. 174-185, 2016, doi: 10.1007/978-3-319-32034-2_15.spa
dc.relation.referencesW. Wang, W. Pedrycz, y X. Liu, «Time series long-term forecasting model based on information granules and fuzzy clustering», Eng. Appl. Artif. Intell., vol. 41, pp. 17-24, 2015, doi: 10.1016/j.engappai.2015.01.006.spa
dc.relation.referencesC. J. Bennett, R. A. Stewart, y J. W. Lu, «Forecasting low voltage distribution network demand profiles using a pattern recognition based expert system», Energy, vol. 67, pp. 200-212, 2014, doi: 10.1016/j.energy.2014.01.032.spa
dc.relation.referencesS. Humeau, T. K. Wijaya, M. Vasirani, y K. Aberer, «Electricity load forecasting for residential customers: Exploiting aggregation and correlation between households», presentado en 2013 Sustainable Internet and ICT for Sustainability, SustainIT 2013, 2013. doi: 10.1109/SustainIT.2013.6685208.spa
dc.relation.referencesZ. Ding, P. Yang, X. Yang, y Z. Zhang, «Wind power prediction method based on sequential time clustering support vector machine», Dianli Xitong ZidonghuaAutomation Electr. Power Syst., vol. 36, n.o 14, pp. 131-135+149, 2012, doi: 10.3969/j.issn.1000-1026.2012.14.025.spa
dc.relation.references«Complex Fourier Series». 2020. [En línea]. Disponible en: https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Book%3A_Electrical_Engineering_(Johnson)/04%3A_Frequency_Domain/4.02%3A_Complex_Fourier_Seriesspa
dc.relation.referencesM. Charrad, N. Ghazzali, V. Boiteau, y A. Niknafs, «NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set», J. Stat. Softw., vol. 61, n.o 1, Art. n.o 1, nov. 2014, doi: 10.18637/jss.v061.i06.spa
dc.relation.references«pmdarima», API Reference. https://alkaline-ml.com/pmdarima/modules/classes.htmlspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembDemanda de energía eléctrica
dc.subject.lembEnergy consumption
dc.subject.lembConsumo de energía
dc.subject.proposalFouriereng
dc.subject.proposalDemanda de energíaspa
dc.subject.proposalPrecisión del pronósticospa
dc.subject.proposalAgrupamientospa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalK-meansspa
dc.subject.proposalARIMAspa
dc.subject.proposalFourierspa
dc.subject.proposalEdemandeng
dc.subject.proposalForecasting Accuracyeng
dc.subject.proposalClusteringeng
dc.subject.proposalTime serieseng
dc.subject.proposalEnergy demandeng
dc.titlePronóstico de la demanda de energía en Colombia a corto plazo basado en un modelo híbrido adaptativo.spa
dc.title.translatedThe forecasting energy demand in Colombia in the short term based on an adaptive hybrid model.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144176600.2021.pdf
Tamaño:
1.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: