En 7 día(s), 2 hora(s) y 23 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Temperature and humidity as drivers of the variation of the limit and extension of montane forests and paramo along 40ky in the northwestern Andes of Colombia

dc.contributor.advisorDuque Montoya, Alvaro Javier
dc.contributor.advisorGonzález Caro, Sebastián
dc.contributor.authorSilva Duque, Andrés Henán
dc.contributor.orcidSilva Duque, Andrés [0009000183768781]
dc.contributor.orcidDuque Montoya, Alvaro Javier [0000000154642058]
dc.contributor.orcidGonzález-Caro, Sebastián [0000000222877431]
dc.contributor.researcher
dc.contributor.researchgroupConservación, Uso y Biodiversidad
dc.date.accessioned2025-12-01T19:01:02Z
dc.date.available2025-12-01T19:01:02Z
dc.date.issued2025-11-27
dc.description.abstractIn this study, conducted in the Belmira paramo in the northwestern Andes of Colombia, we used pollen records to track vegetation changes over the past 40,000 years before present (ky BP). Employing ordination (NMDS), species indicator, and wavelet analysis, we found a pattern of ecosystem change that shifted from a paramo to a tree-dominated community, which became a forest/paramo transitional ecosystem again. At the whole pollen community level, our results revealed spatially synchronous processes (i.e., temporal co-evolution) at regional scales between changes in pollen composition and mean annual temperature (MAT) and Fe concentrations (proxy of humidity). Independent univariate wavelet analyses showed similar periodicities between 500 and 1000 years for MAT and the orthogonal compositional NMDS axes, while Fe exhibited significant variance at longer periodicities, ranging from 2000 to 4000 years. The strong and significant covariation between NMDS II and Fe further confirmed the role of humidity in shaping tree species turnover on cycles of approximately 1,000-2,000 years. However, our study points to the existence of a lag in vegetation tracking to climate change of centuries, which could constitute a major challenge for the implementation of effective nature-based strategies of conservation to ameliorate the ongoing global change.eng
dc.description.abstractEn este estudio, realizado en el páramo de Belmira en los Andes noroccidentales de Colombia, se utilizaron registros de polen para registrar los cambios en la vegetación durante los últimos 40.000 años antes del presente (ky AP). Mediante técnicas de ordenación (NMDS), análisis de especies indicadoras y análisis de wavelets, se identificaron transiciones entre los bosques montanos y los páramos en diferentes periodos de tiempo. En la comunidad vegetal los resultados revelaron procesos espacialmente sincrónicos a escala regional entre los cambios en la composición del polen, la temperatura media anual (MAT) y las concentraciones de Fe (proxy de humedad). Análisis independientes de wavelets univariados mostraron periodicidades similares, entre 500 y 1000 años, tanto para MAT como para los ejes ortogonales de la composición derivados del NMDS, mientras que el Fe exhibió varianza significativa en periodicidades más largas, entre 2000 y 4000 años. La fuerte y significativa covariación entre el eje NMDS II y el Fe confirmó además el papel de la humedad en el recambio de especies arbóreas en ciclos de aproximadamente 1.000–2.000 años. Este estudio señala la existencia de un desfase del orden de 100 años en la respuesta de la vegetación frente al cambio climático, lo cual podría constituir un desafío importante para la implementación de estrategias efectivas de conservación dirigidas a mitigar el cambio global en curso. (Tomado de la fuente)spa
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.description.researchareaPaleoecología
dc.format.extent1 recurso en línea (51 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89167
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.relation.referencesAlley, R. B. (2000). Ice-core evidence of abrupt climate changes. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1331–1334. https://doi.org/10.1073/pnas.97.4.1331
dc.relation.referencesArias, L. A. (1995). El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Facultad de Ingeniería Universidad de Antioquia, 10, 9–24.
dc.relation.referencesBader, M. Y., Llambí, L. D., Case, B. S., Buckley, H. L., Toivonen, J. M., Camarero, J. J., Cairns, D. M., Brown, C. D., Wiegand, T., & Resler, L. M. (2021). A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography, 44(2), 265–292. https://doi.org/10.1111/ecog.05285
dc.relation.referencesBenincà, E., Ballantine, B., Ellner, S. P., & Huisman, J. (2015). Species fluctuations sustained by a cyclic succession at the edge of chaos. Proceedings of the National Academy of Sciences of the United States of America, 112(20), 6389–6394. https://doi.org/10.1073/pnas.1421968112
dc.relation.referencesBlaauw, M. (2010). Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology, 5(5), 512–518. https://doi.org/10.1016/j.quageo.2010.01.002
dc.relation.referencesBlaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618
dc.relation.referencesBorcard, D., Gillet, F., & Legendre, P. (2011). Numerical Ecology with R. In Numerical Ecology with R. https://doi.org/10.1007/978-1-4419-7976-6
dc.relation.referencesBush, M. B. (2002). Distributional change and conservation on the Andean flank: A palaeoecological perspective. Global Ecology and Biogeography, 11(6), 463–473. https://doi.org/10.1046/j.1466-822X.2002.00305.x
dc.relation.referencesBuytaert, W., & Bievre, B. De. (2012). Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resources Research, 48(8). https://doi.org/10.1029/2011WR011755
dc.relation.referencesBuytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1–2), 53–72. https://doi.org/10.1016/j.earscirev.2006.06.002
dc.relation.referencesCadena, C. E. (2017). Actualización del componente cartográfico del atlas de Páramos de Colombia, a escala 1: 100.000.
dc.relation.referencesCastañeda, R. I. M. (2013). Paleoecología de Alta Resolución del Holoceno (11000 Años), en el Páramo de Belmira, Antioquia (Colombia). Universidad Nacional de Colombia.
dc.relation.referencesCazelles, B., Chavez, M., Berteaux, D., Ménard, F., Vik, J. O., Jenouvrier, S., & Stenseth, N. C. (2008). Wavelet analysis of ecological time series. In Oecologia (Vol. 156, Issue 2, pp. 287–304). https://doi.org/10.1007/s00442-008-0993-2
dc.relation.referencesChristen, A. J., & Sergio, P. E. (2009). A new robust statistical model for radiocarbon data. Radiocarbon, 51(3), 1047–1059. https://doi.org/10.1017/s003382220003410x
dc.relation.referencesCleef, A. (1981). The vegetation of the páramos of the Colombian Cordillera Oriental. In Mededelingen van het Botanisch Museum en Herbarium van de Rijksuniversiteit te Utrecht (Vol. 481, Issue 1).
dc.relation.referencesCorrea-Metrio, A., Meave, J. A., Lozano-García, S., & Bush, M. B. (2014). Environmental determinism and neutrality in vegetation at millennial time scales. Journal of Vegetation Science, 25(3), 627–635. https://doi.org/10.1111/jvs.12129
dc.relation.referencesDe Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x
dc.relation.referencesDe Cáceres, M., Legendre, P., Wiser, S. K., & Brotons, L. (2012). Using species combinations in indicator value analyses. Methods in Ecology and Evolution, 3(6), 973–982. https://doi.org/10.1111/j.2041-210X.2012.00246.x
dc.relation.referencesDebret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J. F., Massei, N., Sebag, D., Petit, J., Copard, Y., & Trentesaux, A. (2007). Climate of the Past The origin of the 1500-year climate cycles in Holocene North-Atlantic records (Vol. 3). www.clim-past.net/3/569/2007/
dc.relation.referencesDuque, A., Peña, M. A., Cuesta, F., González-Caro, S., Kennedy, P., Phillips, O. L., Calderón-Loor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-Ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-Rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-Villa, J. A., … Feeley, K. J. (2021). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22459-8
dc.relation.referencesDuque, A., Stevenson, P. R., & Feeley, K. J. (2015). Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10744–10749. https://doi.org/10.1073/pnas.1506570112
dc.relation.referencesFadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., Osinaga-acosta, O., Malizia, L., Silman, M., Farfán-ríos, W., Malhi, Y., Young, K. R., & C, F. C. (2018). Widespread but heterogeneous responses of Andean forests to climate change. https://doi.org/10.1038/s41586-018-0715-9
dc.relation.referencesFaegri, K., Kaland, P. E., & Krzywinski, K. (1989). Textbook of pollen analysis. (Issue Ed. 4). John Wiley & Sons Ltd.
dc.relation.referencesFastovich, D., Meyers, S. R., Saupe, E. E., Williams, J. W., Dornelas, M., Dowding, E. M., Finnegan, S., Huang, H.-H. M., Jonkers, L., Kiessling, W., Kocsis, Á. T., Li, Q., Liow, L. H., Na, L., Penny, A. M., Pippenger, K., Renaudie, J., Rillo, M. C., Smith, J., … Hull, P. M. (2025). Coupled, decoupled, and abrupt responses of vegetation to climate across timescales. Science, 389(6755), 64–68. https://doi.org/10.1126/science.adr6700
dc.relation.referencesFlantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808–1825. https://doi.org/10.1111/jbi.13607
dc.relation.referencesGonzález-Caro, S., Duque, Á., Feeley, K. J., Cabrera, E., Phillips, J., Ramirez, S., & Yepes, A. (2020). The legacy of biogeographic history on the composition and structure of Andean forests. Ecology, 101(10). https://doi.org/10.1002/ecy.3131
dc.relation.referencesGrimm, E. C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences, 13(1), 13–35.
dc.relation.referencesGrinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Nonlinear Processes in Geophysics Application of the cross wavelet transform and wavelet coherence to geophysical time series (Vol. 11). http://www.pol.ac.uk/home/research/waveletcoherence/
dc.relation.referencesGroot, M. H. M., Bogotá, R. G., Lourens, L. J., Hooghiemstra, H., Vriend, M., Berrio, J. C., Tuenter, E., Van Der Plicht, J., Van Geel, B., Ziegler, M., Weber, S. L., Betancourt, A., Contreras, L., Gaviria, S., Giraldo, C., González, N., Jansen, J. H. F., Konert, M., Ortega, D., … Westerhoff, W. (2011). Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Climate of the Past, 7(1), 299–316. https://doi.org/10.5194/cp-7-299-2011
dc.relation.referencesHaug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., & Röhl, U. (2001). Southward Migration of the Intertropical Convergence Zone through the. Science, 293(5533), 1304–1308.
dc.relation.referencesHofstede, R. G. M., & Llambí, L. D. (2020). Plant diversity in Páramo-Neotropical high mountain humid grasslands. In Encyclopedia of the World’s Biomes (Vols. 1–5, pp. 362–372). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11858-5
dc.relation.referencesHooghiemstra, H., & Flantua, S. G. A. (2019). Colombia in the Quaternary: An Overview of Environmental and Climatic Change. In J. Gómez & Pinilla-Pachón A.O (Eds.), The Geology of Colombia (1st ed., Vol. 4, pp. 43–95). Publicaciones Geológicas Especiales. https://doi.org/https://doi.org/10.32685/pub.esp.38.2019.02
dc.relation.referencesHooghiemstra, H., Wijninga, V. M., Cleef, A. M., Hooghiemstra, H., Wijninga, V. M., & Cleef, A. M. (2006). THE PALEOBOTANICAL RECORD OF COLOMBIA : IMPLICATIONS FOR BIOGEOGRAPHY AND BIODIVERSITY THE PALEOBOTANICAL RECORD OF COLOMBIA : IMPLICATIONS FOR BIOGEOGRAPHY. 93(2), 297–325.
dc.relation.referencesHubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. In Functional Ecology (Vol. 19, Issue 1, pp. 166–172). https://doi.org/10.1111/j.0269-8463.2005.00965.x
dc.relation.referencesImmerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., … Baillie, J. E. M. (2020). Importance and vulnerability of the world’s water towers. Nature, 577(7790), 364–369. https://doi.org/10.1038/s41586-019-1822-y
dc.relation.referencesInstituto Geográfico Agustín Codazzi. (2007). Estudio general de suelos y zonificación de tierras: departamento de Antioquia. Instituto Geográfico Agustín Codazzi.
dc.relation.referencesKnight, C. A., Blois, J. L., Blonder, B., Macias-Fauria, M., Ordonez, A., & Svenning, J. C. (2019). Community assembly and climate mismatch in late quaternary eastern north american pollen assemblages. American Naturalist. https://doi.org/10.1086/706340
dc.relation.referencesKörner, C. (2012). Alpine Treelines. Springer Basel. https://doi.org/10.1007/978-3-0348-0396-0
dc.relation.referencesKuhry, P. (1988). A paleobotanical and palynological study of Holocene peat from the El Bosque mire, located in a volcanic area of the Cordillera Central of Colombia. Review of Palaeobotany and Palynology, 55(1–3), 19–72.
dc.relation.referencesLegendre, P., & Legendre, L. (2012). Numerical ecology. Developments in environmental modeling. In Elsevier (Vol. 24).
dc.relation.referencesMadriñán, S., Cortés, A. J., & Richardson, J. E. (2013). Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics, 4(OCT). https://doi.org/10.3389/fgene.2013.00192
dc.relation.referencesMaraun, D., & Kurths, J. (2004). Cross wavelet analysis: Significance testing and pitfalls. Nonlinear Processes in Geophysics, 11(4), 505–514. https://doi.org/10.5194/npg-11-505-2004
dc.relation.referencesMarchant, R., Boom, A., Behling, H., Hooghiemstra, H., Melief, B., van Geel, B., van der Hammen, T., & Wille, M. (2004). Colombian vegetation at the Last Glacial Maximum: A comparison of model- and pollen-based biome reconstructions. In Journal of Quaternary Science (Vol. 19, Issue 7, pp. 721–732). https://doi.org/10.1002/jqs.878
dc.relation.referencesMartínez, C., Jaramillo, C., Correa-Metrío, A., Crepet, W., Moreno, J. E., Aliaga, A., Moreno, F., Ibañez-Mejia, M., & Bush, M. B. (2020). Neogene precipitation, vegetation, and elevation history of the Central Andean Plateau. https://www.science.org
dc.relation.referencesMatthews-Bird, F., Brooks, S. J., Holden, P. B., Montoya, E., & Gosling, W. D. (2016). Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model. Climate of the Past, 12(5), 1263–1280. https://doi.org/10.5194/cp-12-1263-2016
dc.relation.referencesMuñoz, P., Gorin, G., Parra, N., Velásquez, C., Lemus, D., Monsalve, M. C., & Jojoa, M. (2017). Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ. Quaternary Science Reviews, 155, 159–178. https://doi.org/10.1016/j.quascirev.2016.11.021
dc.relation.referencesOksanen, J., Simpson, G., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P., hara, R., Solymos, P., STEVENS, H., Szöcs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Cáceres, M., Durand, S., & Weedon, J. (2022). vegan community ecology package version 2.6-2 April 2022.
dc.relation.referencesPatiño, L., Velez, M. I., Weber, M., Velásquez-r, C. A., David, S., Rueda, M., Castañeda, I., & Arboleda, D. (2020). Late Pleistocene–Holocene environmental and climatic history of a freshwater paramo ecosystem in the northern Andes. Journal of Quaternary Science, 35(8), 1046–1056. https://doi.org/10.1002/jqs.3249
dc.relation.referencesPeña, M. A., Feeley, K. J., & Duque, A. (2018). Effects of endogenous and exogenous processes on aboveground biomass stocks and dynamics in Andean forests. Plant Ecology, 219(12), 1481–1492. https://doi.org/10.1007/s11258-018-0895-2
dc.relation.referencesPeyre, G. (2022). What Does the Future Hold for Páramo Plants? A Modelling Approach. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.896387
dc.relation.referencesPeyre, G., Lenoir, J., Karger, D. N., Gomez, M., Gonzalez, A., Broennimann, O., & Guisan, A. (2020). The fate of páramo plant assemblages in the sky islands of the northern Andes. Journal of Vegetation Science, 31(6), 967–980. https://doi.org/10.1111/jvs.12898
dc.relation.referencesPhillips, J., Duque, Á., Scott, C., Wayson, C., Galindo, G., Cabrera, E., Chave, J., Peña, M., Álvarez, E., Cárdenas, D., Duivenvoorden, J., Hildebrand, P., Stevenson, P., Ramírez, S., & Yepes, A. (2016). Forest Ecology and Management Live aboveground carbon stocks in natural forests of Colombia. Forest Ecology and Management, 374, 119–128. https://doi.org/10.1016/j.foreco.2016.05.009
dc.relation.referencesPouchon, C., Fernández, A., Nassar, J. M., Boyer, F., Aubert, S., Lavergne, S., & Mavárez, J. (2018). Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Systematic Biology, 67(6), 1041–1060. https://doi.org/10.1093/sysbio/syy022
dc.relation.referencesPouchon, C., Lavergne, S., Fernández, Á., Alberti, A., Aubert, S., & Mavárez, J. (2021). Phylogenetic signatures of ecological divergence and leapfrog adaptive radiation in Espeletia. American Journal of Botany, 108(1), 113–128. https://doi.org/10.1002/ajb2.1591
dc.relation.referencesRehm, E. M., & Feeley, K. J. (2015). The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography, 38(12), 1167–1175. https://doi.org/10.1111/ecog.01050
dc.relation.referencesRodríguez-Zorro, P. A., Ledru, M. P., Bard, E., Aquino-Alfonso, O., Camejo, A., Daniau, A. L., Favier, C., Garcia, M., Mineli, T. D., Rostek, F., Ricardi-Branco, F., Sawakuchi, A. O., Simon, Q., Tachikawa, K., & Thouveny, N. (2020). Shut down of the South American summer monsoon during the penultimate glacial. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62888-x
dc.relation.referencesRoubik, D. W., & Moreno P, J. E. (1991). Pollen and spores of Barro Colorado Island [Panama]. Pollen and Spores of Barro Colorado Island [Panama]., 36.
dc.relation.referencesSvenning, J. (2004). Limited filling of the potential range in European tree species. Ecology Letters, 565–573. https://doi.org/10.1111/j.1461-0248.2004.00614.x
dc.relation.referencesSvenning, J. C., & Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change. In American Journal of Botany (Vol. 100, Issue 7, pp. 1266–1286). https://doi.org/10.3732/ajb.1200469
dc.relation.referencesTorrence, C., & Webster, P. J. (1999). Interdecadal Changes in the ENSO-Monsoon System.
dc.relation.referencesTorres, V., Hooghiemstra, H., Lourens, L., & Tzedakis, P. C. (2013). Astronomical tuning of long pollen records reveals the dynamic history of montane biomes and lake levels in the tropical high Andes during the Quaternary. Quaternary Science Reviews, 63, 59–72. https://doi.org/10.1016/j.quascirev.2012.11.004
dc.relation.referencesTurner, T. E., Swindles, G. T., Charman, D. J., Langdon, P. G., Morris, P. J., Booth, R. K., Parry, L. E., & Nichols, J. E. (2016). Solar cycles or random processes? Evaluating solar variability in Holocene climate records. Scientific Reports, 6. https://doi.org/10.1038/srep23961
dc.relation.referencesVan Der Hammen, T., & Hooghiemstra, H. (1995). THE EL ABRA STADIAL, A YOUNGER DRYAS EQUIVALENT IN COLOMBIA. Quaternary Science Reviews, 14, 841–851.
dc.relation.referencesVan ’t Veer, R., Islebe, G. A., & Hooghiemstra, H. (2000). Climatic change during the Younger Dryas chron in northern South America: a test of the evidence. Quaternary Science Reviews.
dc.relation.referencesVelásquez, R. E. (2013). Paleoecología de alta resolución del final de la última glaciación y la transición al Holoceno en el páramo de Belmira (Antioquia). Universidad de Colombia-Sede Medellín.
dc.relation.referencesVelásquez Ruiz, C. A. (1999). Atlas palinológico de la flora vascular paramuna de Colombia: Angiospermae. Facultad de Ciencias.
dc.relation.referencesVelásquez-R., C. A., & Hooghiemstra, H. (2013). Pollen-based 17-kyr forest dynamics and climate change from the Western Cordillera of Colombia; no-analogue associations and temporarily lost biomes. Review of Palaeobotany and Palynology, 194, 38–49. https://doi.org/10.1016/j.revpalbo.2013.03.001
dc.relation.referencesVolkov, I., Banavar, J. R., Hubbell, S. P., & Maritan, A. (2003). Neutral theory and relative species abundance in ecology. Nature, 424(6952), 1035–1037. https://doi.org/10.1038/nature01883
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.armarcPáramo de Belmira
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.proposalPaleoecologíaspa
dc.subject.proposalWaveletseng
dc.subject.proposalLímite de la línea de bosquespa
dc.subject.proposalBelmiraspa
dc.subject.proposalPáramo
dc.subject.wikidataPaleoecología
dc.titleTemperature and humidity as drivers of the variation of the limit and extension of montane forests and paramo along 40ky in the northwestern Andes of Colombiaeng
dc.title.translatedTemperatura y humedad como mecanismos de la variación del limite y extensión de los bosques montanos y el páramo en los Andes noroccidentales de Colombia en los últimos 40 ky añosspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Bosques y Conservación Ambiental.pdf
Tamaño:
6.03 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: