Micro-maquinado multi-ejes CNC aplicado a implantes dentales en aleación de Titanio Ti-6Al-4V

dc.contributor.advisorCórdoba Nieto, Ernesto
dc.contributor.authorRemolina León, Mario José
dc.contributor.researchgroupGrupo de Trabajo en Nuevas tecnologías de Diseño y Manufactura Automatización Dima Unspa
dc.date.accessioned2022-03-24T17:45:15Z
dc.date.available2022-03-24T17:45:15Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEl micro-maquinado mecánico es una operación de micro-fabricación destacada en el área del corte de metales, especialmente cuando se aplica a materiales de ingeniería como las aleaciones de titanio. En la actualidad, el micro-mecanizado de aleaciones de titanio sigue siendo un gran desafío debido a las propiedades metalúrgicas del material. Esto se ve reflejado en los altos costos de producción en aplicaciones mecánicas, biomédicas, nucleares, químicas y navales. Se propone una metodología estadística basada en el método de superficies de respuesta (RSM) para obtener información sobre el comportamiento de los parámetros de corte en la generación de rugosidad superficial, altura de rebaba y variación de rasgos geométricos de micro-herramienta de corte en operaciones tales como el micro-taladrado convencional, micro-fresado plano y esférico. Lo anterior aplicado sobre aleación de titanio Ti-6Al-4V, adicionando una aproximación a la parte térmica y de micro-deformación en el proceso de corte, complementando finalmente, con un estudio de uso de la mecánica de materiales tradicional al proceso de micro-fabricación de pines por micro-torneado en aleación AISI 12L14. La aplicación de la metodología estadística presentó detalles sobre los parámetros de corte e interacciones entre estos, los cuales tienen marcada influencia en la rugosidad superficial, la altura de rebaba y en los rasgos geométricos de micro-herramienta, tales como: cutting edge radius, major cutting edge, distance apex to end of clearance roundness, minimum distance of edge to apex, minor cutting edge, face, major first flank respectivamente. Las superficies generadas muestran las tendencias de los parámetros de corte para cada atributo evaluado. Se lograron valores preliminares de micro-deformación y tamaño de cristalito por medio del método Williamson-Hall, agregando termografías del proceso de micro-fresado plano. Se obtuvo, con la aplicación del modelo de la mecánica de materiales, para el esfuerzo a flexión de una viga en cantiléver, estimaciones precisas de la ecuación de la curva de la viga elástica en un 60% sobre la longitud en la fabricación de un micro-pin generado por micro-torneado. (Texto tomado de la fuente)spa
dc.description.abstractMechanical micro-machining is a prominent micro-fabrication operation in the area of metal cutting, especially when is applied to engineering materials such as titanium alloys. At present, the micro-machining of titanium alloys remains a great challenge due to the metallurgical properties of this type of alloys. This is reflected in the high production costs in mechanical, biomedical, nuclear, chemical and naval applications. A statistical methodology based on the response surfaces method (RSM) is proposed to obtain information on the behavior of the cutting parameters in the generation of surface roughness, burr height and variation of geometrics features of micro-cutting tool in operations such as conventional micro-drilling, flat end-micro-milling and ball end-micro-milling, all above on titanium alloy Ti-6Al-4V, adding an approach to the thermal and micro-deformation part in the cutting process, finally complementing, with the application of traditional materials mechanics to the micro-manufacturing process of pins by micro-turning in AISI 12L14 alloy. The statistical methodology application revealed which cutting parameters and interactions between them significantly affect surface roughness, burr height and geometric features of the cutting micro-tool, such as: cutting edge radius, major cutting edge, distance apex to end of clearance roundness, minimum distance of edge to apex, minor cutting edge, face, major first flank respectively. The generated surfaces show the trends of the cutting parameters for each attribute evaluated. Preliminary values of micro-strain and crystallite size were achieved by the Williamson-Hall method, adding micro-milling process thermographs. With the material mechanics model application for the cantilever beam bending, precise estimates of the elastic beam curve equation were obtained in 60% on the length in the manufacture of a micro-pin generated by micro-turning.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaMeso/micro-maquinado multi-ejes CNCspa
dc.format.extentxvi, 92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81367
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.references[1] J. Corbett, “Nanotechnology: International Developments and Emerging Products,” CIRP Ann. Technol., pp. 523–545, 2000.spa
dc.relation.references[2] M. Hasan, J. Zhao, and Z. Jiang, A review of modern advancements in micro drilling techniques, vol. 29. 2017.spa
dc.relation.references[3] P. Piljek, “MICROMACHINING – REVIEW OF LITERATURE FROM 1980 TO 2010,” Interdiscip. Descr. Complex Syst., vol. 12, no. 223, pp. 75–84, 2014, doi: 10.7906/indecs.12.1.1.spa
dc.relation.references[4] S. Sharif, E. Abd, and H. Sasahar, “Machinability of Titanium Alloys in Drilling,” Titan. Alloy. - Towar. Achiev. Enhanc. Prop. Divers. Appl., vol. 3, no. c, 2012, doi: 10.5772/35948.spa
dc.relation.references[5] M. A. Amran et al., “Effects of machine parameters on surface roughness using response surface method in drilling process,” Procedia Eng., vol. 68, pp. 24–29, 2013, doi: 10.1016/j.proeng.2013.12.142.spa
dc.relation.references[6] M. Altaf, S. Prakash Dwivedi, R. Shamsh Kanwar, I. Ahmad Siddiqui, P. Sagar, and S. Ahmad, “Machining Characteristics of Titanium Ti-6Al-4V, Inconel 718 and Tool Steel-A Critical Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 691, no. 1, 2019, doi: 10.1088/1757-899X/691/1/012052.spa
dc.relation.references[8] J. C. Miao, G. L. Chen, X. M. Lai, H. T. Li, and C. F. Li, “Review of dynamic issues in micro-end-milling,” Int. J. Adv. Manuf. Technol., vol. 31, no. 9–10, pp. 897–904, 2007, doi: 10.1007/s00170-005-0276-6.spa
dc.relation.references[9] T. Pratap and K. Patra, “Micro ball-end milling—an emerging manufacturing technology for micro-feature patterns,” Int. J. Adv. Manuf. Technol., vol. 94, no. 5–8, pp. 2821–2845, 2018, doi: 10.1007/s00170-017-1064-9.spa
dc.relation.references[10] J. L. Liow, “Mechanical micromachining: a sustainable micro-device manufacturing approach?,” J. Clean. Prod., vol. 17, no. 7, pp. 662–667, 2009, doi: 10.1016/j.jclepro.2008.11.012.spa
dc.relation.references[11] K. Liu and S. N. Melkote, “Effect of plastic side flow on surface roughness in micro-turning process,” Int. J. Mach. Tools Manuf., vol. 46, no. 14, pp. 1778–1785, 2006, doi: 10.1016/j.ijmachtools.2005.11.014.spa
dc.relation.references[12] Y. Lakhtin, Engineering Physical Metallurgy and Heat-Treatment. Moscow: MIR Publishers, 1979.spa
dc.relation.references[13] J. S. Subramanian, “Study on Drilling Process Parameters - Review,” vol. 6, no. 07, pp. 1–7, 2018.spa
dc.relation.references[14] A. Ç. M. Perçin, K. Aslantas, I. Ucun, Y. Kaynak, “Micro-drilling of Ti–6Al–4V alloy: The effects of cooling/lubricatin,” Precis. Eng., 2016, doi: 10.1016/j.precisioneng.2016.02.015.spa
dc.relation.references[15] M. J. Remolina, M. A. Velasco, and E. Córdoba, “Journal of King Saud University – Engineering Sciences Chip experimental analysis approach obtained by micro-end-milling in ( Ti-6Al-4 V ) titanium alloy and ( 7075 ) aluminium alloy,” J. King Saud Univ. - Eng. Sci., no. xxxx, 2021, doi: 10.1016/j.jksues.2021.04.003.spa
dc.relation.references[16] M. Azizur Rahman, M. Rahman, A. S. Kumar, and H. S. Lim, “CNC microturning: An application to miniaturization,” Int. J. Mach. Tools Manuf., vol. 45, no. 6, pp. 631–639, 2005, doi: 10.1016/j.ijmachtools.2004.10.003.spa
dc.relation.references[17] X. Liu, R. E. DeVor, S. G. Kapoor, and K. F. Ehmann, “The mechanics of machining at the microscale: Assessment of the current state of the science,” J. Manuf. Sci. Eng. Trans. ASME, vol. 126, no. 4, pp. 666–678, 2004, doi: 10.1115/1.1813469.spa
dc.relation.references[18] V. S. Kathavate, P. R. Cheke, and A. S. Adkine, “An Experimental Investigation Of Micromilling,” Int. J. Technol. Enhanc. Emerg. Eng. Res., vol. 3, no. 04, pp. 36–41, 2015.spa
dc.relation.references[19] D. Carou, E. M. Rubio, J. Herrera, C. H. Lauro, and J. P. Davim, “Latest advances in the micro-milling of titanium alloys: a review,” Procedia Manuf., vol. 13, pp. 275–282, 2017, doi: 10.1016/j.promfg.2017.09.071.spa
dc.relation.references[20] R. S. Anand and K. Patra, “Modeling and simulation of mechanical micro-machining - A review,” Mach. Sci. Technol., vol. 18, no. 3, pp. 323–347, 2014, doi: 10.1080/10910344.2014.925377.spa
dc.relation.references[21] A. Gupta, J. S. Mehta, and R. Madan, Micro and Precision Manufacturing. 2018.spa
dc.relation.references[22] A. Perveen and C. Molardi, “Machining of Microshapes and Features,” pp. 1–19, 2018, doi: 10.1007/978-3-319-68801-5_1.spa
dc.relation.references[23] D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining,” CIRP Ann. - Manuf. Technol., vol. 55, no. 2, pp. 745–768, 2006, doi: 10.1016/j.cirp.2006.10.006.spa
dc.relation.references[24] J. Chae, S. S. Park, and T. Freiheit, “Investigation of micro-cutting operations,” Int. J. Mach. Tools Manuf., vol. 46, no. 3–4, pp. 313–332, 2006, doi: 10.1016/j.ijmachtools.2005.05.015.spa
dc.relation.references[25] A. Aramcharoen, P. T. Mativenga, S. Yang, K. E. Cooke, and D. G. Teer, “Evaluation and selection of hard coatings for micro milling of hardened tool steel,” Int. J. Mach. Tools Manuf., vol. 48, no. 14, pp. 1578–1584, 2008, doi: 10.1016/j.ijmachtools.2008.05.011.spa
dc.relation.references[26] T. Masuzawa, “Three-Dimensional Micromachining by Machine Tools,” Recent Prog. Steel Compos. Struct., pp. 15–80, 2000, doi: 10.1201/b21417-5.spa
dc.relation.references[27] T. Masuzawa, “State of the art of micromachining,” CIRP Ann. - Manuf. Technol., vol. 49, no. 2, pp. 473–488, 2000, doi: 10.1016/S0007-8506(07)63451-9.spa
dc.relation.references[28] G. Bissacco, H. N. Hansen, and J. Slunsky, “Modelling the cutting edge radius size effect for force prediction in micro milling,” CIRP Ann. - Manuf. Technol., vol. 57, no. 1, pp. 113–116, 2008, doi: 10.1016/j.cirp.2008.03.085.spa
dc.relation.references[29] A. Herrero et al., “Mechanical Micro-Machining Using Milling, Wire EDM, Die-Sinking EDM and Diamond Turning,” Strojniški Vestn., vol. 7/8, no. 52, pp. 484–494, 2006.spa
dc.relation.references[30] B. Boswell, M. N. Islam, and I. J. Davies, “A review of micro-mechanical cutting,” Int. J. Adv. Manuf. Technol., vol. 94, no. 1–4, pp. 789–806, 2018, doi: 10.1007/s00170-017-0912-y.spa
dc.relation.references[31] L. Uriarte et al., “Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 0.3 mm in diameter,” Precis. Eng., vol. 31, no. 1, pp. 1–12, 2007, doi: 10.1016/j.precisioneng.2005.11.010.spa
dc.relation.references[32] V.K. Jain, “Advanced (Non-traditional) Machining Processes,” in Machining, Paulo J. Davim, Ed. Kanpur: Springer, 2008spa
dc.relation.references[33] A. K. R. C. Dorf, Handbook of Design, Manufacturing and Automation. John Wiley & Sons, Inc., 1994.spa
dc.relation.references[34] Marc J. Madou, Fundamentals of Microfabrication, Second Edi. Boca Raton: CRC Press, 2002.spa
dc.relation.references[35] Miro Dental, “Dental Implants: Facts and Stats,” 2019. https://mirodentalcenter.com/2019/03/06/dental-implants-facts-and-stats/ (accessed Sep. 04, 2021).spa
dc.relation.references[36] R. York, M. Doumit, M. Nganbe, and A. Helal, “Study of mechanical properties of micromachined dental implants,” Can. Metall. Q., vol. 58, no. 1, pp. 56–68, 2019, doi: 10.1080/00084433.2018.1505309.spa
dc.relation.references[37] S. Gupta, V. Dahiya, and P. Shukla, “Surface topography of dental implants: A review,” J. Dent. Implant., vol. 4, no. 1, p. 66, 2014, doi: 10.4103/0974-6781.131009.spa
dc.relation.references[38] P. I. Branemark, “Osseointegration and its experimental background,” J. Prosthet. Dent., vol. 50, no. 3, pp. 399–410, 1983, doi: 10.1016/S0022-3913(83)80101-2.spa
dc.relation.references[39] T. M. Smith, “Current Trends in Dental Morphology Research,” 2014.spa
dc.relation.references[40] M. Perçin, K. Aslantas, I. Ucun, Y. Kaynak, and A. Çicek, “Micro-drilling of Ti-6Al-4V alloy: The effects of cooling/lubricating,” Precis. Eng., vol. 45, pp. 450–462, 2016, doi: 10.1016/j.precisioneng.2016.02.015.spa
dc.relation.references[41] B. Stirn, K. Lee, and D. Dornfeld, “Burr formation in micro-drilling,” Univ. Technol. Aachen (RWTH), …, no. c, pp. 2–5, 2001, [Online]. Available: http://aspe.net:16080/publications/Annual_2001/PDF/POSTERS/PROCESS/MACHINE/1255.PDF.spa
dc.relation.references[42] Y. Ahn and S. H. Lee, “Classification and prediction of burr formation in micro drilling of ductile metals,” Int. J. Prod. Res., vol. 55, no. 17, pp. 4833–4846, 2017, doi: 10.1080/00207543.2016.1254355.spa
dc.relation.references[43] D. A. Dornfeld, “Burr Formation in Micro-machining Aluminum ,” no. DECEMBER 2001, 2015.spa
dc.relation.references[44] K. Lee and D. A. Dornfeld, “Micro-burr formation and minimization through process control,” Precis. Eng., vol. 29, no. 2, pp. 246–252, 2005, doi: 10.1016/j.precisioneng.2004.09.002.spa
dc.relation.references[45] D. Dornfeld and S. Min, “Burrs - Analysis, Control and Removal,” Burrs - Anal. Control Remov., 2010, doi: 10.1007/978-3-642-00568-8.spa
dc.relation.references[46] L. L. Alhadeff, M. B. Marshall, D. T. Curtis, and T. Slatter, “Protocol for tool wear measurement in micro-milling,” Wear, vol. 420–421, pp. 54–67, 2019, doi: 10.1016/j.wear.2018.11.018.spa
dc.relation.references[47] C. F. Wyen, D. Jaeger, and K. Wegener, “Influence of cutting edge radius on surface integrity and burr formation in milling titanium,” Int. J. Adv. Manuf. Technol., vol. 67, no. 1–4, pp. 589–599, 2013, doi: 10.1007/s00170-012-4507-3.spa
dc.relation.references[48] A. Caballero Ruiz, H. R. Siller, L. Ruiz Huerta, G. Garcia Garcia, and E. V. Vázquez, “Calibration of ball nose micro end milling operations for sculptured surfaces machining,” Int. J. Mach. Mach. Mater., vol. 19, no. 6, p. 587, 2017, doi: 10.1504/ijmmm.2017.10009891.spa
dc.relation.references[49] V. Tomas, P. Jozef, K. Mario, and B. Ivan, “The wear measurement process of ball nose end mill in the copy milling operations,” Procedia Eng., vol. 69, pp. 1038–1047, 2014, doi: 10.1016/j.proeng.2014.03.088spa
dc.relation.references[50] M. Ziberov, M. B. da Silva, M. Jackson, and W. N. P. Hung, “Effect of Cutting Fluid on Micromilling of Ti-6Al-4V Titanium Alloy,” Procedia Manuf., vol. 5, no. 2003, pp. 332–347, 2016, doi: 10.1016/j.promfg.2016.08.029.spa
dc.relation.references[51] A. J. Mian, “Size Effect in Micromachining,” p. 209, 2011, [Online]. Available: https://www.escholar.manchester.ac.uk/uk-ac-man-scw:119779.spa
dc.relation.references[52] B. Z. Balázs, N. Geier, M. Takács, and J. P. Davim, “A review on micro-milling: recent advances and future trends,” Int. J. Adv. Manuf. Technol., vol. 112, no. 3–4, pp. 655–684, 2021, doi: 10.1007/s00170-020-06445-w.spa
dc.relation.references[53] A. Teo, S. Danielson, and T. Georgeou, “High performance machining: A practical approach to high-speed machining,” ASEE Annu. Conf. Expo. Conf. Proc., 2008, doi: 10.18260/1-2--3816.spa
dc.relation.references[54] A. P. Guliáev, Metallography (In Spanish). Moscow: MIR Publishers, 1977.spa
dc.relation.references[55] “INTERNATIONAL STANDARD ISO 8688-2.” International Organization, p. 31, 1989.spa
dc.relation.references[56] ASM Handbook Committee, Metallography and Microstructures, Ninth edit. ASM Publishers, 1985.spa
dc.relation.references[57] ASTM E112, “Standard Test Methods for Determining Average Grain Size E112-10,” Astm E112-10, vol. 96, no. 2004, pp. 1–27, 2010, doi: 10.1520/E0112-10.Copyright.spa
dc.relation.references[58] ASTM Standard, “Standard Test Method for Microindentation Hardness of Materials,” ASTM Int., vol. E384, pp. 1–40, 2017, doi: 10.1520/E0384-17.spa
dc.relation.references[59] “INTERNATIONAL STANDARD ISO 3002-1.” International Organization, p. 62, 1982.spa
dc.relation.references[60] D. C. Montgomery, Design and Analysis of Experiments, Ninth Edit., vol. 106, no. 11. TEMPE, ARIZONA: John Wiley & Sons, Inc., 2017.spa
dc.relation.references[61] S. H. I. Jaffery, M. Khan, L. Ali, and P. T. Mativenga, “Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 230, no. 6, pp. 1017–1034, 2016, doi: 10.1177/0954405414564409.spa
dc.relation.references[62] P. Smid, Programming Handbook Third Edition. 2007.spa
dc.relation.references[63] C. C. . K. H. F. Tai, “A predictive force model in ball-end milling,” vol. 34, no. 7, pp. 959–979, 1993.spa
dc.relation.references[64] G. M. Kim, P. J. Cho, and C. N. Chu, “Cutting force prediction of sculptured surface ball-end milling using Z-map,” Int. J. Mach. Tools Manuf., vol. 40, no. 2, pp. 277–291, 2000, doi: 10.1016/S0890-6955(99)00040-1.spa
dc.relation.references[65] H. Schulz and S. Hock, “High-Speed Milling of Dies and Moulds - Cutting Conditions and Technology,” CIRP Ann. - Manuf. Technol., vol. 44, no. 1, pp. 35–38, 1995, doi: 10.1016/S0007-8506(07)62270-7.spa
dc.relation.references[66] B. Denkena, “Cutting edge geometries,” CIRP Ann. - Manuf. Technol., pp. 631–653, 2014, doi: 10.1016/j.procir.2020.04.028.spa
dc.relation.references[67] B. Denkena and D. Biermann, “CIRP Annals - Manufacturing Technology Cutting edge geometries,” vol. 63, pp. 631–653, 2014.spa
dc.relation.references[68] F. A. Barbashov, Milling Manual (In Spanish), Second Edi. Moscow: MIR Publishers, 1981.spa
dc.relation.references[69] L. Harvey Tool Company, “Conventional milling VS Climb milling.” pp. 11–12, 2011, [Online]. Available: http://www.designask.com/2011/04/conventional-milling-vs-climb-milling/.spa
dc.relation.references[70] Donghaon Stainles Steel, “12L14 free machining Steel.”spa
dc.relation.references[71] A. Otero, “Características AISI/SAE12L14.” mecanizadoenserie.http://www.acerosotero.cl/acero_carbono_sae_12l14.html (accessed May 30, 2019).spa
dc.relation.references[72] Kennametal, “ISO Carbide Inserts. Specifications.” https://www.kennametal.com/hi/products/20478624/47535256/63745063/63745065/63840303/63840328/55907484/100002953.html. (accessed May 30, 2019).spa
dc.relation.references[73] E. Isakov, Cutting data for turning of Steel. New York: Industrial Press Inc, 2009.spa
dc.relation.references[74] J.M.Gere, Mecánica de Materiales, Sexta Ed. Mexico: Editorial Thomson, 2006.spa
dc.relation.references[75] R. de la V. S. Humberto Gutierrez Pulido, Diseño y análisis de experimentos, Segunda ed. México: McGraw-Hill Interamericana, 2008.spa
dc.relation.references[76] M. R. Spiegel, Estadística, Primera Ed. Mexico: McGraw-Hill, 1978.spa
dc.relation.references[77] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median,” J. Exp. Soc. Psychol., vol. 49, no. 4, pp. 764–766, 2013, doi: 10.1016/j.jesp.2013.03.013.spa
dc.relation.references[78] Ya-Lun Chou, Análisis Estadístico, Primera Ed. Mexico: Nueva Editorial Interamericana S. A. de C. V, 1972.spa
dc.relation.references[79] N. H. M. Fauzi, N. A. Shuaib, Z. A. Zailani, A. R. Irfan, and S. A. Sobri, “Micro drilling of titanium Ti-6Al-4V: Influence of the cutting parameters on tool life,” AIP Conf. Proc., vol. 2129, no. July, 2019, doi: 10.1063/1.5118201.spa
dc.relation.references[80] F. R. Wong, S. Sharif, K. Kamdani, and E. A. Rahim, “The effect of drill point geometry and drilling technique on tool life when drilling titanium alloy , Ti-6Al-4V,” Proc. Int. Conf. Mech. Manuf. Eng. (ICME2008), 21– 23 May 2008, no. May, pp. 21–23, 2008.spa
dc.relation.references[81] A. Beranoagirre, G. Urbikain, R. Marticorena, A. Bustillo, and L. N. L. de Lacalle, “Sensitivity analysis of tool wear in drilling of Titanium Aluminides,” Metals (Basel)., vol. 9, no. 3, 2019, doi: 10.3390/met9030297.spa
dc.relation.references[82] V. D. Kuznetsov, “Metal Transfer and Build-Up in Friction and Cutting,” Met. Transf. Build-Up Frict. Cut., 1966, doi: 10.1016/c2013-0-12463-4.spa
dc.relation.references[83] V. Tomoiagă, M. S. Popa, S. Sattel, G. Conțiu, V. Vereș, and M. Bozga, “Influence of the cutting edge microgeometry in drilling operation of 42CrMo4 and X5CrNi18-10,” vol. 01011, pp. 1–6, 2018.spa
dc.relation.references[84] C. Wyen and W. Knapp, “A new method for the characterisation of rounded cutting edges,” pp. 899–914, 2012, doi: 10.1007/s00170-011-3555-4.spa
dc.relation.references[85] M. Balaji, K. Venkata Rao, N. Mohan Rao, and B. S. N. Murthy, “Optimization of drilling parameters for drilling of TI-6Al-4V based on surface roughness, flank wear and drill vibration,” Meas. J. Int. Meas. Confed., vol. 114, no. June 2020, pp. 332–339, 2018, doi: 10.1016/j.measurement.2017.09.051.spa
dc.relation.references[86] A. M. Abdelhafeez, S. L. Soo, D. K. Aspinwall, A. Dowson, and D. Arnold, “Burr formation and hole quality when drilling titanium and aluminium alloys,” Procedia CIRP, vol. 37, pp. 230–235, 2015, doi: 10.1016/j.procir.2015.08.019.spa
dc.relation.references[87] Y. Choi, “Process monitoring in end milling,” pp. 1–129, 2003, [Online]. Available: http://lib.dr.iastate.edu/rtd.spa
dc.relation.references[88] C. Bandapalli, B. M. Sutaria, D. V. Prasad Bhatt, and K. K. Singh, “Tool wear analysis of micro end mills - Uncoated and PVD coated TiAlN & AlTiN in high speed micro milling of titanium alloy - Ti-0.3Mo-0.8Ni,” Procedia CIRP, vol. 77, no. January, pp. 626–629, 2018, doi: 10.1016/j.procir.2018.08.191.spa
dc.relation.references[89] D. Baldo, S. L. M. Ribeiro Filho, C. H. Lauro, A. C. dos Santos Delfino, and L. C. Brandao, “Analysis of Surface Roughness in Micro Milling of Ti-6Al-4V Titanium Alloy,” Adv. Mater. Res., vol. 1079–1080, pp. 3–6, 2014, doi: 10.4028/www.scientific.net/amr.1079-1080.3.spa
dc.relation.references[90] P. Kumar, V. Bajpai, and R. Singh, “Burr height prediction of Ti6Al4V in high speed micro-milling by mathematical modeling,” Manuf. Lett., vol. 11, pp. 12–16, 2017, doi: 10.1016/j.mfglet.2016.10.001.spa
dc.relation.references[91] T. Pratap and K. Patra, “Micromilling of Ti-6Al-4V Titanium Alloy Using Ball-end Tool,” IOP Conf. Ser. Mater. Sci. Eng., vol. 229, no. 1, pp. 0–6, 2017, doi: 10.1088/1757-899X/229/1/012011.spa
dc.relation.references[92] P. Kumar, M. Kumar, V. Bajpai, and N. K. Singh, “Recent advances in characterization, modeling and control of burr formation in micro-milling,” Manuf. Lett., vol. 13, pp. 1–5, 2017, doi: 10.1016/j.mfglet.2017.04.002.spa
dc.relation.references[93] M. J. Chen, H. B. Ni, Z. J. Wang, and Y. Jiang, “Research on the modeling of burr formation process in micro-ball end milling operation on Ti-6Al-4V,” Int. J. Adv. Manuf. Technol., vol. 62, no. 9–12, pp. 901–912, 2012, doi: 10.1007/s00170-011-3865-6.spa
dc.relation.references[94] Q.Guo, “Research on the methods and technologies for high performance peripheral machining of complex surface,” Dalian Univ. Technol., pp. 1–5, 2013.spa
dc.relation.references[95] W. Shan, “Parameter Setting for Dynamic Milling of Aluminum Alloy,” vol. 100, no. Icmeim, pp. 357–361, 2017.spa
dc.relation.references[96] Yu. Lakhtin, Engineering physical metallurgyand heat-treatment, Second edi. Moscow: MIR Publishers, 1979.spa
dc.relation.references[97] P. Kuryło, “The Study of Residual Stresses in the Surface Layer,” Acta Mech. Slovaca, vol. 17, no. 4, pp. 6–15, 2013, doi: 10.21496/ams.2013.040.spa
dc.relation.references[98] N. F. Anoshkin, Aleaciones de titanio. Metalografía de aleación de titanio. (En Ruso). Moscú: Metalurgía, 1980.spa
dc.relation.references[99] S. Sarkar and R. Das, “Determination of structural elements of synthesized silver nano-hexagon from X-ray diffraction analysis,” Indian J. Pure Appl. Phys., vol. 56, no. 10, pp. 765–772, 2018.spa
dc.relation.references[100] S. Takaki, F. Jiang, T. Masumura, and T. Tsuchiyama, “Correction of elastic anisotropy in williamson-hall plots by diffraction young’s modulus and direct fitting method,” ISIJ Int., vol. 58, no. 4, pp. 769–775, 2018, doi: 10.2355/isijinternational.ISIJINT-2017-642.spa
dc.relation.references[101] S. Takaki, T. Masumura, and T. Tsuchiyama, “Dislocation characterization by the direct-fitting/modified Williamson–Hall (DF/mWH) method in cold worked ferritic steel,” ISIJ Int., vol. 59, no. 3, pp. 567–572, 2019, doi: 10.2355/isijinternational.ISIJINT-2018-623.spa
dc.relation.references[102] A. Dutta Gupta et al., “Proton irradiation studies on pure Ti and Ti-6Al-4V,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 387, pp. 63–72, 2016, doi: 10.1016/j.nimb.2016.09.010.spa
dc.relation.references[103] A. Mahboubi Soufiani, F. Karimzadeh, and M. H. Enayati, “Formation mechanism and characterization of nanostructured Ti6Al4V alloy prepared by mechanical alloying,” Mater. Des., vol. 37, pp. 152–160, 2012, doi: 10.1016/j.matdes.2011.12.044.spa
dc.relation.references[104] A. M. Stapleton, S. L. Raghunathan, I. Bantounas, H. J. Stone, T. C. Lindley, and D. Dye, “Evolution of lattice strain in Ti-6Al-4V during tensile loading at room temperature,” Acta Mater., vol. 56, no. 20, pp. 6186–6196, 2008, doi: 10.1016/j.actamat.2008.08.030.spa
dc.relation.references[105] Q. Chen, L. Liu, C. Zhu, and K. Chen, “Mesomechanical modeling and numerical simulation of the diffraction elastic constants for Ti6Al4V polycrystalline alloy,” Metals (Basel)., vol. 8, no. 10, 2018, doi: 10.3390/met8100822.spa
dc.relation.references[106] G. S. Srinivasu and N. R. Raja, “Finite Element Modeling of Stress Strain Curve and Micro Stress and Micro Strain Distributions of Titanium Alloys— A Review,” J. Miner. Mater. Charact. Eng., vol. 11, no. 10, pp. 953–960, 2012, doi: 10.4236/jmmce.2012.1110094.spa
dc.relation.references[107] H. S. Lim, A. S. Kumar, and M. Rahman, “Improvement of form accuracy in hybrid machining of microstructures,” J. Electron. Mater., vol. 31, no. 10 SPEC., pp. 1032–1038, 2002, doi: 10.1007/s11664-002-0039-1.spa
dc.relation.references[108] Jinn Fa Machine Industrial co, JSL/26/32AB7B CNC SWISS TYPE LATHE. Yuanchung Village: Jinn Fa, 2006.spa
dc.relation.references[109] L. Z. Qiang, “Finite difference calculations of the deformations of multi-diameter workpieces during turning,” J. Mater. Process. Technol., pp. 310–316, 2000.spa
dc.relation.references[110] O. M. L. L. S. Melo., Diseño de experimentos [Métodos y Aplicaciones]. Bogotá: Universidad Nacional de Colombia, 2000.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primariosspa
dc.subject.ddc680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivosspa
dc.subject.otherMáquinas en la industria
dc.subject.otherIndustrial equipment
dc.subject.proposalMicro-maquinadospa
dc.subject.proposalTitanio Ti-6Al-4Vspa
dc.subject.proposalAISI 12L14spa
dc.subject.proposalMétodo de Superficie de Respuestaspa
dc.subject.proposalMecánica de materialesspa
dc.subject.proposalMicro-machiningeng
dc.subject.proposalTi-6Al-4V titaniumeng
dc.subject.proposal12L14 Steeleng
dc.subject.proposalSurface Response Methodeng
dc.subject.proposalMaterials mechanicseng
dc.titleMicro-maquinado multi-ejes CNC aplicado a implantes dentales en aleación de Titanio Ti-6Al-4Vspa
dc.title.translatedMulti-axis CNC micro-machining applied to dental implants in titanium alloy Ti-6Al-4Veng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020745830.2021.pdf
Tamaño:
4.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: