Micro-maquinado multi-ejes CNC aplicado a implantes dentales en aleación de Titanio Ti-6Al-4V
dc.contributor.advisor | Córdoba Nieto, Ernesto | |
dc.contributor.author | Remolina León, Mario José | |
dc.contributor.researchgroup | Grupo de Trabajo en Nuevas tecnologías de Diseño y Manufactura Automatización Dima Un | spa |
dc.date.accessioned | 2022-03-24T17:45:15Z | |
dc.date.available | 2022-03-24T17:45:15Z | |
dc.date.issued | 2021 | |
dc.description | ilustraciones, fotografías, graficas | spa |
dc.description.abstract | El micro-maquinado mecánico es una operación de micro-fabricación destacada en el área del corte de metales, especialmente cuando se aplica a materiales de ingeniería como las aleaciones de titanio. En la actualidad, el micro-mecanizado de aleaciones de titanio sigue siendo un gran desafío debido a las propiedades metalúrgicas del material. Esto se ve reflejado en los altos costos de producción en aplicaciones mecánicas, biomédicas, nucleares, químicas y navales. Se propone una metodología estadística basada en el método de superficies de respuesta (RSM) para obtener información sobre el comportamiento de los parámetros de corte en la generación de rugosidad superficial, altura de rebaba y variación de rasgos geométricos de micro-herramienta de corte en operaciones tales como el micro-taladrado convencional, micro-fresado plano y esférico. Lo anterior aplicado sobre aleación de titanio Ti-6Al-4V, adicionando una aproximación a la parte térmica y de micro-deformación en el proceso de corte, complementando finalmente, con un estudio de uso de la mecánica de materiales tradicional al proceso de micro-fabricación de pines por micro-torneado en aleación AISI 12L14. La aplicación de la metodología estadística presentó detalles sobre los parámetros de corte e interacciones entre estos, los cuales tienen marcada influencia en la rugosidad superficial, la altura de rebaba y en los rasgos geométricos de micro-herramienta, tales como: cutting edge radius, major cutting edge, distance apex to end of clearance roundness, minimum distance of edge to apex, minor cutting edge, face, major first flank respectivamente. Las superficies generadas muestran las tendencias de los parámetros de corte para cada atributo evaluado. Se lograron valores preliminares de micro-deformación y tamaño de cristalito por medio del método Williamson-Hall, agregando termografías del proceso de micro-fresado plano. Se obtuvo, con la aplicación del modelo de la mecánica de materiales, para el esfuerzo a flexión de una viga en cantiléver, estimaciones precisas de la ecuación de la curva de la viga elástica en un 60% sobre la longitud en la fabricación de un micro-pin generado por micro-torneado. (Texto tomado de la fuente) | spa |
dc.description.abstract | Mechanical micro-machining is a prominent micro-fabrication operation in the area of metal cutting, especially when is applied to engineering materials such as titanium alloys. At present, the micro-machining of titanium alloys remains a great challenge due to the metallurgical properties of this type of alloys. This is reflected in the high production costs in mechanical, biomedical, nuclear, chemical and naval applications. A statistical methodology based on the response surfaces method (RSM) is proposed to obtain information on the behavior of the cutting parameters in the generation of surface roughness, burr height and variation of geometrics features of micro-cutting tool in operations such as conventional micro-drilling, flat end-micro-milling and ball end-micro-milling, all above on titanium alloy Ti-6Al-4V, adding an approach to the thermal and micro-deformation part in the cutting process, finally complementing, with the application of traditional materials mechanics to the micro-manufacturing process of pins by micro-turning in AISI 12L14 alloy. The statistical methodology application revealed which cutting parameters and interactions between them significantly affect surface roughness, burr height and geometric features of the cutting micro-tool, such as: cutting edge radius, major cutting edge, distance apex to end of clearance roundness, minimum distance of edge to apex, minor cutting edge, face, major first flank respectively. The generated surfaces show the trends of the cutting parameters for each attribute evaluated. Preliminary values of micro-strain and crystallite size were achieved by the Williamson-Hall method, adding micro-milling process thermographs. With the material mechanics model application for the cantilever beam bending, precise estimates of the elastic beam curve equation were obtained in 60% on the length in the manufacture of a micro-pin generated by micro-turning. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | spa |
dc.description.researcharea | Meso/micro-maquinado multi-ejes CNC | spa |
dc.format.extent | xvi, 92 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81367 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Mecánica y Mecatrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.references | [1] J. Corbett, “Nanotechnology: International Developments and Emerging Products,” CIRP Ann. Technol., pp. 523–545, 2000. | spa |
dc.relation.references | [2] M. Hasan, J. Zhao, and Z. Jiang, A review of modern advancements in micro drilling techniques, vol. 29. 2017. | spa |
dc.relation.references | [3] P. Piljek, “MICROMACHINING – REVIEW OF LITERATURE FROM 1980 TO 2010,” Interdiscip. Descr. Complex Syst., vol. 12, no. 223, pp. 75–84, 2014, doi: 10.7906/indecs.12.1.1. | spa |
dc.relation.references | [4] S. Sharif, E. Abd, and H. Sasahar, “Machinability of Titanium Alloys in Drilling,” Titan. Alloy. - Towar. Achiev. Enhanc. Prop. Divers. Appl., vol. 3, no. c, 2012, doi: 10.5772/35948. | spa |
dc.relation.references | [5] M. A. Amran et al., “Effects of machine parameters on surface roughness using response surface method in drilling process,” Procedia Eng., vol. 68, pp. 24–29, 2013, doi: 10.1016/j.proeng.2013.12.142. | spa |
dc.relation.references | [6] M. Altaf, S. Prakash Dwivedi, R. Shamsh Kanwar, I. Ahmad Siddiqui, P. Sagar, and S. Ahmad, “Machining Characteristics of Titanium Ti-6Al-4V, Inconel 718 and Tool Steel-A Critical Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 691, no. 1, 2019, doi: 10.1088/1757-899X/691/1/012052. | spa |
dc.relation.references | [8] J. C. Miao, G. L. Chen, X. M. Lai, H. T. Li, and C. F. Li, “Review of dynamic issues in micro-end-milling,” Int. J. Adv. Manuf. Technol., vol. 31, no. 9–10, pp. 897–904, 2007, doi: 10.1007/s00170-005-0276-6. | spa |
dc.relation.references | [9] T. Pratap and K. Patra, “Micro ball-end milling—an emerging manufacturing technology for micro-feature patterns,” Int. J. Adv. Manuf. Technol., vol. 94, no. 5–8, pp. 2821–2845, 2018, doi: 10.1007/s00170-017-1064-9. | spa |
dc.relation.references | [10] J. L. Liow, “Mechanical micromachining: a sustainable micro-device manufacturing approach?,” J. Clean. Prod., vol. 17, no. 7, pp. 662–667, 2009, doi: 10.1016/j.jclepro.2008.11.012. | spa |
dc.relation.references | [11] K. Liu and S. N. Melkote, “Effect of plastic side flow on surface roughness in micro-turning process,” Int. J. Mach. Tools Manuf., vol. 46, no. 14, pp. 1778–1785, 2006, doi: 10.1016/j.ijmachtools.2005.11.014. | spa |
dc.relation.references | [12] Y. Lakhtin, Engineering Physical Metallurgy and Heat-Treatment. Moscow: MIR Publishers, 1979. | spa |
dc.relation.references | [13] J. S. Subramanian, “Study on Drilling Process Parameters - Review,” vol. 6, no. 07, pp. 1–7, 2018. | spa |
dc.relation.references | [14] A. Ç. M. Perçin, K. Aslantas, I. Ucun, Y. Kaynak, “Micro-drilling of Ti–6Al–4V alloy: The effects of cooling/lubricatin,” Precis. Eng., 2016, doi: 10.1016/j.precisioneng.2016.02.015. | spa |
dc.relation.references | [15] M. J. Remolina, M. A. Velasco, and E. Córdoba, “Journal of King Saud University – Engineering Sciences Chip experimental analysis approach obtained by micro-end-milling in ( Ti-6Al-4 V ) titanium alloy and ( 7075 ) aluminium alloy,” J. King Saud Univ. - Eng. Sci., no. xxxx, 2021, doi: 10.1016/j.jksues.2021.04.003. | spa |
dc.relation.references | [16] M. Azizur Rahman, M. Rahman, A. S. Kumar, and H. S. Lim, “CNC microturning: An application to miniaturization,” Int. J. Mach. Tools Manuf., vol. 45, no. 6, pp. 631–639, 2005, doi: 10.1016/j.ijmachtools.2004.10.003. | spa |
dc.relation.references | [17] X. Liu, R. E. DeVor, S. G. Kapoor, and K. F. Ehmann, “The mechanics of machining at the microscale: Assessment of the current state of the science,” J. Manuf. Sci. Eng. Trans. ASME, vol. 126, no. 4, pp. 666–678, 2004, doi: 10.1115/1.1813469. | spa |
dc.relation.references | [18] V. S. Kathavate, P. R. Cheke, and A. S. Adkine, “An Experimental Investigation Of Micromilling,” Int. J. Technol. Enhanc. Emerg. Eng. Res., vol. 3, no. 04, pp. 36–41, 2015. | spa |
dc.relation.references | [19] D. Carou, E. M. Rubio, J. Herrera, C. H. Lauro, and J. P. Davim, “Latest advances in the micro-milling of titanium alloys: a review,” Procedia Manuf., vol. 13, pp. 275–282, 2017, doi: 10.1016/j.promfg.2017.09.071. | spa |
dc.relation.references | [20] R. S. Anand and K. Patra, “Modeling and simulation of mechanical micro-machining - A review,” Mach. Sci. Technol., vol. 18, no. 3, pp. 323–347, 2014, doi: 10.1080/10910344.2014.925377. | spa |
dc.relation.references | [21] A. Gupta, J. S. Mehta, and R. Madan, Micro and Precision Manufacturing. 2018. | spa |
dc.relation.references | [22] A. Perveen and C. Molardi, “Machining of Microshapes and Features,” pp. 1–19, 2018, doi: 10.1007/978-3-319-68801-5_1. | spa |
dc.relation.references | [23] D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining,” CIRP Ann. - Manuf. Technol., vol. 55, no. 2, pp. 745–768, 2006, doi: 10.1016/j.cirp.2006.10.006. | spa |
dc.relation.references | [24] J. Chae, S. S. Park, and T. Freiheit, “Investigation of micro-cutting operations,” Int. J. Mach. Tools Manuf., vol. 46, no. 3–4, pp. 313–332, 2006, doi: 10.1016/j.ijmachtools.2005.05.015. | spa |
dc.relation.references | [25] A. Aramcharoen, P. T. Mativenga, S. Yang, K. E. Cooke, and D. G. Teer, “Evaluation and selection of hard coatings for micro milling of hardened tool steel,” Int. J. Mach. Tools Manuf., vol. 48, no. 14, pp. 1578–1584, 2008, doi: 10.1016/j.ijmachtools.2008.05.011. | spa |
dc.relation.references | [26] T. Masuzawa, “Three-Dimensional Micromachining by Machine Tools,” Recent Prog. Steel Compos. Struct., pp. 15–80, 2000, doi: 10.1201/b21417-5. | spa |
dc.relation.references | [27] T. Masuzawa, “State of the art of micromachining,” CIRP Ann. - Manuf. Technol., vol. 49, no. 2, pp. 473–488, 2000, doi: 10.1016/S0007-8506(07)63451-9. | spa |
dc.relation.references | [28] G. Bissacco, H. N. Hansen, and J. Slunsky, “Modelling the cutting edge radius size effect for force prediction in micro milling,” CIRP Ann. - Manuf. Technol., vol. 57, no. 1, pp. 113–116, 2008, doi: 10.1016/j.cirp.2008.03.085. | spa |
dc.relation.references | [29] A. Herrero et al., “Mechanical Micro-Machining Using Milling, Wire EDM, Die-Sinking EDM and Diamond Turning,” Strojniški Vestn., vol. 7/8, no. 52, pp. 484–494, 2006. | spa |
dc.relation.references | [30] B. Boswell, M. N. Islam, and I. J. Davies, “A review of micro-mechanical cutting,” Int. J. Adv. Manuf. Technol., vol. 94, no. 1–4, pp. 789–806, 2018, doi: 10.1007/s00170-017-0912-y. | spa |
dc.relation.references | [31] L. Uriarte et al., “Error budget and stiffness chain assessment in a micromilling machine equipped with tools less than 0.3 mm in diameter,” Precis. Eng., vol. 31, no. 1, pp. 1–12, 2007, doi: 10.1016/j.precisioneng.2005.11.010. | spa |
dc.relation.references | [32] V.K. Jain, “Advanced (Non-traditional) Machining Processes,” in Machining, Paulo J. Davim, Ed. Kanpur: Springer, 2008 | spa |
dc.relation.references | [33] A. K. R. C. Dorf, Handbook of Design, Manufacturing and Automation. John Wiley & Sons, Inc., 1994. | spa |
dc.relation.references | [34] Marc J. Madou, Fundamentals of Microfabrication, Second Edi. Boca Raton: CRC Press, 2002. | spa |
dc.relation.references | [35] Miro Dental, “Dental Implants: Facts and Stats,” 2019. https://mirodentalcenter.com/2019/03/06/dental-implants-facts-and-stats/ (accessed Sep. 04, 2021). | spa |
dc.relation.references | [36] R. York, M. Doumit, M. Nganbe, and A. Helal, “Study of mechanical properties of micromachined dental implants,” Can. Metall. Q., vol. 58, no. 1, pp. 56–68, 2019, doi: 10.1080/00084433.2018.1505309. | spa |
dc.relation.references | [37] S. Gupta, V. Dahiya, and P. Shukla, “Surface topography of dental implants: A review,” J. Dent. Implant., vol. 4, no. 1, p. 66, 2014, doi: 10.4103/0974-6781.131009. | spa |
dc.relation.references | [38] P. I. Branemark, “Osseointegration and its experimental background,” J. Prosthet. Dent., vol. 50, no. 3, pp. 399–410, 1983, doi: 10.1016/S0022-3913(83)80101-2. | spa |
dc.relation.references | [39] T. M. Smith, “Current Trends in Dental Morphology Research,” 2014. | spa |
dc.relation.references | [40] M. Perçin, K. Aslantas, I. Ucun, Y. Kaynak, and A. Çicek, “Micro-drilling of Ti-6Al-4V alloy: The effects of cooling/lubricating,” Precis. Eng., vol. 45, pp. 450–462, 2016, doi: 10.1016/j.precisioneng.2016.02.015. | spa |
dc.relation.references | [41] B. Stirn, K. Lee, and D. Dornfeld, “Burr formation in micro-drilling,” Univ. Technol. Aachen (RWTH), …, no. c, pp. 2–5, 2001, [Online]. Available: http://aspe.net:16080/publications/Annual_2001/PDF/POSTERS/PROCESS/MACHINE/1255.PDF. | spa |
dc.relation.references | [42] Y. Ahn and S. H. Lee, “Classification and prediction of burr formation in micro drilling of ductile metals,” Int. J. Prod. Res., vol. 55, no. 17, pp. 4833–4846, 2017, doi: 10.1080/00207543.2016.1254355. | spa |
dc.relation.references | [43] D. A. Dornfeld, “Burr Formation in Micro-machining Aluminum ,” no. DECEMBER 2001, 2015. | spa |
dc.relation.references | [44] K. Lee and D. A. Dornfeld, “Micro-burr formation and minimization through process control,” Precis. Eng., vol. 29, no. 2, pp. 246–252, 2005, doi: 10.1016/j.precisioneng.2004.09.002. | spa |
dc.relation.references | [45] D. Dornfeld and S. Min, “Burrs - Analysis, Control and Removal,” Burrs - Anal. Control Remov., 2010, doi: 10.1007/978-3-642-00568-8. | spa |
dc.relation.references | [46] L. L. Alhadeff, M. B. Marshall, D. T. Curtis, and T. Slatter, “Protocol for tool wear measurement in micro-milling,” Wear, vol. 420–421, pp. 54–67, 2019, doi: 10.1016/j.wear.2018.11.018. | spa |
dc.relation.references | [47] C. F. Wyen, D. Jaeger, and K. Wegener, “Influence of cutting edge radius on surface integrity and burr formation in milling titanium,” Int. J. Adv. Manuf. Technol., vol. 67, no. 1–4, pp. 589–599, 2013, doi: 10.1007/s00170-012-4507-3. | spa |
dc.relation.references | [48] A. Caballero Ruiz, H. R. Siller, L. Ruiz Huerta, G. Garcia Garcia, and E. V. Vázquez, “Calibration of ball nose micro end milling operations for sculptured surfaces machining,” Int. J. Mach. Mach. Mater., vol. 19, no. 6, p. 587, 2017, doi: 10.1504/ijmmm.2017.10009891. | spa |
dc.relation.references | [49] V. Tomas, P. Jozef, K. Mario, and B. Ivan, “The wear measurement process of ball nose end mill in the copy milling operations,” Procedia Eng., vol. 69, pp. 1038–1047, 2014, doi: 10.1016/j.proeng.2014.03.088 | spa |
dc.relation.references | [50] M. Ziberov, M. B. da Silva, M. Jackson, and W. N. P. Hung, “Effect of Cutting Fluid on Micromilling of Ti-6Al-4V Titanium Alloy,” Procedia Manuf., vol. 5, no. 2003, pp. 332–347, 2016, doi: 10.1016/j.promfg.2016.08.029. | spa |
dc.relation.references | [51] A. J. Mian, “Size Effect in Micromachining,” p. 209, 2011, [Online]. Available: https://www.escholar.manchester.ac.uk/uk-ac-man-scw:119779. | spa |
dc.relation.references | [52] B. Z. Balázs, N. Geier, M. Takács, and J. P. Davim, “A review on micro-milling: recent advances and future trends,” Int. J. Adv. Manuf. Technol., vol. 112, no. 3–4, pp. 655–684, 2021, doi: 10.1007/s00170-020-06445-w. | spa |
dc.relation.references | [53] A. Teo, S. Danielson, and T. Georgeou, “High performance machining: A practical approach to high-speed machining,” ASEE Annu. Conf. Expo. Conf. Proc., 2008, doi: 10.18260/1-2--3816. | spa |
dc.relation.references | [54] A. P. Guliáev, Metallography (In Spanish). Moscow: MIR Publishers, 1977. | spa |
dc.relation.references | [55] “INTERNATIONAL STANDARD ISO 8688-2.” International Organization, p. 31, 1989. | spa |
dc.relation.references | [56] ASM Handbook Committee, Metallography and Microstructures, Ninth edit. ASM Publishers, 1985. | spa |
dc.relation.references | [57] ASTM E112, “Standard Test Methods for Determining Average Grain Size E112-10,” Astm E112-10, vol. 96, no. 2004, pp. 1–27, 2010, doi: 10.1520/E0112-10.Copyright. | spa |
dc.relation.references | [58] ASTM Standard, “Standard Test Method for Microindentation Hardness of Materials,” ASTM Int., vol. E384, pp. 1–40, 2017, doi: 10.1520/E0384-17. | spa |
dc.relation.references | [59] “INTERNATIONAL STANDARD ISO 3002-1.” International Organization, p. 62, 1982. | spa |
dc.relation.references | [60] D. C. Montgomery, Design and Analysis of Experiments, Ninth Edit., vol. 106, no. 11. TEMPE, ARIZONA: John Wiley & Sons, Inc., 2017. | spa |
dc.relation.references | [61] S. H. I. Jaffery, M. Khan, L. Ali, and P. T. Mativenga, “Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 230, no. 6, pp. 1017–1034, 2016, doi: 10.1177/0954405414564409. | spa |
dc.relation.references | [62] P. Smid, Programming Handbook Third Edition. 2007. | spa |
dc.relation.references | [63] C. C. . K. H. F. Tai, “A predictive force model in ball-end milling,” vol. 34, no. 7, pp. 959–979, 1993. | spa |
dc.relation.references | [64] G. M. Kim, P. J. Cho, and C. N. Chu, “Cutting force prediction of sculptured surface ball-end milling using Z-map,” Int. J. Mach. Tools Manuf., vol. 40, no. 2, pp. 277–291, 2000, doi: 10.1016/S0890-6955(99)00040-1. | spa |
dc.relation.references | [65] H. Schulz and S. Hock, “High-Speed Milling of Dies and Moulds - Cutting Conditions and Technology,” CIRP Ann. - Manuf. Technol., vol. 44, no. 1, pp. 35–38, 1995, doi: 10.1016/S0007-8506(07)62270-7. | spa |
dc.relation.references | [66] B. Denkena, “Cutting edge geometries,” CIRP Ann. - Manuf. Technol., pp. 631–653, 2014, doi: 10.1016/j.procir.2020.04.028. | spa |
dc.relation.references | [67] B. Denkena and D. Biermann, “CIRP Annals - Manufacturing Technology Cutting edge geometries,” vol. 63, pp. 631–653, 2014. | spa |
dc.relation.references | [68] F. A. Barbashov, Milling Manual (In Spanish), Second Edi. Moscow: MIR Publishers, 1981. | spa |
dc.relation.references | [69] L. Harvey Tool Company, “Conventional milling VS Climb milling.” pp. 11–12, 2011, [Online]. Available: http://www.designask.com/2011/04/conventional-milling-vs-climb-milling/. | spa |
dc.relation.references | [70] Donghaon Stainles Steel, “12L14 free machining Steel.” | spa |
dc.relation.references | [71] A. Otero, “Características AISI/SAE12L14.” mecanizadoenserie.http://www.acerosotero.cl/acero_carbono_sae_12l14.html (accessed May 30, 2019). | spa |
dc.relation.references | [72] Kennametal, “ISO Carbide Inserts. Specifications.” https://www.kennametal.com/hi/products/20478624/47535256/63745063/63745065/63840303/63840328/55907484/100002953.html. (accessed May 30, 2019). | spa |
dc.relation.references | [73] E. Isakov, Cutting data for turning of Steel. New York: Industrial Press Inc, 2009. | spa |
dc.relation.references | [74] J.M.Gere, Mecánica de Materiales, Sexta Ed. Mexico: Editorial Thomson, 2006. | spa |
dc.relation.references | [75] R. de la V. S. Humberto Gutierrez Pulido, Diseño y análisis de experimentos, Segunda ed. México: McGraw-Hill Interamericana, 2008. | spa |
dc.relation.references | [76] M. R. Spiegel, Estadística, Primera Ed. Mexico: McGraw-Hill, 1978. | spa |
dc.relation.references | [77] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median,” J. Exp. Soc. Psychol., vol. 49, no. 4, pp. 764–766, 2013, doi: 10.1016/j.jesp.2013.03.013. | spa |
dc.relation.references | [78] Ya-Lun Chou, Análisis Estadístico, Primera Ed. Mexico: Nueva Editorial Interamericana S. A. de C. V, 1972. | spa |
dc.relation.references | [79] N. H. M. Fauzi, N. A. Shuaib, Z. A. Zailani, A. R. Irfan, and S. A. Sobri, “Micro drilling of titanium Ti-6Al-4V: Influence of the cutting parameters on tool life,” AIP Conf. Proc., vol. 2129, no. July, 2019, doi: 10.1063/1.5118201. | spa |
dc.relation.references | [80] F. R. Wong, S. Sharif, K. Kamdani, and E. A. Rahim, “The effect of drill point geometry and drilling technique on tool life when drilling titanium alloy , Ti-6Al-4V,” Proc. Int. Conf. Mech. Manuf. Eng. (ICME2008), 21– 23 May 2008, no. May, pp. 21–23, 2008. | spa |
dc.relation.references | [81] A. Beranoagirre, G. Urbikain, R. Marticorena, A. Bustillo, and L. N. L. de Lacalle, “Sensitivity analysis of tool wear in drilling of Titanium Aluminides,” Metals (Basel)., vol. 9, no. 3, 2019, doi: 10.3390/met9030297. | spa |
dc.relation.references | [82] V. D. Kuznetsov, “Metal Transfer and Build-Up in Friction and Cutting,” Met. Transf. Build-Up Frict. Cut., 1966, doi: 10.1016/c2013-0-12463-4. | spa |
dc.relation.references | [83] V. Tomoiagă, M. S. Popa, S. Sattel, G. Conțiu, V. Vereș, and M. Bozga, “Influence of the cutting edge microgeometry in drilling operation of 42CrMo4 and X5CrNi18-10,” vol. 01011, pp. 1–6, 2018. | spa |
dc.relation.references | [84] C. Wyen and W. Knapp, “A new method for the characterisation of rounded cutting edges,” pp. 899–914, 2012, doi: 10.1007/s00170-011-3555-4. | spa |
dc.relation.references | [85] M. Balaji, K. Venkata Rao, N. Mohan Rao, and B. S. N. Murthy, “Optimization of drilling parameters for drilling of TI-6Al-4V based on surface roughness, flank wear and drill vibration,” Meas. J. Int. Meas. Confed., vol. 114, no. June 2020, pp. 332–339, 2018, doi: 10.1016/j.measurement.2017.09.051. | spa |
dc.relation.references | [86] A. M. Abdelhafeez, S. L. Soo, D. K. Aspinwall, A. Dowson, and D. Arnold, “Burr formation and hole quality when drilling titanium and aluminium alloys,” Procedia CIRP, vol. 37, pp. 230–235, 2015, doi: 10.1016/j.procir.2015.08.019. | spa |
dc.relation.references | [87] Y. Choi, “Process monitoring in end milling,” pp. 1–129, 2003, [Online]. Available: http://lib.dr.iastate.edu/rtd. | spa |
dc.relation.references | [88] C. Bandapalli, B. M. Sutaria, D. V. Prasad Bhatt, and K. K. Singh, “Tool wear analysis of micro end mills - Uncoated and PVD coated TiAlN & AlTiN in high speed micro milling of titanium alloy - Ti-0.3Mo-0.8Ni,” Procedia CIRP, vol. 77, no. January, pp. 626–629, 2018, doi: 10.1016/j.procir.2018.08.191. | spa |
dc.relation.references | [89] D. Baldo, S. L. M. Ribeiro Filho, C. H. Lauro, A. C. dos Santos Delfino, and L. C. Brandao, “Analysis of Surface Roughness in Micro Milling of Ti-6Al-4V Titanium Alloy,” Adv. Mater. Res., vol. 1079–1080, pp. 3–6, 2014, doi: 10.4028/www.scientific.net/amr.1079-1080.3. | spa |
dc.relation.references | [90] P. Kumar, V. Bajpai, and R. Singh, “Burr height prediction of Ti6Al4V in high speed micro-milling by mathematical modeling,” Manuf. Lett., vol. 11, pp. 12–16, 2017, doi: 10.1016/j.mfglet.2016.10.001. | spa |
dc.relation.references | [91] T. Pratap and K. Patra, “Micromilling of Ti-6Al-4V Titanium Alloy Using Ball-end Tool,” IOP Conf. Ser. Mater. Sci. Eng., vol. 229, no. 1, pp. 0–6, 2017, doi: 10.1088/1757-899X/229/1/012011. | spa |
dc.relation.references | [92] P. Kumar, M. Kumar, V. Bajpai, and N. K. Singh, “Recent advances in characterization, modeling and control of burr formation in micro-milling,” Manuf. Lett., vol. 13, pp. 1–5, 2017, doi: 10.1016/j.mfglet.2017.04.002. | spa |
dc.relation.references | [93] M. J. Chen, H. B. Ni, Z. J. Wang, and Y. Jiang, “Research on the modeling of burr formation process in micro-ball end milling operation on Ti-6Al-4V,” Int. J. Adv. Manuf. Technol., vol. 62, no. 9–12, pp. 901–912, 2012, doi: 10.1007/s00170-011-3865-6. | spa |
dc.relation.references | [94] Q.Guo, “Research on the methods and technologies for high performance peripheral machining of complex surface,” Dalian Univ. Technol., pp. 1–5, 2013. | spa |
dc.relation.references | [95] W. Shan, “Parameter Setting for Dynamic Milling of Aluminum Alloy,” vol. 100, no. Icmeim, pp. 357–361, 2017. | spa |
dc.relation.references | [96] Yu. Lakhtin, Engineering physical metallurgyand heat-treatment, Second edi. Moscow: MIR Publishers, 1979. | spa |
dc.relation.references | [97] P. Kuryło, “The Study of Residual Stresses in the Surface Layer,” Acta Mech. Slovaca, vol. 17, no. 4, pp. 6–15, 2013, doi: 10.21496/ams.2013.040. | spa |
dc.relation.references | [98] N. F. Anoshkin, Aleaciones de titanio. Metalografía de aleación de titanio. (En Ruso). Moscú: Metalurgía, 1980. | spa |
dc.relation.references | [99] S. Sarkar and R. Das, “Determination of structural elements of synthesized silver nano-hexagon from X-ray diffraction analysis,” Indian J. Pure Appl. Phys., vol. 56, no. 10, pp. 765–772, 2018. | spa |
dc.relation.references | [100] S. Takaki, F. Jiang, T. Masumura, and T. Tsuchiyama, “Correction of elastic anisotropy in williamson-hall plots by diffraction young’s modulus and direct fitting method,” ISIJ Int., vol. 58, no. 4, pp. 769–775, 2018, doi: 10.2355/isijinternational.ISIJINT-2017-642. | spa |
dc.relation.references | [101] S. Takaki, T. Masumura, and T. Tsuchiyama, “Dislocation characterization by the direct-fitting/modified Williamson–Hall (DF/mWH) method in cold worked ferritic steel,” ISIJ Int., vol. 59, no. 3, pp. 567–572, 2019, doi: 10.2355/isijinternational.ISIJINT-2018-623. | spa |
dc.relation.references | [102] A. Dutta Gupta et al., “Proton irradiation studies on pure Ti and Ti-6Al-4V,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 387, pp. 63–72, 2016, doi: 10.1016/j.nimb.2016.09.010. | spa |
dc.relation.references | [103] A. Mahboubi Soufiani, F. Karimzadeh, and M. H. Enayati, “Formation mechanism and characterization of nanostructured Ti6Al4V alloy prepared by mechanical alloying,” Mater. Des., vol. 37, pp. 152–160, 2012, doi: 10.1016/j.matdes.2011.12.044. | spa |
dc.relation.references | [104] A. M. Stapleton, S. L. Raghunathan, I. Bantounas, H. J. Stone, T. C. Lindley, and D. Dye, “Evolution of lattice strain in Ti-6Al-4V during tensile loading at room temperature,” Acta Mater., vol. 56, no. 20, pp. 6186–6196, 2008, doi: 10.1016/j.actamat.2008.08.030. | spa |
dc.relation.references | [105] Q. Chen, L. Liu, C. Zhu, and K. Chen, “Mesomechanical modeling and numerical simulation of the diffraction elastic constants for Ti6Al4V polycrystalline alloy,” Metals (Basel)., vol. 8, no. 10, 2018, doi: 10.3390/met8100822. | spa |
dc.relation.references | [106] G. S. Srinivasu and N. R. Raja, “Finite Element Modeling of Stress Strain Curve and Micro Stress and Micro Strain Distributions of Titanium Alloys— A Review,” J. Miner. Mater. Charact. Eng., vol. 11, no. 10, pp. 953–960, 2012, doi: 10.4236/jmmce.2012.1110094. | spa |
dc.relation.references | [107] H. S. Lim, A. S. Kumar, and M. Rahman, “Improvement of form accuracy in hybrid machining of microstructures,” J. Electron. Mater., vol. 31, no. 10 SPEC., pp. 1032–1038, 2002, doi: 10.1007/s11664-002-0039-1. | spa |
dc.relation.references | [108] Jinn Fa Machine Industrial co, JSL/26/32AB7B CNC SWISS TYPE LATHE. Yuanchung Village: Jinn Fa, 2006. | spa |
dc.relation.references | [109] L. Z. Qiang, “Finite difference calculations of the deformations of multi-diameter workpieces during turning,” J. Mater. Process. Technol., pp. 310–316, 2000. | spa |
dc.relation.references | [110] O. M. L. L. S. Melo., Diseño de experimentos [Métodos y Aplicaciones]. Bogotá: Universidad Nacional de Colombia, 2000. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios | spa |
dc.subject.ddc | 680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivos | spa |
dc.subject.other | Máquinas en la industria | |
dc.subject.other | Industrial equipment | |
dc.subject.proposal | Micro-maquinado | spa |
dc.subject.proposal | Titanio Ti-6Al-4V | spa |
dc.subject.proposal | AISI 12L14 | spa |
dc.subject.proposal | Método de Superficie de Respuesta | spa |
dc.subject.proposal | Mecánica de materiales | spa |
dc.subject.proposal | Micro-machining | eng |
dc.subject.proposal | Ti-6Al-4V titanium | eng |
dc.subject.proposal | 12L14 Steel | eng |
dc.subject.proposal | Surface Response Method | eng |
dc.subject.proposal | Materials mechanics | eng |
dc.title | Micro-maquinado multi-ejes CNC aplicado a implantes dentales en aleación de Titanio Ti-6Al-4V | spa |
dc.title.translated | Multi-axis CNC micro-machining applied to dental implants in titanium alloy Ti-6Al-4V | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020745830.2021.pdf
- Tamaño:
- 4.83 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: