Determinación de anchos de banda y espesores óptimos de materiales perovskita(PVK) para celdas solares tándem de 2 terminales del tipo PVK/Si y PVK/CuInSe2

dc.contributor.advisorMorales Acevedo, Arturospa
dc.contributor.advisorBernal Correa, Robertospa
dc.contributor.authorAguirre Serrano, Sergiospa
dc.date.accessioned2025-04-10T15:42:39Z
dc.date.available2025-04-10T15:42:39Z
dc.date.issued2025-04-09
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa investigación sobre celdas solares tándem que incluyen materiales perovskita ha experimentado un notable aumento debido a su potencial de alta eficiencia, ya que el ancho de banda prohibida de los materiales perovskita puede ajustarse en un amplio rango. En este trabajo, nos enfocamos en modelar celdas tándem mediante un modelo teórico que puede aplicarse a celdas tándem con múltiples uniones. Como ejemplo, mostramos resultados para celdas solares tándem de dos terminales compuestas por dos y tres uniones, basadas en silicio y CuInSe2 (CIS), considerando los diseños PVK/Si, PVK/CIS, PVK/PVK/Si y PVK/PVK/CIS. Los resultados muestran el límite como función del ancho de banda prohibida para las uniones de perovskita, alcanzando eficiencias máximas alrededor del 50% para las celdas de tres uniones PVK/PVK/Si y PVK/PVK/CIS. En el caso más realista, donde se incluye la absorción parcial por parte de los materiales perovskita, la eficiencia se estima considerando tanto el ancho de banda prohibida como el espesor de las uniones de perovskita, manteniendo constantes los espesores de las uniones de silicio y CIS. En este caso, se muestra que se pueden alcanzar eficiencias superiores al 42.5% para celdas solares tándem de dos uniones (cuando se eligen adecuadamente el espesor y el ancho de banda prohibida de la perovskita). De manera similar, la eficiencia práctica posible para las celdas solares de tres uniones PVK/PVK/Si y PVK/PVK/CIS puede llegar hasta el 47.5% (Texto tomado de la fuente).spa
dc.description.abstractResearch on tandem cells that include perovskite materials has seen a remarkable increase due to their potential high efficiency since the bandgap of the perovskite materials can be fine-tuned in a wide range. In this work, we focus on modeling tandem cells through a theoretical model that can be applied to tandem cells with multiple junctions. We show, as an example, results for two-terminal solar cells consisting of two and three junctions, based on Silicon and CuInSe2 (CIS), considering the PVK/Si, PVK/CIS, PVK/PVK/Si, and PVK/PVK/CIS design. The results show the limit as a function of the bandgap for the perovskite junctions, reaching maximum efficiencies around 50% for the three-junction cells PVK/PVK/Si and PVK/PVK/CIS. In the more realistic case where partial absorption by the absorbing perovskite materials is included, the efficiency is estimated considering both the bandgap and thickness of the perovskite junctions, while keeping the thicknesses of the Si and CIS junctions constant. In this case, it is shown that efficiencies greater than 42.5% can be achieved for two-junction solar cells (when the appropriate thickness and perovskite bandgap are chosen). Similarly, the possible practical efficiency for the three-junction solar cells PVK/PVK/Si and PVK/PVK/CIS can be up to 47.5%.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ciencias Físicaspa
dc.description.researchareaEstado Solidospa
dc.format.extent51 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87929
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesL. Guarieiro, J. dos Anjos, L. da Silva, A. Santos, E. Calixto, F. Pessoa, J. de Almeida, M. An- drade Filho, F. Marinho, G. da Rocha, and J. de Andrade, “Technological perspectives and economic aspects of green hydrogen in the energetic transition: Challenges for chemistry,” Journal of the Brazilian Chemical Society, 2022.spa
dc.relation.referencesS. Harichandan, S. K. Kar, R. Bansal, S. K. Mishra, M. S. Balathanigaimani, and M. Dash, “Energy transition research: A bibliometric mapping of current findings and direction for future research,” Cleaner Production Letters, vol. 3, p. 100026, Dec. 2022.spa
dc.relation.referencesS. Akhil, S. Akash, A. Pasha, B. Kulkarni, M. Jalalah, M. Alsaiari, F. A. Harraz, and R. G. Balakrishna, “Review on perovskite silicon tandem solar cells: Status and prospects 2t, 3t and 4t for real world conditions,” Materials amp; Design, vol. 211, p. 110138, Dec. 2021.spa
dc.relation.referencesE. L. Warren, W. E. McMahon, M. Rien¨acker, K. T. VanSant, R. C. Whitehead, R. Peibst, and A. C. Tamboli, “A taxonomy for three-terminal tandem solar cells,” ACS Energy Letters, vol. 5, p. 1233–1242, Mar. 2020spa
dc.relation.referencesT. Leijtens, K. A. Bush, R. Prasanna, and M. D. McGehee, “Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors,” Nature Energy, vol. 3, p. 828–838, July 2018.spa
dc.relation.referencesPerovskite Solar Cells — energy.gov.” https://www.energy.gov/eere/solar/perovskite-solar- cells. [Accessed 22-02-2024].spa
dc.relation.referencesL. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka, and V. Biju, “Synthesis, optoelec- tronic properties and applications of halide perovskites,” Chemical Society Reviews, vol. 49, no. 10, pp. 2869–2885, 2020.spa
dc.relation.referencesZ. Shi and A. Jayatissa, “Perovskites-based solar cells: A review of recent progress, materials and processing methods,” Materials, vol. 11, p. 729, May 2018spa
dc.relation.referencesY. Li, Y. Lu, X. Huo, D. Wei, J. Meng, J. Dong, B. Qiao, S. Zhao, Z. Xu, and D. Song, “Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning,” RSC Advances, vol. 11, no. 26, p. 15688–15694, 2021.spa
dc.relation.referencesO. M. Saif, A. H. Zekry, M. Abouelatta, and A. Shaker, “A comprehensive review of tandem solar cells integrated on silicon substrate: Iii/v vs perovskite,” Silicon, vol. 15, p. 6329–6347, May 2023.spa
dc.relation.referencesN. N. Lal, Y. Dkhissi, W. Li, Q. Hou, Y. Cheng, and U. Bach, “Perovskite tandem solar cells,” Advanced Energy Materials, vol. 7, May 2017.spa
dc.relation.referencesT. Todorov, T. Gershon, O. Gunawan, Y. S. Lee, C. Sturdevant, L.-Y. Chang, and S. Guha, “Monolithic perovskite-cigs tandem solar cells via in situ band gap engineering,” Advanced Energy Materials, vol. 5, no. 23, p. 1500799, 2015spa
dc.relation.referencesW. Shockley, “The shockley-queisser limit,” J. Appl. Phys, vol. 32, no. 3, pp. 510–519, 1961.spa
dc.relation.referencesA. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” Journal of physics D: Applied physics, vol. 13, no. 5, p. 839, 1980.spa
dc.relation.referencesM. H. Futscher and B. Ehrler, “Efficiency limit of perovskite/si tandem solar cells,” ACS Energy Letters, vol. 1, no. 4, pp. 863–868, 2016.spa
dc.relation.referencesP. Zhao, L. Feng, Z. Lin, J. Wang, J. Su, Z. Hu, J. Zhang, X. Ouyang, J. Chang, and Y. Hao, “Theoretical analysis of two-terminal and four-terminal perovskite/copper indium gallium selenide tandem solar cells,” Solar RRL, vol. 3, no. 11, p. 1900303, 2019.spa
dc.relation.referencesD. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye, J. Yoon, C. Wu, M. Sanghadasa, S. F. Liu, and S. Priya, “28.3 %-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell,” Nano Energy, vol. 84, p. 105934, 2021spa
dc.relation.referencesM. Jost, E. Kohnen, A. Al-Ashouri, T. Bertram, S. Tomsic, A. Magomedov, E. Kasparavicius, T. Kodalle, B. Lipovsek, V. Getautis, et al., “Perovskite/cigs tandem solar cells: from certified 24.2 % toward 30 % and beyond,” ACS energy letters, vol. 7, no. 4, pp. 1298–1307, 2022.spa
dc.relation.referencesN. Shrivastav, J. Madan, and R. Pandey, “A short study on recently developed tandem solar cells,” Materials Today: Proceedings, Mar. 2023.spa
dc.relation.referencesA. Morales-Acevedo, “Fundamentals of solar cell physics revisited: Common pitfalls when reporting calculated and measured photocurrent density, open-circuit voltage, and efficiency of solar cells,” Solar Energy, vol. 262, p. 111774, Sept. 2023.spa
dc.relation.referencesS. Yadav, M. A. Kareem, H. K. Kodali, D. Agarwal, A. Garg, A. Verma, and K. S. Nalwa, “Optoelectronic modeling of all-perovskite tandem solar cells with design rules to achieve >30 % efficiency,” Solar Energy Materials and Solar Cells, vol. 242, p. 111780, Aug. 2022.spa
dc.relation.referencesK. T. VanSant, A. C. Tamboli, and E. L. Warren, “Iii-v-on-si tandem solar cells,” Joule, vol. 5, p. 514–518, Mar. 2021.spa
dc.relation.referencesE. Radziemska, “Thermal performance of si and gaas based solar cells and modules: a re- view,” Progress in Energy and Combustion Science, vol. 29, p. 407–424, Jan. 2003.spa
dc.relation.referencesX. Zhang, M. E. Turiansky, and C. G. Van de Walle, “Correctly assessing defect tolerance in halide perovskites,” The Journal of Physical Chemistry C, vol. 124, p. 6022–6027, Feb. 2020.spa
dc.relation.referencesJ. Nelson, The physics of Solar Cells. Imperial College Press, 2013.spa
dc.relation.referencesP. Wurfel and U. Wurfel, Physics of solar cells: From basic principles to Advanced Concepts. Wiley-VCH, 2016.spa
dc.relation.referencesG. P. Agrawal and N. K. Dutta, Recombination Mechanisms in Semiconductors, p. 74–146. Springer US, 1993.spa
dc.relation.referencesS. A. P. Mahajan, Solar cells: Types and applications. Springer Nature, 2023.spa
dc.relation.referencesJ. Bisquert, The physics of solar cells perovskite organics, and photovoltaic fundamentals. CRC Press, 2018.spa
dc.relation.referencesA. Smets, K. J¨ager, O. Isabella, R. Swaaij, van, and M. Zeman, Solar energy : the physics and engineering of photovoltaic conversion technologies and systems. UIT, 2016.spa
dc.relation.referencesC. Kittel and P. McEuen, Introduction to Solid State Physics. John Wiley & Sons, 2018.spa
dc.relation.referencesL. P. Lewis Fraas, Solar cells and their applications. Wiley A Jhon Wiley sons, INC, 2010.spa
dc.relation.referencesS. Aˇsmontas and M. Mujahid, “Recent progress in perovskite tandem solar cells,” Nanoma- terials, vol. 13, p. 1886, June 2023.spa
dc.relation.references“Explained: Why perovskites could take solar cells to new heights — news.mit.edu.” https://news.mit.edu/2022/perovskites-solar-cells-explained-0715. [Accessed 22-02-2024].spa
dc.relation.referencesV. M. Le Corre, T. S. Sherkar, M. Koopmans, and L. J. A. Koster, “Identification of the dominant recombination process for perovskite solar cells based on machine learning,” Cell Reports Physical Science, vol. 2, p. 100346, Feb. 2021.spa
dc.relation.referencesC. Li, Z. Song, C. Chen, C. Xiao, B. Subedi, S. P. Harvey, N. Shrestha, K. K. Subedi, L. Chen, D. Liu, Y. Li, Y.-W. Kim, C.-s. Jiang, M. J. Heben, D. Zhao, R. J. Ellingson, N. J. Podraza, M. Al-Jassim, and Y. Yan, “Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability,” Natu- re Energy, vol. 5, p. 768–776, Oct. 2020.spa
dc.relation.referencesQ. Liu, Y.-C. Hsiao, M. Ahmadi, T. Wu, L. Liu, S. Haacke, H. Wang, and B. Hu, “N and p-type properties in organo-metal halide perovskites studied by seebeck effects,” Organic Electronics, vol. 35, p. 216–220, Aug. 2016.spa
dc.relation.referencesS. Khatoon, S. Kumar Yadav, V. Chakravorty, J. Singh, R. Bahadur Singh, M. S. Hasnain, and S. M. Hasnain, “Perovskite solar cell’s efficiency, stability and scalability: A review,” Materials Science for Energy Technologies, vol. 6, p. 437–459, 2023.spa
dc.relation.referencesA. Morales-Acevedo, “Ultra-thin perovskite solar cells analytical model involving radiative and nonradiative carrier recombination mechanisms,” physica status solidi (b), vol. 256, Aug. 2019.spa
dc.relation.referencesN.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Materials Today, vol. 18, p. 65–72, Mar. 2015.spa
dc.relation.referencesN. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nature Materials, vol. 13, p. 897–903, July 2014.spa
dc.relation.referencesT. Soto-Montero, S. Kralj, W. Soltanpoor, J. S. Solomon, J. S. G´omez, K. P. S. Zanoni, A. Pa- liwal, H. J. Bolink, C. Baeumer, A. P. M. Kentgens, and M. Morales-Masis, “Single-source vapor-deposition of ma1–xfaxpbi3 perovskite absorbers for solar cells,” Advanced Functional Materials, vol. 34, Mar. 2023.spa
dc.relation.referencesZ. Wu, E. Bi, C. Li, L. Chen, Z. Song, and Y. Yan, “Scalable two-step production of high- efficiency perovskite solar cells and modules,” Solar RRL, vol. 7, Nov. 2022.spa
dc.relation.referencesN. Usami, Types of silicon–germanium (SiGe) bulk crystal growth methods and their appli- cations, p. 72–82. Elsevier, 2011.spa
dc.relation.referencesJ. Pettersson, T. T¨orndahl, C. Platzer-Bj¨orkman, A. Hultqvist, and M. Edoff, “The influence of absorber thickness on cu(in,ga)se2 solar cells with different buffer layers,” IEEE Journal of Photovoltaics, vol. 3, no. 4, pp. 1376–1382, 2013.spa
dc.relation.referencesN. Mufti, T. Amrillah, A. Taufiq, Sunaryono, Aripriharta, M. Diantoro, Zulhadjri, and H. Nur, “Review of cigs-based solar cells manufacturing by structural engineering,” Solar Energy, vol. 207, p. 1146–1157, Sept. 2020.spa
dc.relation.referencesM. A. Ruiz-Preciado, F. Gota, P. Fassl, I. M. Hossain, R. Singh, F. Laufer, F. Schackmar, T. Feeney, A. Farag, I. Allegro, H. Hu, S. Gharibzadeh, B. A. Nejand, V. S. Gevaerts, M. Si- mor, P. J. Bolt, and U. W. Paetzold, “Monolithic two-terminal perovskite/cis tandem solar cells with efficiency approaching 25 %,” ACS Energy Letters, vol. 7, p. 2273–2281, June 2022.spa
dc.relation.referencesS. Paul, R. Lopez, M. D. Mia, C. H. Swartz, and J. V. Li, “A simulation study on radiative recombination analysis in cigs solar cell,” in 2017 IEEE 44th Photovoltaic Specialist Confe- rence (PVSC), IEEE, June 2017.spa
dc.relation.referencesT. Klinkert, M. Jubault, F. Donsanti, D. Lincot, and J.-F. Guillemoles, “Ga gradients in cu(in, ga)se2: Formation, characterization, and consequences,” Journal of Renewable and Sustaina- ble Energy, vol. 6, Jan. 2014.spa
dc.relation.referencesN. Mufti, A. S. P. Dewi, R. K. Putri, Saparullah, A. Taufiq, Sunaryono, and H. Nur, “Selenization process in simple spray-coated cigs film,” Ceramics International, vol. 48, p. 21194–21200, Aug. 2022.spa
dc.relation.referencesM. Saeed and O. I. Gonz´alez Pe˜na, “Mass transfer study on improved chemistry for electrode- position of copper indium gallium selenide (cigs) compound for photovoltaics applications,” Nanomaterials, vol. 11, p. 1222, May 2021.spa
dc.relation.referencesM. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, and X. Hao, “Solar cell efficiency tables (version 62),” Progress in Photovoltaics: Research and Applications, vol. 31, p. 651–663, June 2023.spa
dc.relation.referencesR. Swanson, “Approaching the 29 % limit efficiency of silicon solar cells,” in Conferen- ce Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., PVSC-05, p. 889–894, IEEE.spa
dc.relation.referencesA. Al-Ashouri, E. K¨ohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. M´arquez, A. B. Morales Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Joˇst, G. Matiˇc, B. Rech, R. Schlatmann, M. Topiˇc, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, and S. Albrecht, “Monolithic perovskite/silicon tandem solar cell with gt;29 % efficiency by enhanced hole extraction,” Science, vol. 370, p. 1300–1309, Dec. 2020.spa
dc.relation.referencesJ. W. Precker and M. A. da Silva, “Experimental estimation of the band gap in silicon and germanium from the temperature–voltage curve of diode thermometers,” American Journal of Physics, vol. 70, p. 1150–1153, Oct. 2002.spa
dc.relation.referencesG. E. Eperon, M. T. H¨orantner, and H. J. Snaith, “Metal halide perovskite tandem and multiple-junction photovoltaics,” Nature Reviews Chemistry, vol. 1, Nov. 2017.spa
dc.relation.referencesI. M. Peters, C. D. Rodr´ıguez Gallegos, L. L¨uer, J. A. Hauch, and C. J. Brabec, “Practical limits of multijunction solar cells,” Progress in Photovoltaics: Research and Applications, vol. 31, p. 1006–1015, May 2023.spa
dc.relation.referencesA. Morales-Acevedo, “Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells,” Solar Energy Materials and Solar Cells, vol. 93, p. 41–44, Jan. 2009.spa
dc.relation.referencesS. Minoura, K. Kodera, T. Maekawa, K. Miyazaki, S. Niki, and H. Fujiwara, “Dielectric fun- ction of cu(in, ga)se2-based polycrystalline materials,” Journal of Applied Physics, vol. 113, Feb. 2013.spa
dc.relation.references“Optical Properties of Silicon — PVEducation — pveducation.org.” https://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon. [Acces- sed 07-03-2024].spa
dc.relation.referencesG. Szab´o, N.-G. Park, F. De Angelis, and P. V. Kamat, “Are perovskite solar cells reaching the efficiency and voltage limits?,” ACS Energy Letters, vol. 8, p. 3829–3831, Sept. 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembENERGIA SOLARspa
dc.subject.lembSolar energyeng
dc.subject.lembSILICIOspa
dc.subject.lembSiliconeng
dc.subject.lembCONDUCTIVIDAD ELECTRICAspa
dc.subject.lembElectric conductivityeng
dc.subject.lembSEMICONDUCTORESspa
dc.subject.lembSemiconductorseng
dc.subject.lembDETECTORES DE CRISTALspa
dc.subject.lembCrystal detectorseng
dc.subject.lembANALISIS ESPECTRALspa
dc.subject.lembSpectrum analysiseng
dc.subject.lembCELULAS FOTOVOLTAICASspa
dc.subject.lembPhotovoltaic cellseng
dc.subject.lembCELULAS SOLARESspa
dc.subject.lembSolar cellseng
dc.subject.proposalCelda solar tándemspa
dc.subject.proposalUnionesspa
dc.subject.proposalPerovskitaspa
dc.subject.proposalCISspa
dc.subject.proposalSiliciospa
dc.subject.proposalDos terminalesspa
dc.subject.proposalAM 1.5.spa
dc.subject.proposalTandem solar celleng
dc.subject.proposalJunctionseng
dc.subject.proposalPerovskiteeng
dc.subject.proposalSiliconeng
dc.subject.proposalTwo terminalseng
dc.titleDeterminación de anchos de banda y espesores óptimos de materiales perovskita(PVK) para celdas solares tándem de 2 terminales del tipo PVK/Si y PVK/CuInSe2
dc.title.translatedDetermination of optimal bandgaps and thicknesses of perovskite (PVK) materials for two-terminal tandem solar cells of the PVK/Si and PVK/CuInSe2 typeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053844729.2025.pdf
Tamaño:
1.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: