Densidad de estados y transporte eléctrico en superconductores y sistemas periódicos nanoestructurados
dc.contributor.advisor | Gómez Páez, Shirley | |
dc.contributor.advisor | Javier Herrera, William | |
dc.contributor.author | Martínez Montero, Camilo Andrés | |
dc.contributor.researchgroup | Superconductividad y nanotecnología | spa |
dc.date.accessioned | 2021-10-06T17:51:55Z | |
dc.date.available | 2021-10-06T17:51:55Z | |
dc.date.issued | 2021 | |
dc.description | ilustraciones, gráficas | spa |
dc.description.abstract | En este trabajo analizamos el efecto de un potencial de pares periódico sobre la densidad de estados y las propiedades de transporte en superconductores no convencionales, así como el efecto de superredes periódicas semi-infinitas o finitas que se presentan en heteroestructuras conformadas por grafeno y superconductores. Se analiza un material superconductor con un potencial de pares periódico en una red cuadrada, encontrado las bandas de energía y la densidad de estados. Se encuentran y analizan la aparición de nuevas brechas de energía, que no aparecen en sistemas homogéneos, las cuales pueden ser relevantes cerca de la temperatura crítica. Para sistemas basados en grafeno se estudian superredes de bloques $pn$ acopladas a un superconductor, encontrando que el número de nuevos puntos de Dirac no es afectado por la región superconductora, pero debido a las reflexiones de Andreev locales, se puede determinar su aparición e incrementar su intensidad, lo cual podría utilizarse para su detección. Adicionalmente se analizan los casos de bloques pn asimétricos en voltajes "gate, donde se demuestra que se puede recobrar el caso simétrico haciendo un cambio en el dopaje efectivo en la lámina de grafeno, mientras que cuando los anchos son asimétricos los nuevos puntos de Dirac pueden no crearse. Se analizan los mapas de probabilidad de transmisión electrón-electrón y electrón-hueco en sistemas de lentes de Veselago GSG y G-SL-S-SL-G, con G grafeno dopado tipo n, SL una superred y S un superconductor dopado tipo p. En estos sistemas los puntos focales pueden ser mejorados cambiando los parámetros del sistema, adicionalmente, con la introducción de las superredes se puede colimar la corriente de electrones y que la señal de enfoque de huecos sea mayoritaria. Con bicapas de grafeno se estudian las lentes de Veselago encontrando cómo los fenómenos de interferencia entre las dos monocapas afectan los mapas de probabilidad de transmisión electrón-electrón, creando diferencias respecto a los resultados con monocapas de grafeno. (Texto tomado de la fuente). | spa |
dc.description.abstract | In this work we analyze the effect of a periodic pair potential on the density of states and transport properties in unconventional superconductors. The effect of semi-infinite or finite periodic superlattices in heterostructures formed by graphene and superconductors is also studied. A two-dimensional superconductor with a periodic pair potential in a square lattice is analyzed, finding the energy bands and the density of states. The appearance of new energy gaps, which do not appear for homogeneous systems, and which may be relevant near the critical temperature, are found and analyzed. Block $ pn $ superlattices are studied for graphene-based systems coupled to a superconductor. Thus, the number of new Dirac points is not affected by the superconducting region; however, due to local Andreev reflections, its emergence can be determined, and its intensity increased, which could be used for its detection. In addition, the cases of asymmetric $ pn $ blocks at gate voltages are analyzed, where the symmetric case can be recovered by making a change in the effective doping in the graphene sheet, while no new Dirac points can be created when the widths are asymmetric. The electron-electron and electron-hole transmission probability maps are analyzed in Veselago $GSG$ and $ G-SL-S-SL-G $ lens systems, with $ G $ doped graphene type $ n $, $ SL $ a superlattice and $ S $ a $ p $-type doped superconductor. In these systems, the focal points can be improved by changing the system parameters. Additionally, with the introduction of the superlattice, the electron current can be collimated and the hole focusing signal can be increased. Veselago lenses with graphene bilayers are studied, showing that the interference between the two monolayers affects the electron-electron transmission probability maps, creating differences concerning the results with graphene monolayers. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Física | spa |
dc.description.researcharea | Estado sólido | spa |
dc.format.extent | xv, 136 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80401 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Física | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Física | spa |
dc.relation.references | [1] J. Bardeen, L. N. Cooper, y J. R. Schrieffer, “Microscopic theory of superconductivity,” Phys. Rev., vol. 106, p. 16, 1957. https://link.aps.org/doi/10.1103/PhysRev.106.162 | spa |
dc.relation.references | [3] P. Monthoux, D. Pines, y G. G. Lonzarich, “Superconductivity without phonons,” Nature, vol. 450, no. 7173, pp. 1177–1183, Dec 2007. https: //doi.org/10.1038/nature06480 | spa |
dc.relation.references | [4] H. Mohammadpour y A. Asgari, “Crossed andreev reflection in graphene normal–superconductor–normal structures with pseudo-diffusive interfaces,” Physics Letters A, vol. 375, no. 10, pp. 1339 – 1343, 2011. http://www.sciencedirect.com/ science/article/pii/S0375960111000739 | spa |
dc.relation.references | [5] H. Mohammadpour y A. Asgari, “Enhanced nonlocal andreev reflection in f—s—f graphene spin-valve,” Physica C: Superconductivity and its Applications, vol. 519, 2015. http://www.sciencedirect.com/science/article/pii/S0921453415002646 | spa |
dc.relation.references | [6] J. Cayssol, “Crossed andreev reflection in a graphene bipolar transistor,” Phys. Rev. Lett., vol. 100, p. 147001, 2008. https://link.aps.org/doi/10.1103/PhysRevLett.100.147001 | spa |
dc.relation.references | [7] B. Braunecker, P. Burset, y A. Levy Yeyati, “Entanglement detection from conductance measurements in carbon nanotube cooper pair splitters,” Phys. Rev. Lett., vol. 111, p. 136806, 2013. https://link.aps.org/doi/10.1103/PhysRevLett.111.136806 | spa |
dc.relation.references | [8] L. G. Herrmann, F. Portier, P. Roche, A. L. Yeyati, T. Kontos, y C. Strunk, “Carbon nanotubes as cooper-pair beam splitters,” Phys. Rev. Lett., vol. 104, p. 026801, 2010. https://link.aps.org/doi/10.1103/PhysRevLett.104.026801 | spa |
dc.relation.references | [9] J. Wang y S. Liu, “Crossed andreev reflection in a zigzag graphene nanoribbon- superconductor junction,” Phys. Rev. B, vol. 85, p. 035402, Jan 2012. https://link.aps.org/doi/10.1103/PhysRevB.85.035402 | spa |
dc.relation.references | [10] C. Bena, S. Vishveshwara, L. Balents, y M. P. A. Fisher, “Quantum entanglement in carbon nanotubes,” Phys. Rev. Lett., vol. 89, p. 037901, Jun 2002. https://link.aps.org/doi/10.1103/PhysRevLett.89.037901 | spa |
dc.relation.references | [11] L. Hofstetter, S. Csonka, J. Nyg˚ard, y C. Sch¨onenberger, “Cooper pair splitter realized in a two-quantum-dot y-junction,” Nature volume, vol. 461, 2009. https://doi.org/10.1038/nature08432 | spa |
dc.relation.references | [12] A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, y H. Shtrikman, “High-efficiency cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation,” Nature Communications, vol. 3, no. 1, p. 1165, Nov 2012. https://doi.org/10.1038/ncomms2169 | spa |
dc.relation.references | [13] A. Wasserman, “Efecto del potencial de la red cristalina sobre el espectro de energía de las cuasipartículas en un superconductor,” Tesis de pregrado, Colombia, 1999. | spa |
dc.relation.references | [14] C. Martínez, “Espectro de energía de superconductores periódicos,” Tesis de maestría, Bogota D.C. Colombia, 2014. | spa |
dc.relation.references | [15] M. L. Kuli’c, “1nterplay of electron–phonon interaction and strong correlations: the possible way to high-temperature superconductivity,” Physics Reports, vol. 338, no. 1, pp. 1 – 264, 2000. http://www.sciencedirect.com/science/article/pii/S0370157300000089 | spa |
dc.relation.references | [16] M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J. Singh, M. B. Maple, y D. N. Basov, “Electronic correlations in the iron pnictides,” Nature Physics, vol. 5, no. 9, pp. 647–650, Sep 2009. https://doi.org/10.1038/nphys1343 | spa |
dc.relation.references | [17] 1. 1. Mazin, “Superconductivity gets an iron boost,” Nature, vol. 464, no. 7286, pp. 183–186, Mar 2010. https://doi.org/10.1038/nature08914 | spa |
dc.relation.references | [18] H. Ghosh, “Higher anisotropic d-wave symmetry in cuprate superconductors,” Journal of Physics: Condensed Matter, vol. 11, no. 30, p. L371, 1999. http://stacks.iop.org/0953-8984/11/i=30/a=103 | spa |
dc.relation.references | [19] A. P. Durajski, “Anisotropic evolution of energy gap in bi2212 superconductor,” Frontiers of Physics, vol. 11, no. 5, p. 117408, 2016. https://doi.org/10.1007/ s11467-016-0595-0 | spa |
dc.relation.references | [20] P. A. Lee, “Amperean pairing and the pseudogap phase of cuprate superconductors,” Phys. Rev. X, vol. 4, p. 031017, 2014. http://link.aps.org/doi/10.1103/PhysRevX.4. 031017 | spa |
dc.relation.references | [21] A. Kanigel, M. R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski, H. M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z. Z. Li, H. Raffy, K. Kadowaki, D. Hinks, L. Ozyuzer, y J. C. Campuzano, “Evolution of the pseudogap from fermi arcs to the nodal liquid,” Nature Physics, vol. 2, no. 7, pp. 447–451, Jul 2006. https://doi.org/10.1038/nphys334 | spa |
dc.relation.references | [22] A. A. Kordyuk, “Pseudogap from arpes experiment: Three gaps in cuprates and topological superconductivity (review article),” Low Temperature Physics, vol. 41, no. 5, pp. 319–341, 2015. https://doi.org/10.1063/1.4919371 | spa |
dc.relation.references | [23] O. Fischer, M. Kugler, 1. Maggio-Aprile, C. Berthod, y C. Renner, “Scanning tunneling spectroscopy of high-temperature superconductors,” Rev. Mod. Phys., vol. 79, pp. 353–419, Mar 2007. https://link.aps.org/doi/10.1103/RevModPhys.79.353 | spa |
dc.relation.references | [24] N. P. Armitage, P. Fournier, y R. L. Greene, “Progress and perspectives on electron-doped cuprates,” Rev. Mod. Phys., vol. 82, pp. 2421–2487, Sep 2010. https://link.aps.org/doi/10.1103/RevModPhys.82.2421 | spa |
dc.relation.references | [25] W. L. Yang, A. P. Sorini, C.-C. Chen, B. Moritz, W.-S. Lee, F. Vernay, P. Olalde-Velasco, J. D. Denlinger, B. Delley, J.-H. Chu, J. G. Analytis, 1. R. Fisher, Z. A. Ren, J. Yang, W. Lu, Z. X. Zhao, J. van den Brink, Z. Hussain, Z.-X. Shen, y T. P. Devereaux, “Evidence for weak electronic correlations in iron pnictides,” Phys. Rev. B, vol. 80, p. 014508, Jul 2009. https://link.aps.org/doi/10.1103/PhysRevB.80.014508 | spa |
dc.relation.references | [26] L. Degiorgi, “Electronic correlations in iron-pnictide superconductors and beyond: lessons learned from optics,” New Journal of Physics, vol. 13, no. 2, p. 023011, feb 2011. https://doi.org/10.1088%2F1367-2630%2F13%2F2%2F023011 | spa |
dc.relation.references | [27] P. Burset, A. L. Yeyati, y A. Mart’ln-Rodero, “Microscopic theory of the proximity effect in superconductor-graphene nanostructures,” Phys. Rev. B, vol. 77, p. 205425, 2008. https://link.aps.org/doi/10.1103/PhysRevB.77.205425 | spa |
dc.relation.references | [28] C. W. J. Beenakker, “Specular andreev reflection in graphene,” Phys. Rev. Lett., vol. 97, p. 067007, 2006. https://link.aps.org/doi/10.1103/PhysRevLett.97.067007 | spa |
dc.relation.references | [29] D. K. Efetov, L. Wang, C. Handschin, K. B. Efetov, J. Shuang, R. Cava, T. Taniguchi, K. Watanabe, J. Hone, C. R. Dean, y P. Kim, “Specular interband andreev reflections at van der waals interfaces between graphene and nbse2,” Nat Phys, vol. 12, pp. 328–332, 04 2016. http://dx.doi.org/10.1038/nphys3583 | spa |
dc.relation.references | [30] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, p. 622, 1947. https://link.aps.org/doi/10.1103/PhysRev.71.622 | spa |
dc.relation.references | [31] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, 1. V. Grigorieva, y A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, p. 666, 2004. http://science.sciencemag.org/content/306/5696/666 | spa |
dc.relation.references | [32] S. Das Sarma, S. Adam, E. H. Hwang, y E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys., vol. 83, pp. 407–470, May 2011. https://link.aps.org/doi/10.1103/RevModPhys.83.407 | spa |
dc.relation.references | [33] A. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, y F. Nori, “Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport,” Physics Reports, vol. 503, no. 2, pp. 77 – 114, 2011. http://www.sciencedirect.com/science/article/pii/S0370157311000469 | spa |
dc.relation.references | [34] T. Wehling, A. Black-Schaffer, y A. Balatsky, “Dirac materials,” Advances in Physics, vol. 63, no. 1, pp. 1–76, 2014. https://doi.org/10.1080/00018732.2014.927109 | spa |
dc.relation.references | [35] K. Nakada, M. Fujita, G. Dresselhaus, y M. S. Dresselhaus, “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Phys. Rev. B, vol. 54, pp. 17 954–17 961, 1996. https://link.aps.org/doi/10.1103/PhysRevB.54.17954 | spa |
dc.relation.references | [36] T. Low y J. Appenzeller, “Electronic transport properties of a tilted graphene p—n junction,” Phys. Rev. B, vol. 80, p. 155406, Oct 2009. https://link.aps.org/doi/10.1103/PhysRevB.80.155406 | spa |
dc.relation.references | [37] S. P. Milovanovi’c, D. Moldovan, y F. M. Peeters, “Veselago lensing in graphene with a p-n junction: Classical versus quantum effects,” Journal of Applied Physics, vol. 118, no. 15, p. 154308, 2015. https://doi.org/10.1063/1.4933395 | spa |
dc.relation.references | [38] V. V. Cheianov, V. Fal’ko, y B. L. Altshuler, “The focusing of electron flow and a veselago lens in graphene p-n junctions,” Science, vol. 315, p. 1252, 2007. http://science.sciencemag.org/content/315/5816/1252 | spa |
dc.relation.references | [39] K. J. A. Reijnders y M. 1. Katsnelson, “Symmetry breaking and (pseudo)spin polarization in veselago lenses for massless dirac fermions,” Phys. Rev. B, vol. 95, p. 115310, 2017. https://link.aps.org/doi/10.1103/PhysRevB.95.115310 | spa |
dc.relation.references | [40] S. Chen, Z. Han, M. M. Elahi, K. M. M. Habib, L. Wang, B. Wen, Y. Gao, T. Taniguchi, K. Watanabe, J. Hone, A. W. Ghosh, y C. R. Dean, “Electron optics with p-n junctions in ballistic graphene,” Science, vol. 353, p. 1522, 2016. http://science.sciencemag.org/content/353/6307/1522 | spa |
dc.relation.references | [41] S. Gómez Paéz, C. Martínez, W. J. Herrera, A. Levy Yeyati, y P. Burset, “Dirac point formation revealed by andreev tunneling in superlattice-graphene/superconductor junctions,” Phys. Rev. B, vol. 100, p. 205429, 2019. https://link.aps.org/doi/10.1103/ PhysRevB.100.205429 | spa |
dc.relation.references | [42] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, y P. Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature, vol. 556, no. 7699, pp. 43–50, Apr 2018. https://doi.org/10.1038/nature26160 | spa |
dc.relation.references | [43] E. McCann y M. Koshino, “The electronic properties of bilayer graphene,” Reports on Progress in Physics, vol. 76, p. 056503, 2013. http://stacks.iop.org/0034-4885/76/i=5/ a=056503 | spa |
dc.relation.references | [44] Y. H. Lai, J. H. Ho, C. P. Chang, y M. F. Lin, “Magnetoelectronic properties of bilayer bernal graphene,” Phys. Rev. B, vol. 77, p. 085426, 2008. https://link.aps.org/doi/10.1103/PhysRevB.77.085426 | spa |
dc.relation.references | [45] A. Orlof, J. Ruseckas, y 1. V. Zozoulenko, “Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects,” Phys. Rev. B, vol. 88, p. 125409, 2013. https://link.aps.org/doi/10.1103/PhysRevB.88.125409 | spa |
dc.relation.references | [46] C. G. P’eterfalvi, L. Oroszl’any, C. J. Lambert, y J. Cserti, “1ntraband electron focusing in bilayer graphene,” New Journal of Physics, vol. 14, p. 063028, 2012. http://stacks.iop.org/1367-2630/14/i=6/a=063028 | spa |
dc.relation.references | [47] M. 1. Katsnelson, K. S. Novoselov, y A. K. Geim, “Chiral tunnelling and the klein paradox in graphene,” Nature Physics, vol. 22, p. 620, 2006. http://www.nature.com/nphys/journal/v2/n9/abs/nphys384.html | spa |
dc.relation.references | [48] Z. F. Wang, Q. Li, H. Su, X. Wang, Q. W. Shi, J. Chen, J. Yang, y J. G. Hou, “Electronic structure of bilayer graphene: A real-space green’s function study,” Phys. Rev. B, vol. 75, p. 085424, Feb 2007. https://link.aps.org/doi/10.1103/PhysRevB.75.085424 | spa |
dc.relation.references | [49] E. V. Castro, N. M. R. Peres, J. M. B. Lopes dos Santos, A. H. C. Neto, y F. Guinea, “Localized states at zigzag edges of bilayer graphene,” Phys. Rev. Lett., vol. 100, p. 026802, Jan 2008. https://link.aps.org/doi/10.1103/PhysRevLett.100.026802 | spa |
dc.relation.references | [50] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, y L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nature Materials, vol. 7, p. 151, 2007. https://doi.org/10.1038/nmat2082 | spa |
dc.relation.references | [51] S.-M. Choi, S.-H. Jhi, y Y.-W. Son, “Controlling energy gap of bilayer graphene by strain,” Nano Letters, vol. 10, no. 9, pp. 3486–3489, Sep 2010. https://doi.org/10.1021/nl101617x | spa |
dc.relation.references | [52] E. McCann, D. S. L. Abergel, y V. 1. Fal’ko, “The low energy electronic band structure of bilayer graphene,” The European Physical Journal Special Topics, vol. 148, no. 1, pp. 91–103, Sep 2007. https://doi.org/10.1140/ep jst/e2007-00229-1 | spa |
dc.relation.references | [53] C.-H. Park, L. Y. Y.-W. Son, M. L. Cohen, y S. G. Louie, “Anisotropic behaviours of massless dirac fermions in graphene under periodic potentials,” Nature Physics, vol. 4, pp. 213–217, 2008. http://www.nature.com/nphys/journal/v4/n3/abs/nphys890.html | spa |
dc.relation.references | [54] P. Burset, A. L. Yeyati, L. Brey, y H. A. Fertig, “Transport in superlattices on single-layer graphene,” Phys. Rev. B, vol. 83, p. 195434, 2011. https: //link.aps.org/doi/10.1103/PhysRevB.83.195434 | spa |
dc.relation.references | [55] M. Barbier, P. Vasilopoulos, y F. M. Peeters, “Single-layer and bilayer graphene superlattices: collimation, additional dirac points and dirac lines,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 368, p. 5499, 2010. http://rsta.royalsocietypublishing.org/content/368/1932/5499 | spa |
dc.relation.references | [56] C.-H. Park, Y.-W. Son, L. Yang, M. L. Cohen, y S. G. Louie, “Electron beam supercollimation in graphene superlattices,” Nano Letters, vol. 8, no. 9, pp. 2920–2924, 2008. https://doi.org/10.1021/nl801752r | spa |
dc.relation.references | [57] R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, y M. F. Crommie, “Local electronic properties of graphene on a bn substrate via scanning tunneling microscopy,” Nano Letters, vol. 11, no. 6, pp. 2291–2295, 2011. https://doi.org/10.1021/nl2005115 | spa |
dc.relation.references | [58] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, y B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nature Materials, vol. 10, p. 282, Feb 2011. https://doi.org/10.1038/nmat2968 | spa |
dc.relation.references | [59] A. D. Palczewski, “Angle-resolved photoemission spectroscopy (arpes) studies of cuprate superconductors,” Graduate Theses and Dissertations, 2010. | spa |
dc.relation.references | [60] A. A. Kordyuk, S. V. Borisenko, M. S. Golden, S. Legner, K. A. Nenkov, M. Knupfer, J. Fink, H. Berger, L. Forr’o, y R. Follath, “Doping dependence of the fermi surface in (Bi, Pb)2sr2cacu2o8+δ ,” Phys. Rev. B, vol. 66, p. 014502, 2002. https://link.aps.org/doi/10.1103/PhysRevB.66.014502 | spa |
dc.relation.references | [61] M. Marinus, H. G. Miller, R. M. Quick, F. Solms, y D. M. van der Walt, “Order parameter for pairing systems,” Phys. Rev. C, vol. 48, pp. 1713–1718, Oct 1993. https://link.aps.org/doi/10.1103/PhysRevC.48.1713 | spa |
dc.relation.references | [62] Y. Sera, T. Ueda, H. Adachi, y M. 1chioka, “Relation of superconducting pairing symmetry and non-magnetic impurity effects in vortex states,” Symmetry, vol. 12, no. 1, 2020. https://www.mdpi.com/2073-8994/12/1/175 | spa |
dc.relation.references | [63] N. Hayashi, M. 1chioka, y K. Machida, “Effects of gap anisotropy upon the electronic structure around a superconducting vortex,” Phys. Rev. B, vol. 56, pp. 9052–9063, 1997. https://link.aps.org/doi/10.1103/PhysRevB.56.9052 | spa |
dc.relation.references | [64] C. C. Tsuei y J. R. Kirtley, “Pairing symmetry in cuprate superconductors,” Rev. Mod. Phys., vol. 72, 2000. https://link.aps.org/doi/10.1103/RevModPhys.72.969 | spa |
dc.relation.references | [65] M. Horio, K. Koshiishi, S. Nakata, K. Hagiwara, Y. Ota, K. Okazaki, S. Shin, S. 1deta, K. Tanaka, A. Takahashi, T. Ohgi, T. Adachi, Y. Koike, y A. Fujimori, “d-wave superconducting gap observed in protect-annealed electron-doped cuprate superconductors Pr1.3—xLao.7CexCuO4 ,” Phys. Rev. B, vol. 100, 2019. https://link.aps.org/doi/10.1103/PhysRevB.100.054517 | spa |
dc.relation.references | [66] B. V. Duppen y F. M. Peeters, “Klein paradox for a pn junction in multilayer graphene,” EPL (Europhysics Letters), vol. 102, no. 2, p. 27001, 2013. https://doi.org/10.1209%2F0295-5075%2F102%2F27001 | spa |
dc.relation.references | [67] J. M. P. Jr, F. M. Peeters, A. Chaves, y G. A. Farias, “Klein tunneling in single and multiple barriers in graphene,” Semiconductor Science and Technology, vol. 25, p. 033002, 2010. http://stacks.iop.org/0268-1242/25/i=3/a=033002 | spa |
dc.relation.references | [68] P. Ruffieux, S. Wang, C. S.-S. Bo Yang, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Mu¨llen, y R. Fasel, “On-surface synthesis of graphene nanoribbons with zigzag edge topology,” Nature letters, vol. 531, p. 489, 2016. https://doi.org/10.1038/nature17151 | spa |
dc.relation.references | [69] D. Han, Q. Fan, J. D. Wang, J. Huang, Q. Xu, H. Ding, J. Hu, L. Feng, W. Zhang, Z. Z. J. M. Gottfried, y J. Zhu*, “On-surface synthesis of armchair-edged graphene nanoribbons with zigzag topology,” J. Phys. Chem. C, vol. 124, pp. 5248–5256, 2020. https://doi.org/10.1021/acs.jpcc.0c00018 | spa |
dc.relation.references | [70] C. Li, S. Gu’eron, A. Chepelianskii, y H. Bouchiat, “Full range of proximity effect probed with superconductor/graphene/superconductor junctions,” Phys. Rev. B, vol. 94, p. 115405, 2016. https://link.aps.org/doi/10.1103/PhysRevB.94.115405 | spa |
dc.relation.references | [71] M. Hayashi, H. Yoshioka, y A. Kanda, “Superconducting proximity effect in graphene nanostructures,” Journal of Physics: Conference Series, vol. 248, p. 012002, 2010. https://doi.org/10.1088%2F1742-6596%2F248%2F1%2F012002 | spa |
dc.relation.references | [72] A. Ramasubramaniam, D. Naveh, y E. Towe, “Tunable band gaps in bilayer graphene-bn heterostructures,” nano lett., vol. 11, no. 3, pp. 1070–1075, 2011. https://doi.org/10.1021/nl1039499 | spa |
dc.relation.references | [73] W. J. Herrera, P. Burset, y A. L. Yeyati, “A green function approach to graphene–superconductor junctions with well-defined edges,” Journal of Physics: Condensed Matter, vol. 22, no. 27, p. 275304, 2010. https://doi.org/10.1088%2F0953-8984%2F22%2F27%2F275304 | spa |
dc.relation.references | [74] S. G. PAEZ, “Transporte el’ectrico en superconductores no convencionales,” Tesis de doctorado, Colombia, 2011. | spa |
dc.relation.references | [75] J. C. Cuevas, A. Mart’ln-Rodero, y A. L. Yeyati, “Hamiltonian approach to the transport properties of superconducting quantum point contacts,” Phys. Rev. B, vol. 54, pp. 7366–7379, Sep 1996. https://link.aps.org/doi/10.1103/PhysRevB.54.7366 | spa |
dc.relation.references | [76] O. E. C. Barrera, “Transporte eléctrico en nanoestructuras topológicas,” Tesis de Docotorado, Colombia, 2019. | spa |
dc.relation.references | [2] P. G. D. Gennes, Superconductivity Of Metals And Alloys (Advanced Books Classics). Westview Press, 1999. | spa |
dc.relation.references | [77] R. Casalbuoni y G. Nardulli, “1nhomogeneous superconductivity in condensed matter and qcd,” Rev. Mod. Phys., vol. 76, pp. 263–320, Feb 2004. https: //link.aps.org/doi/10.1103/RevModPhys.76.263 | spa |
dc.relation.references | [78] A. Bianconi, A. Valletta, A. Perali, y N. Saini, “High tc superconductivity in a superlattice of quantum stripes,” Solid State Communications, vol. 102, 1997.http://www.sciencedirect.com/science/article/pii/S0038109897000112 | spa |
dc.relation.references | [79] T. Sato, S. Souma, K. Nakayama, K. Terashima, K. Sugawara, T. Takahashi, Y. Kamihara, M. Hirano, y H. Hosono, “Superconducting gap and pseudogap in iron-based layered superconductor la(o1-xfx)feas,” Journal of the Physical Society of Japan, vol. 77, no. 6, p. 063708, 2008. https://doi.org/10.1143/JPSJ.77.063708 | spa |
dc.relation.references | [80] M. V. Sadovskii, “Pseudogap in high-temperature superconductors,” Physics- Uspekhi, vol. 44, no. 5, pp. 515–539, may 2001. https://doi.org/10.1070% 2Fpu2001v044n05abeh000902 | spa |
dc.relation.references | [81] C. Bruder, “Andreev scattering in anisotropic superconductors,” Phys. Rev. B, vol. 41, pp. 4017–4032, Mar 1990. https://link.aps.org/doi/10.1103/PhysRevB.41.4017 | spa |
dc.relation.references | [82] M. Tinkham, Introduction to superconductivity 2nd edition. Krieger Pub Co, 1996. | spa |
dc.relation.references | [83] Y. Bang, “Superfluid density of the ±s-wave state for the iron-based superconductors,” EPL (Europhysics Letters), vol. 86, no. 4, p. 47001, may 2009. https: //doi.org/10.1209%2F0295-5075%2F86%2F47001 | spa |
dc.relation.references | [84] 1. S. Osborne, “A guiding path for graphene circuits,” Science, vol. 366, no. 6472, pp. 1468–1469, 2019. https://science.sciencemag.org/content/366/6472/1468.7 | spa |
dc.relation.references | [85] L. Brey y H. A. Fertig, “Emerging zero modes for graphene in a periodic potential,” Phys. Rev. Lett., vol. 103, p. 046809, Jul 2009. https://link.aps.org/doi/10.1103/ PhysRevLett.103.046809 | spa |
dc.relation.references | [86] M. Barbier, P. Vasilopoulos, y F. M. Peeters, “Extra dirac points in the energy spectrum for superlattices on single-layer graphene,” Phys. Rev. B, vol. 81, p. 075438, Feb 2010. https://link.aps.org/doi/10.1103/PhysRevB.81.075438 | spa |
dc.relation.references | [87] M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, y B. J. LeRoy, “Emergence of superlattice dirac points in graphene on hexagonal boron nitride,” Nature physics letter, vol. 8, p. 382, 2012. http://www.nature.com/nmat/journal/v10/n4/abs/nmat2968.html | spa |
dc.relation.references | [88] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, 1. V. Grigorieva, K. S. Novoselov, F. Guinea, V. 1. Fal’ko, y A. K. Geim, “Cloning of dirac fermions in graphene superlattices,” Nature, vol. 497, p. 594, May 2013. https://doi.org/10.1038/nature12187 | spa |
dc.relation.references | [89] M. Lee, J. R. Wallbank, P. Gallagher, K. Watanabe, T. Taniguchi, V. 1. Fal’ko, y D. Goldhaber-Gordon, “Ballistic miniband conduction in a graphene superlattice,” Science, vol. 353, no. 6307, pp. 1526–1529, 2016. http://science.sciencemag.org/ content/353/6307/1526 | spa |
dc.relation.references | [90] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez- Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, y P. Jarillo-Herrero, “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” Nature, vol. 556, p. 80, Mar 2018. https://doi.org/10.1038/nature26154 | spa |
dc.relation.references | [91] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, y P. Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature, vol. 556, p. 43, Mar 2018, article. https://doi.org/10.1038/nature26160 | spa |
dc.relation.references | [92] P. Rickhaus, M. Weiss, L. Marot, y C. Sch¨onenberger, “Quantum hall effect in graphene with superconducting electrodes,” Nano Letters, vol. 12, no. 4, pp. 1942–1945, 2012. http://dx.doi.org/10.1021/nl204415s | spa |
dc.relation.references | [93] V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov, K. Watanabe, T. Taniguchi, T. M. Klapwijk, y L. M. K. Vandersypen, “Ballistic josephson junctions in edge-contacted graphene,” Nat Nano, vol. 10, no. 9, pp. 761–764, 2015. http://dx.doi.org/10.1038/nnano.2015.156 | spa |
dc.relation.references | [94] M. Ben Shalom, M. J. Zhu, V. 1. Fal[rsquor]ko, A. Mishchenko, A. V. Kretinin, K. S. Novoselov, C. R. Woods, K. Watanabe, T. Taniguchi, A. K. Geim, y J. R. Prance, “Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene,” Nat Phys, vol. 12, no. 4, pp. 318–322, 2016. http://dx.doi.org/10.1038/nphys3592 | spa |
dc.relation.references | [95] G.-H. Lee y H.-J. Lee, “Proximity coupling in superconductor-graphene hete- rostructures,” Reports on Progress in Physics, vol. 81, no. 5, p. 056502, 2018. http://stacks.iop.org/0034-4885/81/i=5/a=056502 | spa |
dc.relation.references | [96] C. W. J. Beenakker, “Colloquium: Andreev reflection and klein tunneling in graphene,” Rev. Mod. Phys., vol. 80, pp. 1337–1354, 2008. https://link.aps.org/doi/10.1103/ RevModPhys.80.1337 | spa |
dc.relation.references | [97] T. Dirks, T. L. Hughes, S. Lal, B. Uchoa, Y.-F. Chen, C. Chialvo, P. M. Goldbart, y N. Mason, “Transport through andreev bound states in a graphene quantum dot,” Nature Physics, vol. 7, pp. 386–390, 2011. | spa |
dc.relation.references | [98] Z. B. Tan, D. Cox, T. Nieminen, P. L¨ahteenm¨aki, D. Golubev, G. B. Lesovik, y P. J. Hakonen, “Cooper pair splitting by means of graphene quantum dots,” Phys. Rev. Lett., vol. 114, p. 096602, Mar 2015. https: //link.aps.org/doi/10.1103/PhysRevLett.114.096602 | spa |
dc.relation.references | [99] C. Tonnoir, A. Kimouche, J. Coraux, L. Magaud, B. Delsol, B. Gilles, y C. Chapelier, “1nduced superconductivity in graphene grown on rhenium,” Phys. Rev. Lett., vol. 111, p. 246805, December 2013. https://doi.org/10.1103/PhysRevLett.111.246805 | spa |
dc.relation.references | [100] B. M. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schneider, D. J. Dvorak, C. N. Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh, C. Straß er, A. Stöhr, S. Forti, C. R. Ast, U. Starke, y A. Damascelli, “Evidence for superconductivity in li-decorated monolayer graphene,” Proc. Natl Acad. Sci. USA, vol. 112, p. 11795, May 2015. https://doi.org/10.1073/pnas.1510435112 | spa |
dc.relation.references | [101] J. Chapman, Y. Su, C. A. Howard, D. Kundys, A. N. Grigorenko, F. Guinea, A. K. Geim, 1. V. Grigorieva, y R. R. Nair, “Superconductivity in ca-doped graphene laminates,” Sci. Rep., vol. 6, p. 23254, March 2016. https://doi.org/10.1038/srep23254 | spa |
dc.relation.references | [102] A. Di Bernardo, O. Millo, M. Barbone, H. Alpern, Y. Kalcheim, U. Sassi, A. K. Ott, D. De Fazio, D. Yoon, M. Amado, A. C. Ferrari, J. Linder, y J. W. A. Robinson, “p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor,” Nature Communications, vol. 8, p. 14024, 01 2017. https://doi.org/10.1038/ncomms14024 | spa |
dc.relation.references | [103] A. G. Moghaddam y M. Zareyan, “Graphene-based electronic spin lenses,” Phys. Rev. Lett., vol. 105, p. 146803, Sep 2010. https://link.aps.org/doi/10.1103/PhysRevLett.105. 146803 | spa |
dc.relation.references | [104] S. G’omez, P. Burset, W. J. Herrera, y A. L. Yeyati, “Selective focusing of electrons and holes in a graphene-based superconducting lens,” Phys. Rev. B, vol. 85, p. 115411, 2012. https://link.aps.org/doi/10.1103/PhysRevB.85.115411 | spa |
dc.relation.references | [105] J. Cserti, A. P’alyi, y C. P’eterfalvi, “Caustics due to a negative refractive index in circular graphene p—n junctions,” Phys. Rev. Lett., vol. 99, p. 246801, Dec 2007. https://link.aps.org/doi/10.1103/PhysRevLett.99.246801 | spa |
dc.relation.references | [106] Y. Xing, J. Wang, y Q.-f. Sun, “Focusing of electron flow in a bipolar graphene ribbon with different chiralities,” Phys. Rev. B, vol. 81, p. 165425, Apr 2010. https://link.aps.org/doi/10.1103/PhysRevB.81.165425 | spa |
dc.relation.references | [107] O. E. Casas, S. G’omez P’aez, A. Levy Yeyati, P. Burset, y W. J. Herrera, “Subgap states in two-dimensional spectroscopy of graphene-based superconducting hybrid junctions,” Phys. Rev. B, vol. 99, p. 144502, 2019. https://link.aps.org/doi/10.1103/ PhysRevB.99.144502 | spa |
dc.relation.references | [108] G.-H. Lee, G.-H. Park, y H.-J. Lee, “Observation of negative refraction of dirac fermions in graphene,” Nature physic letters, vol. 11, p. 925, 2015. http://www.nature.com/nphys/journal/v11/n11/full/nphys3460.html | spa |
dc.relation.references | [109] L. Lin, L. Liao, J. Yin, H. Peng, y Z. Liu, “Building graphene p–n junctions for next-generation photodetection,” Nano Today, vol. 10, no. 6, pp. 701 – 716, 2015. http://www.sciencedirect.com/science/article/pii/S1748013215001358 | spa |
dc.relation.references | [110] H. Cheraghchi, H. Esmailzadeh, y A. G. Moghaddam, “Superconducting electron and hole lenses,” Phys. Rev. B, vol. 93, 2016. https://link.aps.org/doi/10.1103/PhysRevB.93.214508 | spa |
dc.relation.references | [111] A. G. Moghaddam y M. Zareyan, “Graphene-based electronic spin lenses,” Phys. Rev. Lett., vol. 105, p. 146803, Sep 2010. https://link.aps.org/doi/10.1103/PhysRevLett.105. 146803 | spa |
dc.relation.references | [112] P. Burset, W. J. Herrera, y A. L. Yeyati, “Microscopic theory of cooper pair beam splitters based on carbon nanotubes,” Phys. Rev. B, vol. 84, 2011. https://link.aps.org/doi/10.1103/PhysRevB.84.115448 | spa |
dc.relation.references | [115] J. Li, A. F. Morpurgo, M. Bu¨ttiker, y 1. Martin, “Marginality of bulk-edge correspondence for single-valley hamiltonians,” Phys. Rev. B, vol. 82, p. 245404, 2010. https://link.aps.org/doi/10.1103/PhysRevB.82.245404 | spa |
dc.relation.references | [116] M. Sanderson, Y. S. Ang, y C. Zhang, “Klein tunneling and cone transport in aa-stacked bilayer graphene,” Phys. Rev. B, vol. 88, p. 245404, 2013. https://link.aps.org/doi/10.1103/PhysRevB.88.245404 | spa |
dc.relation.references | [113] Y. Xu, Y. He, y Y. Yang, “Transmission gaps in graphene superlattices with periodic potential patterns,” Physica B: Condensed Matter, vol. 457, pp. 188 – 193, 2015. http://www.sciencedirect.com/science/article/pii/S0921452614007881 | spa |
dc.relation.references | [114] M. Killi, S. Wu, y A. Paramekanti, “Band structures of bilayer graphene superlattices,” Phys. Rev. Lett., vol. 107, p. 086801, 2011. https://link.aps.org/doi/10.1103/ PhysRevLett.107.086801 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.lemb | Superconductors | eng |
dc.subject.lemb | Superconductores | spa |
dc.subject.lemb | Electric conductivity | eng |
dc.subject.lemb | Conductividad eléctrica | spa |
dc.subject.proposal | Funciones de Green | spa |
dc.subject.proposal | Superconductividad | spa |
dc.subject.proposal | Grafeno | spa |
dc.subject.proposal | Bicapas de grafeno | spa |
dc.subject.proposal | Reflexiones de Andreev | spa |
dc.subject.proposal | Lentes de Veselago | spa |
dc.subject.proposal | Green functions | eng |
dc.subject.proposal | Superconductivity | eng |
dc.subject.proposal | Graphene | eng |
dc.subject.proposal | Bilayers graphene | eng |
dc.subject.proposal | Andreev reflection | eng |
dc.subject.proposal | Veselago lens | eng |
dc.subject.unesco | Carbono | spa |
dc.subject.unesco | Carbon | eng |
dc.title | Densidad de estados y transporte eléctrico en superconductores y sistemas periódicos nanoestructurados | spa |
dc.title.translated | Density of states and electric transport in superconductors and systems with periodic nanoestructure | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Programa de becas doctorales de Colciencias | spa |
oaire.fundername | Colciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 80190330.2021.pdf
- Tamaño:
- 7.56 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: