Densidad de estados y transporte eléctrico en superconductores y sistemas periódicos nanoestructurados

dc.contributor.advisorGómez Páez, Shirley
dc.contributor.advisorJavier Herrera, William
dc.contributor.authorMartínez Montero, Camilo Andrés
dc.contributor.researchgroupSuperconductividad y nanotecnologíaspa
dc.date.accessioned2021-10-06T17:51:55Z
dc.date.available2021-10-06T17:51:55Z
dc.date.issued2021
dc.descriptionilustraciones, gráficasspa
dc.description.abstractEn este trabajo analizamos el efecto de un potencial de pares periódico sobre la densidad de estados y las propiedades de transporte en superconductores no convencionales, así como el efecto de superredes periódicas semi-infinitas o finitas que se presentan en heteroestructuras conformadas por grafeno y superconductores. Se analiza un material superconductor con un potencial de pares periódico en una red cuadrada, encontrado las bandas de energía y la densidad de estados. Se encuentran y analizan la aparición de nuevas brechas de energía, que no aparecen en sistemas homogéneos, las cuales pueden ser relevantes cerca de la temperatura crítica. Para sistemas basados en grafeno se estudian superredes de bloques $pn$ acopladas a un superconductor, encontrando que el número de nuevos puntos de Dirac no es afectado por la región superconductora, pero debido a las reflexiones de Andreev locales, se puede determinar su aparición e incrementar su intensidad, lo cual podría utilizarse para su detección. Adicionalmente se analizan los casos de bloques pn asimétricos en voltajes "gate, donde se demuestra que se puede recobrar el caso simétrico haciendo un cambio en el dopaje efectivo en la lámina de grafeno, mientras que cuando los anchos son asimétricos los nuevos puntos de Dirac pueden no crearse. Se analizan los mapas de probabilidad de transmisión electrón-electrón y electrón-hueco en sistemas de lentes de Veselago GSG y G-SL-S-SL-G, con G grafeno dopado tipo n, SL una superred y S un superconductor dopado tipo p. En estos sistemas los puntos focales pueden ser mejorados cambiando los parámetros del sistema, adicionalmente, con la introducción de las superredes se puede colimar la corriente de electrones y que la señal de enfoque de huecos sea mayoritaria. Con bicapas de grafeno se estudian las lentes de Veselago encontrando cómo los fenómenos de interferencia entre las dos monocapas afectan los mapas de probabilidad de transmisión electrón-electrón, creando diferencias respecto a los resultados con monocapas de grafeno. (Texto tomado de la fuente).spa
dc.description.abstractIn this work we analyze the effect of a periodic pair potential on the density of states and transport properties in unconventional superconductors. The effect of semi-infinite or finite periodic superlattices in heterostructures formed by graphene and superconductors is also studied. A two-dimensional superconductor with a periodic pair potential in a square lattice is analyzed, finding the energy bands and the density of states. The appearance of new energy gaps, which do not appear for homogeneous systems, and which may be relevant near the critical temperature, are found and analyzed. Block $ pn $ superlattices are studied for graphene-based systems coupled to a superconductor. Thus, the number of new Dirac points is not affected by the superconducting region; however, due to local Andreev reflections, its emergence can be determined, and its intensity increased, which could be used for its detection. In addition, the cases of asymmetric $ pn $ blocks at gate voltages are analyzed, where the symmetric case can be recovered by making a change in the effective doping in the graphene sheet, while no new Dirac points can be created when the widths are asymmetric. The electron-electron and electron-hole transmission probability maps are analyzed in Veselago $GSG$ and $ G-SL-S-SL-G $ lens systems, with $ G $ doped graphene type $ n $, $ SL $ a superlattice and $ S $ a $ p $-type doped superconductor. In these systems, the focal points can be improved by changing the system parameters. Additionally, with the introduction of the superlattice, the electron current can be collimated and the hole focusing signal can be increased. Veselago lenses with graphene bilayers are studied, showing that the interference between the two monolayers affects the electron-electron transmission probability maps, creating differences concerning the results with graphene monolayers.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.researchareaEstado sólidospa
dc.format.extentxv, 136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80401
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.references[1] J. Bardeen, L. N. Cooper, y J. R. Schrieffer, “Microscopic theory of superconductivity,” Phys. Rev., vol. 106, p. 16, 1957. https://link.aps.org/doi/10.1103/PhysRev.106.162spa
dc.relation.references[3] P. Monthoux, D. Pines, y G. G. Lonzarich, “Superconductivity without phonons,” Nature, vol. 450, no. 7173, pp. 1177–1183, Dec 2007. https: //doi.org/10.1038/nature06480spa
dc.relation.references[4] H. Mohammadpour y A. Asgari, “Crossed andreev reflection in graphene normal–superconductor–normal structures with pseudo-diffusive interfaces,” Physics Letters A, vol. 375, no. 10, pp. 1339 – 1343, 2011. http://www.sciencedirect.com/ science/article/pii/S0375960111000739spa
dc.relation.references[5] H. Mohammadpour y A. Asgari, “Enhanced nonlocal andreev reflection in f—s—f graphene spin-valve,” Physica C: Superconductivity and its Applications, vol. 519, 2015. http://www.sciencedirect.com/science/article/pii/S0921453415002646spa
dc.relation.references[6] J. Cayssol, “Crossed andreev reflection in a graphene bipolar transistor,” Phys. Rev. Lett., vol. 100, p. 147001, 2008. https://link.aps.org/doi/10.1103/PhysRevLett.100.147001spa
dc.relation.references[7] B. Braunecker, P. Burset, y A. Levy Yeyati, “Entanglement detection from conductance measurements in carbon nanotube cooper pair splitters,” Phys. Rev. Lett., vol. 111, p. 136806, 2013. https://link.aps.org/doi/10.1103/PhysRevLett.111.136806spa
dc.relation.references[8] L. G. Herrmann, F. Portier, P. Roche, A. L. Yeyati, T. Kontos, y C. Strunk, “Carbon nanotubes as cooper-pair beam splitters,” Phys. Rev. Lett., vol. 104, p. 026801, 2010. https://link.aps.org/doi/10.1103/PhysRevLett.104.026801spa
dc.relation.references[9] J. Wang y S. Liu, “Crossed andreev reflection in a zigzag graphene nanoribbon- superconductor junction,” Phys. Rev. B, vol. 85, p. 035402, Jan 2012. https://link.aps.org/doi/10.1103/PhysRevB.85.035402spa
dc.relation.references[10] C. Bena, S. Vishveshwara, L. Balents, y M. P. A. Fisher, “Quantum entanglement in carbon nanotubes,” Phys. Rev. Lett., vol. 89, p. 037901, Jun 2002. https://link.aps.org/doi/10.1103/PhysRevLett.89.037901spa
dc.relation.references[11] L. Hofstetter, S. Csonka, J. Nyg˚ard, y C. Sch¨onenberger, “Cooper pair splitter realized in a two-quantum-dot y-junction,” Nature volume, vol. 461, 2009. https://doi.org/10.1038/nature08432spa
dc.relation.references[12] A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, y H. Shtrikman, “High-efficiency cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation,” Nature Communications, vol. 3, no. 1, p. 1165, Nov 2012. https://doi.org/10.1038/ncomms2169spa
dc.relation.references[13] A. Wasserman, “Efecto del potencial de la red cristalina sobre el espectro de energía de las cuasipartículas en un superconductor,” Tesis de pregrado, Colombia, 1999.spa
dc.relation.references[14] C. Martínez, “Espectro de energía de superconductores periódicos,” Tesis de maestría, Bogota D.C. Colombia, 2014.spa
dc.relation.references[15] M. L. Kuli’c, “1nterplay of electron–phonon interaction and strong correlations: the possible way to high-temperature superconductivity,” Physics Reports, vol. 338, no. 1, pp. 1 – 264, 2000. http://www.sciencedirect.com/science/article/pii/S0370157300000089spa
dc.relation.references[16] M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J. Singh, M. B. Maple, y D. N. Basov, “Electronic correlations in the iron pnictides,” Nature Physics, vol. 5, no. 9, pp. 647–650, Sep 2009. https://doi.org/10.1038/nphys1343spa
dc.relation.references[17] 1. 1. Mazin, “Superconductivity gets an iron boost,” Nature, vol. 464, no. 7286, pp. 183–186, Mar 2010. https://doi.org/10.1038/nature08914spa
dc.relation.references[18] H. Ghosh, “Higher anisotropic d-wave symmetry in cuprate superconductors,” Journal of Physics: Condensed Matter, vol. 11, no. 30, p. L371, 1999. http://stacks.iop.org/0953-8984/11/i=30/a=103spa
dc.relation.references[19] A. P. Durajski, “Anisotropic evolution of energy gap in bi2212 superconductor,” Frontiers of Physics, vol. 11, no. 5, p. 117408, 2016. https://doi.org/10.1007/ s11467-016-0595-0spa
dc.relation.references[20] P. A. Lee, “Amperean pairing and the pseudogap phase of cuprate superconductors,” Phys. Rev. X, vol. 4, p. 031017, 2014. http://link.aps.org/doi/10.1103/PhysRevX.4. 031017spa
dc.relation.references[21] A. Kanigel, M. R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski, H. M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z. Z. Li, H. Raffy, K. Kadowaki, D. Hinks, L. Ozyuzer, y J. C. Campuzano, “Evolution of the pseudogap from fermi arcs to the nodal liquid,” Nature Physics, vol. 2, no. 7, pp. 447–451, Jul 2006. https://doi.org/10.1038/nphys334spa
dc.relation.references[22] A. A. Kordyuk, “Pseudogap from arpes experiment: Three gaps in cuprates and topological superconductivity (review article),” Low Temperature Physics, vol. 41, no. 5, pp. 319–341, 2015. https://doi.org/10.1063/1.4919371spa
dc.relation.references[23] O. Fischer, M. Kugler, 1. Maggio-Aprile, C. Berthod, y C. Renner, “Scanning tunneling spectroscopy of high-temperature superconductors,” Rev. Mod. Phys., vol. 79, pp. 353–419, Mar 2007. https://link.aps.org/doi/10.1103/RevModPhys.79.353spa
dc.relation.references[24] N. P. Armitage, P. Fournier, y R. L. Greene, “Progress and perspectives on electron-doped cuprates,” Rev. Mod. Phys., vol. 82, pp. 2421–2487, Sep 2010. https://link.aps.org/doi/10.1103/RevModPhys.82.2421spa
dc.relation.references[25] W. L. Yang, A. P. Sorini, C.-C. Chen, B. Moritz, W.-S. Lee, F. Vernay, P. Olalde-Velasco, J. D. Denlinger, B. Delley, J.-H. Chu, J. G. Analytis, 1. R. Fisher, Z. A. Ren, J. Yang, W. Lu, Z. X. Zhao, J. van den Brink, Z. Hussain, Z.-X. Shen, y T. P. Devereaux, “Evidence for weak electronic correlations in iron pnictides,” Phys. Rev. B, vol. 80, p. 014508, Jul 2009. https://link.aps.org/doi/10.1103/PhysRevB.80.014508spa
dc.relation.references[26] L. Degiorgi, “Electronic correlations in iron-pnictide superconductors and beyond: lessons learned from optics,” New Journal of Physics, vol. 13, no. 2, p. 023011, feb 2011. https://doi.org/10.1088%2F1367-2630%2F13%2F2%2F023011spa
dc.relation.references[27] P. Burset, A. L. Yeyati, y A. Mart’ln-Rodero, “Microscopic theory of the proximity effect in superconductor-graphene nanostructures,” Phys. Rev. B, vol. 77, p. 205425, 2008. https://link.aps.org/doi/10.1103/PhysRevB.77.205425spa
dc.relation.references[28] C. W. J. Beenakker, “Specular andreev reflection in graphene,” Phys. Rev. Lett., vol. 97, p. 067007, 2006. https://link.aps.org/doi/10.1103/PhysRevLett.97.067007spa
dc.relation.references[29] D. K. Efetov, L. Wang, C. Handschin, K. B. Efetov, J. Shuang, R. Cava, T. Taniguchi, K. Watanabe, J. Hone, C. R. Dean, y P. Kim, “Specular interband andreev reflections at van der waals interfaces between graphene and nbse2,” Nat Phys, vol. 12, pp. 328–332, 04 2016. http://dx.doi.org/10.1038/nphys3583spa
dc.relation.references[30] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, p. 622, 1947. https://link.aps.org/doi/10.1103/PhysRev.71.622spa
dc.relation.references[31] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, 1. V. Grigorieva, y A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, p. 666, 2004. http://science.sciencemag.org/content/306/5696/666spa
dc.relation.references[32] S. Das Sarma, S. Adam, E. H. Hwang, y E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys., vol. 83, pp. 407–470, May 2011. https://link.aps.org/doi/10.1103/RevModPhys.83.407spa
dc.relation.references[33] A. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, y F. Nori, “Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport,” Physics Reports, vol. 503, no. 2, pp. 77 – 114, 2011. http://www.sciencedirect.com/science/article/pii/S0370157311000469spa
dc.relation.references[34] T. Wehling, A. Black-Schaffer, y A. Balatsky, “Dirac materials,” Advances in Physics, vol. 63, no. 1, pp. 1–76, 2014. https://doi.org/10.1080/00018732.2014.927109spa
dc.relation.references[35] K. Nakada, M. Fujita, G. Dresselhaus, y M. S. Dresselhaus, “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Phys. Rev. B, vol. 54, pp. 17 954–17 961, 1996. https://link.aps.org/doi/10.1103/PhysRevB.54.17954spa
dc.relation.references[36] T. Low y J. Appenzeller, “Electronic transport properties of a tilted graphene p—n junction,” Phys. Rev. B, vol. 80, p. 155406, Oct 2009. https://link.aps.org/doi/10.1103/PhysRevB.80.155406spa
dc.relation.references[37] S. P. Milovanovi’c, D. Moldovan, y F. M. Peeters, “Veselago lensing in graphene with a p-n junction: Classical versus quantum effects,” Journal of Applied Physics, vol. 118, no. 15, p. 154308, 2015. https://doi.org/10.1063/1.4933395spa
dc.relation.references[38] V. V. Cheianov, V. Fal’ko, y B. L. Altshuler, “The focusing of electron flow and a veselago lens in graphene p-n junctions,” Science, vol. 315, p. 1252, 2007. http://science.sciencemag.org/content/315/5816/1252spa
dc.relation.references[39] K. J. A. Reijnders y M. 1. Katsnelson, “Symmetry breaking and (pseudo)spin polarization in veselago lenses for massless dirac fermions,” Phys. Rev. B, vol. 95, p. 115310, 2017. https://link.aps.org/doi/10.1103/PhysRevB.95.115310spa
dc.relation.references[40] S. Chen, Z. Han, M. M. Elahi, K. M. M. Habib, L. Wang, B. Wen, Y. Gao, T. Taniguchi, K. Watanabe, J. Hone, A. W. Ghosh, y C. R. Dean, “Electron optics with p-n junctions in ballistic graphene,” Science, vol. 353, p. 1522, 2016. http://science.sciencemag.org/content/353/6307/1522spa
dc.relation.references[41] S. Gómez Paéz, C. Martínez, W. J. Herrera, A. Levy Yeyati, y P. Burset, “Dirac point formation revealed by andreev tunneling in superlattice-graphene/superconductor junctions,” Phys. Rev. B, vol. 100, p. 205429, 2019. https://link.aps.org/doi/10.1103/ PhysRevB.100.205429spa
dc.relation.references[42] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, y P. Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature, vol. 556, no. 7699, pp. 43–50, Apr 2018. https://doi.org/10.1038/nature26160spa
dc.relation.references[43] E. McCann y M. Koshino, “The electronic properties of bilayer graphene,” Reports on Progress in Physics, vol. 76, p. 056503, 2013. http://stacks.iop.org/0034-4885/76/i=5/ a=056503spa
dc.relation.references[44] Y. H. Lai, J. H. Ho, C. P. Chang, y M. F. Lin, “Magnetoelectronic properties of bilayer bernal graphene,” Phys. Rev. B, vol. 77, p. 085426, 2008. https://link.aps.org/doi/10.1103/PhysRevB.77.085426spa
dc.relation.references[45] A. Orlof, J. Ruseckas, y 1. V. Zozoulenko, “Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects,” Phys. Rev. B, vol. 88, p. 125409, 2013. https://link.aps.org/doi/10.1103/PhysRevB.88.125409spa
dc.relation.references[46] C. G. P’eterfalvi, L. Oroszl’any, C. J. Lambert, y J. Cserti, “1ntraband electron focusing in bilayer graphene,” New Journal of Physics, vol. 14, p. 063028, 2012. http://stacks.iop.org/1367-2630/14/i=6/a=063028spa
dc.relation.references[47] M. 1. Katsnelson, K. S. Novoselov, y A. K. Geim, “Chiral tunnelling and the klein paradox in graphene,” Nature Physics, vol. 22, p. 620, 2006. http://www.nature.com/nphys/journal/v2/n9/abs/nphys384.htmlspa
dc.relation.references[48] Z. F. Wang, Q. Li, H. Su, X. Wang, Q. W. Shi, J. Chen, J. Yang, y J. G. Hou, “Electronic structure of bilayer graphene: A real-space green’s function study,” Phys. Rev. B, vol. 75, p. 085424, Feb 2007. https://link.aps.org/doi/10.1103/PhysRevB.75.085424spa
dc.relation.references[49] E. V. Castro, N. M. R. Peres, J. M. B. Lopes dos Santos, A. H. C. Neto, y F. Guinea, “Localized states at zigzag edges of bilayer graphene,” Phys. Rev. Lett., vol. 100, p. 026802, Jan 2008. https://link.aps.org/doi/10.1103/PhysRevLett.100.026802spa
dc.relation.references[50] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, y L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nature Materials, vol. 7, p. 151, 2007. https://doi.org/10.1038/nmat2082spa
dc.relation.references[51] S.-M. Choi, S.-H. Jhi, y Y.-W. Son, “Controlling energy gap of bilayer graphene by strain,” Nano Letters, vol. 10, no. 9, pp. 3486–3489, Sep 2010. https://doi.org/10.1021/nl101617xspa
dc.relation.references[52] E. McCann, D. S. L. Abergel, y V. 1. Fal’ko, “The low energy electronic band structure of bilayer graphene,” The European Physical Journal Special Topics, vol. 148, no. 1, pp. 91–103, Sep 2007. https://doi.org/10.1140/ep jst/e2007-00229-1spa
dc.relation.references[53] C.-H. Park, L. Y. Y.-W. Son, M. L. Cohen, y S. G. Louie, “Anisotropic behaviours of massless dirac fermions in graphene under periodic potentials,” Nature Physics, vol. 4, pp. 213–217, 2008. http://www.nature.com/nphys/journal/v4/n3/abs/nphys890.htmlspa
dc.relation.references[54] P. Burset, A. L. Yeyati, L. Brey, y H. A. Fertig, “Transport in superlattices on single-layer graphene,” Phys. Rev. B, vol. 83, p. 195434, 2011. https: //link.aps.org/doi/10.1103/PhysRevB.83.195434spa
dc.relation.references[55] M. Barbier, P. Vasilopoulos, y F. M. Peeters, “Single-layer and bilayer graphene superlattices: collimation, additional dirac points and dirac lines,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 368, p. 5499, 2010. http://rsta.royalsocietypublishing.org/content/368/1932/5499spa
dc.relation.references[56] C.-H. Park, Y.-W. Son, L. Yang, M. L. Cohen, y S. G. Louie, “Electron beam supercollimation in graphene superlattices,” Nano Letters, vol. 8, no. 9, pp. 2920–2924, 2008. https://doi.org/10.1021/nl801752rspa
dc.relation.references[57] R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, y M. F. Crommie, “Local electronic properties of graphene on a bn substrate via scanning tunneling microscopy,” Nano Letters, vol. 11, no. 6, pp. 2291–2295, 2011. https://doi.org/10.1021/nl2005115spa
dc.relation.references[58] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, y B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nature Materials, vol. 10, p. 282, Feb 2011. https://doi.org/10.1038/nmat2968spa
dc.relation.references[59] A. D. Palczewski, “Angle-resolved photoemission spectroscopy (arpes) studies of cuprate superconductors,” Graduate Theses and Dissertations, 2010.spa
dc.relation.references[60] A. A. Kordyuk, S. V. Borisenko, M. S. Golden, S. Legner, K. A. Nenkov, M. Knupfer, J. Fink, H. Berger, L. Forr’o, y R. Follath, “Doping dependence of the fermi surface in (Bi, Pb)2sr2cacu2o8+δ ,” Phys. Rev. B, vol. 66, p. 014502, 2002. https://link.aps.org/doi/10.1103/PhysRevB.66.014502spa
dc.relation.references[61] M. Marinus, H. G. Miller, R. M. Quick, F. Solms, y D. M. van der Walt, “Order parameter for pairing systems,” Phys. Rev. C, vol. 48, pp. 1713–1718, Oct 1993. https://link.aps.org/doi/10.1103/PhysRevC.48.1713spa
dc.relation.references[62] Y. Sera, T. Ueda, H. Adachi, y M. 1chioka, “Relation of superconducting pairing symmetry and non-magnetic impurity effects in vortex states,” Symmetry, vol. 12, no. 1, 2020. https://www.mdpi.com/2073-8994/12/1/175spa
dc.relation.references[63] N. Hayashi, M. 1chioka, y K. Machida, “Effects of gap anisotropy upon the electronic structure around a superconducting vortex,” Phys. Rev. B, vol. 56, pp. 9052–9063, 1997. https://link.aps.org/doi/10.1103/PhysRevB.56.9052spa
dc.relation.references[64] C. C. Tsuei y J. R. Kirtley, “Pairing symmetry in cuprate superconductors,” Rev. Mod. Phys., vol. 72, 2000. https://link.aps.org/doi/10.1103/RevModPhys.72.969spa
dc.relation.references[65] M. Horio, K. Koshiishi, S. Nakata, K. Hagiwara, Y. Ota, K. Okazaki, S. Shin, S. 1deta, K. Tanaka, A. Takahashi, T. Ohgi, T. Adachi, Y. Koike, y A. Fujimori, “d-wave superconducting gap observed in protect-annealed electron-doped cuprate superconductors Pr1.3—xLao.7CexCuO4 ,” Phys. Rev. B, vol. 100, 2019. https://link.aps.org/doi/10.1103/PhysRevB.100.054517spa
dc.relation.references[66] B. V. Duppen y F. M. Peeters, “Klein paradox for a pn junction in multilayer graphene,” EPL (Europhysics Letters), vol. 102, no. 2, p. 27001, 2013. https://doi.org/10.1209%2F0295-5075%2F102%2F27001spa
dc.relation.references[67] J. M. P. Jr, F. M. Peeters, A. Chaves, y G. A. Farias, “Klein tunneling in single and multiple barriers in graphene,” Semiconductor Science and Technology, vol. 25, p. 033002, 2010. http://stacks.iop.org/0268-1242/25/i=3/a=033002spa
dc.relation.references[68] P. Ruffieux, S. Wang, C. S.-S. Bo Yang, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Mu¨llen, y R. Fasel, “On-surface synthesis of graphene nanoribbons with zigzag edge topology,” Nature letters, vol. 531, p. 489, 2016. https://doi.org/10.1038/nature17151spa
dc.relation.references[69] D. Han, Q. Fan, J. D. Wang, J. Huang, Q. Xu, H. Ding, J. Hu, L. Feng, W. Zhang, Z. Z. J. M. Gottfried, y J. Zhu*, “On-surface synthesis of armchair-edged graphene nanoribbons with zigzag topology,” J. Phys. Chem. C, vol. 124, pp. 5248–5256, 2020. https://doi.org/10.1021/acs.jpcc.0c00018spa
dc.relation.references[70] C. Li, S. Gu’eron, A. Chepelianskii, y H. Bouchiat, “Full range of proximity effect probed with superconductor/graphene/superconductor junctions,” Phys. Rev. B, vol. 94, p. 115405, 2016. https://link.aps.org/doi/10.1103/PhysRevB.94.115405spa
dc.relation.references[71] M. Hayashi, H. Yoshioka, y A. Kanda, “Superconducting proximity effect in graphene nanostructures,” Journal of Physics: Conference Series, vol. 248, p. 012002, 2010. https://doi.org/10.1088%2F1742-6596%2F248%2F1%2F012002spa
dc.relation.references[72] A. Ramasubramaniam, D. Naveh, y E. Towe, “Tunable band gaps in bilayer graphene-bn heterostructures,” nano lett., vol. 11, no. 3, pp. 1070–1075, 2011. https://doi.org/10.1021/nl1039499spa
dc.relation.references[73] W. J. Herrera, P. Burset, y A. L. Yeyati, “A green function approach to graphene–superconductor junctions with well-defined edges,” Journal of Physics: Condensed Matter, vol. 22, no. 27, p. 275304, 2010. https://doi.org/10.1088%2F0953-8984%2F22%2F27%2F275304spa
dc.relation.references[74] S. G. PAEZ, “Transporte el’ectrico en superconductores no convencionales,” Tesis de doctorado, Colombia, 2011.spa
dc.relation.references[75] J. C. Cuevas, A. Mart’ln-Rodero, y A. L. Yeyati, “Hamiltonian approach to the transport properties of superconducting quantum point contacts,” Phys. Rev. B, vol. 54, pp. 7366–7379, Sep 1996. https://link.aps.org/doi/10.1103/PhysRevB.54.7366spa
dc.relation.references[76] O. E. C. Barrera, “Transporte eléctrico en nanoestructuras topológicas,” Tesis de Docotorado, Colombia, 2019.spa
dc.relation.references[2] P. G. D. Gennes, Superconductivity Of Metals And Alloys (Advanced Books Classics). Westview Press, 1999.spa
dc.relation.references[77] R. Casalbuoni y G. Nardulli, “1nhomogeneous superconductivity in condensed matter and qcd,” Rev. Mod. Phys., vol. 76, pp. 263–320, Feb 2004. https: //link.aps.org/doi/10.1103/RevModPhys.76.263spa
dc.relation.references[78] A. Bianconi, A. Valletta, A. Perali, y N. Saini, “High tc superconductivity in a superlattice of quantum stripes,” Solid State Communications, vol. 102, 1997.http://www.sciencedirect.com/science/article/pii/S0038109897000112spa
dc.relation.references[79] T. Sato, S. Souma, K. Nakayama, K. Terashima, K. Sugawara, T. Takahashi, Y. Kamihara, M. Hirano, y H. Hosono, “Superconducting gap and pseudogap in iron-based layered superconductor la(o1-xfx)feas,” Journal of the Physical Society of Japan, vol. 77, no. 6, p. 063708, 2008. https://doi.org/10.1143/JPSJ.77.063708spa
dc.relation.references[80] M. V. Sadovskii, “Pseudogap in high-temperature superconductors,” Physics- Uspekhi, vol. 44, no. 5, pp. 515–539, may 2001. https://doi.org/10.1070% 2Fpu2001v044n05abeh000902spa
dc.relation.references[81] C. Bruder, “Andreev scattering in anisotropic superconductors,” Phys. Rev. B, vol. 41, pp. 4017–4032, Mar 1990. https://link.aps.org/doi/10.1103/PhysRevB.41.4017spa
dc.relation.references[82] M. Tinkham, Introduction to superconductivity 2nd edition. Krieger Pub Co, 1996.spa
dc.relation.references[83] Y. Bang, “Superfluid density of the ±s-wave state for the iron-based superconductors,” EPL (Europhysics Letters), vol. 86, no. 4, p. 47001, may 2009. https: //doi.org/10.1209%2F0295-5075%2F86%2F47001spa
dc.relation.references[84] 1. S. Osborne, “A guiding path for graphene circuits,” Science, vol. 366, no. 6472, pp. 1468–1469, 2019. https://science.sciencemag.org/content/366/6472/1468.7spa
dc.relation.references[85] L. Brey y H. A. Fertig, “Emerging zero modes for graphene in a periodic potential,” Phys. Rev. Lett., vol. 103, p. 046809, Jul 2009. https://link.aps.org/doi/10.1103/ PhysRevLett.103.046809spa
dc.relation.references[86] M. Barbier, P. Vasilopoulos, y F. M. Peeters, “Extra dirac points in the energy spectrum for superlattices on single-layer graphene,” Phys. Rev. B, vol. 81, p. 075438, Feb 2010. https://link.aps.org/doi/10.1103/PhysRevB.81.075438spa
dc.relation.references[87] M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, y B. J. LeRoy, “Emergence of superlattice dirac points in graphene on hexagonal boron nitride,” Nature physics letter, vol. 8, p. 382, 2012. http://www.nature.com/nmat/journal/v10/n4/abs/nmat2968.htmlspa
dc.relation.references[88] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, 1. V. Grigorieva, K. S. Novoselov, F. Guinea, V. 1. Fal’ko, y A. K. Geim, “Cloning of dirac fermions in graphene superlattices,” Nature, vol. 497, p. 594, May 2013. https://doi.org/10.1038/nature12187spa
dc.relation.references[89] M. Lee, J. R. Wallbank, P. Gallagher, K. Watanabe, T. Taniguchi, V. 1. Fal’ko, y D. Goldhaber-Gordon, “Ballistic miniband conduction in a graphene superlattice,” Science, vol. 353, no. 6307, pp. 1526–1529, 2016. http://science.sciencemag.org/ content/353/6307/1526spa
dc.relation.references[90] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez- Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, y P. Jarillo-Herrero, “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” Nature, vol. 556, p. 80, Mar 2018. https://doi.org/10.1038/nature26154spa
dc.relation.references[91] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, y P. Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature, vol. 556, p. 43, Mar 2018, article. https://doi.org/10.1038/nature26160spa
dc.relation.references[92] P. Rickhaus, M. Weiss, L. Marot, y C. Sch¨onenberger, “Quantum hall effect in graphene with superconducting electrodes,” Nano Letters, vol. 12, no. 4, pp. 1942–1945, 2012. http://dx.doi.org/10.1021/nl204415sspa
dc.relation.references[93] V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov, K. Watanabe, T. Taniguchi, T. M. Klapwijk, y L. M. K. Vandersypen, “Ballistic josephson junctions in edge-contacted graphene,” Nat Nano, vol. 10, no. 9, pp. 761–764, 2015. http://dx.doi.org/10.1038/nnano.2015.156spa
dc.relation.references[94] M. Ben Shalom, M. J. Zhu, V. 1. Fal[rsquor]ko, A. Mishchenko, A. V. Kretinin, K. S. Novoselov, C. R. Woods, K. Watanabe, T. Taniguchi, A. K. Geim, y J. R. Prance, “Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene,” Nat Phys, vol. 12, no. 4, pp. 318–322, 2016. http://dx.doi.org/10.1038/nphys3592spa
dc.relation.references[95] G.-H. Lee y H.-J. Lee, “Proximity coupling in superconductor-graphene hete- rostructures,” Reports on Progress in Physics, vol. 81, no. 5, p. 056502, 2018. http://stacks.iop.org/0034-4885/81/i=5/a=056502spa
dc.relation.references[96] C. W. J. Beenakker, “Colloquium: Andreev reflection and klein tunneling in graphene,” Rev. Mod. Phys., vol. 80, pp. 1337–1354, 2008. https://link.aps.org/doi/10.1103/ RevModPhys.80.1337spa
dc.relation.references[97] T. Dirks, T. L. Hughes, S. Lal, B. Uchoa, Y.-F. Chen, C. Chialvo, P. M. Goldbart, y N. Mason, “Transport through andreev bound states in a graphene quantum dot,” Nature Physics, vol. 7, pp. 386–390, 2011.spa
dc.relation.references[98] Z. B. Tan, D. Cox, T. Nieminen, P. L¨ahteenm¨aki, D. Golubev, G. B. Lesovik, y P. J. Hakonen, “Cooper pair splitting by means of graphene quantum dots,” Phys. Rev. Lett., vol. 114, p. 096602, Mar 2015. https: //link.aps.org/doi/10.1103/PhysRevLett.114.096602spa
dc.relation.references[99] C. Tonnoir, A. Kimouche, J. Coraux, L. Magaud, B. Delsol, B. Gilles, y C. Chapelier, “1nduced superconductivity in graphene grown on rhenium,” Phys. Rev. Lett., vol. 111, p. 246805, December 2013. https://doi.org/10.1103/PhysRevLett.111.246805spa
dc.relation.references[100] B. M. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schneider, D. J. Dvorak, C. N. Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh, C. Straß er, A. Stöhr, S. Forti, C. R. Ast, U. Starke, y A. Damascelli, “Evidence for superconductivity in li-decorated monolayer graphene,” Proc. Natl Acad. Sci. USA, vol. 112, p. 11795, May 2015. https://doi.org/10.1073/pnas.1510435112spa
dc.relation.references[101] J. Chapman, Y. Su, C. A. Howard, D. Kundys, A. N. Grigorenko, F. Guinea, A. K. Geim, 1. V. Grigorieva, y R. R. Nair, “Superconductivity in ca-doped graphene laminates,” Sci. Rep., vol. 6, p. 23254, March 2016. https://doi.org/10.1038/srep23254spa
dc.relation.references[102] A. Di Bernardo, O. Millo, M. Barbone, H. Alpern, Y. Kalcheim, U. Sassi, A. K. Ott, D. De Fazio, D. Yoon, M. Amado, A. C. Ferrari, J. Linder, y J. W. A. Robinson, “p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor,” Nature Communications, vol. 8, p. 14024, 01 2017. https://doi.org/10.1038/ncomms14024spa
dc.relation.references[103] A. G. Moghaddam y M. Zareyan, “Graphene-based electronic spin lenses,” Phys. Rev. Lett., vol. 105, p. 146803, Sep 2010. https://link.aps.org/doi/10.1103/PhysRevLett.105. 146803spa
dc.relation.references[104] S. G’omez, P. Burset, W. J. Herrera, y A. L. Yeyati, “Selective focusing of electrons and holes in a graphene-based superconducting lens,” Phys. Rev. B, vol. 85, p. 115411, 2012. https://link.aps.org/doi/10.1103/PhysRevB.85.115411spa
dc.relation.references[105] J. Cserti, A. P’alyi, y C. P’eterfalvi, “Caustics due to a negative refractive index in circular graphene p—n junctions,” Phys. Rev. Lett., vol. 99, p. 246801, Dec 2007. https://link.aps.org/doi/10.1103/PhysRevLett.99.246801spa
dc.relation.references[106] Y. Xing, J. Wang, y Q.-f. Sun, “Focusing of electron flow in a bipolar graphene ribbon with different chiralities,” Phys. Rev. B, vol. 81, p. 165425, Apr 2010. https://link.aps.org/doi/10.1103/PhysRevB.81.165425spa
dc.relation.references[107] O. E. Casas, S. G’omez P’aez, A. Levy Yeyati, P. Burset, y W. J. Herrera, “Subgap states in two-dimensional spectroscopy of graphene-based superconducting hybrid junctions,” Phys. Rev. B, vol. 99, p. 144502, 2019. https://link.aps.org/doi/10.1103/ PhysRevB.99.144502spa
dc.relation.references[108] G.-H. Lee, G.-H. Park, y H.-J. Lee, “Observation of negative refraction of dirac fermions in graphene,” Nature physic letters, vol. 11, p. 925, 2015. http://www.nature.com/nphys/journal/v11/n11/full/nphys3460.htmlspa
dc.relation.references[109] L. Lin, L. Liao, J. Yin, H. Peng, y Z. Liu, “Building graphene p–n junctions for next-generation photodetection,” Nano Today, vol. 10, no. 6, pp. 701 – 716, 2015. http://www.sciencedirect.com/science/article/pii/S1748013215001358spa
dc.relation.references[110] H. Cheraghchi, H. Esmailzadeh, y A. G. Moghaddam, “Superconducting electron and hole lenses,” Phys. Rev. B, vol. 93, 2016. https://link.aps.org/doi/10.1103/PhysRevB.93.214508spa
dc.relation.references[111] A. G. Moghaddam y M. Zareyan, “Graphene-based electronic spin lenses,” Phys. Rev. Lett., vol. 105, p. 146803, Sep 2010. https://link.aps.org/doi/10.1103/PhysRevLett.105. 146803spa
dc.relation.references[112] P. Burset, W. J. Herrera, y A. L. Yeyati, “Microscopic theory of cooper pair beam splitters based on carbon nanotubes,” Phys. Rev. B, vol. 84, 2011. https://link.aps.org/doi/10.1103/PhysRevB.84.115448spa
dc.relation.references[115] J. Li, A. F. Morpurgo, M. Bu¨ttiker, y 1. Martin, “Marginality of bulk-edge correspondence for single-valley hamiltonians,” Phys. Rev. B, vol. 82, p. 245404, 2010. https://link.aps.org/doi/10.1103/PhysRevB.82.245404spa
dc.relation.references[116] M. Sanderson, Y. S. Ang, y C. Zhang, “Klein tunneling and cone transport in aa-stacked bilayer graphene,” Phys. Rev. B, vol. 88, p. 245404, 2013. https://link.aps.org/doi/10.1103/PhysRevB.88.245404spa
dc.relation.references[113] Y. Xu, Y. He, y Y. Yang, “Transmission gaps in graphene superlattices with periodic potential patterns,” Physica B: Condensed Matter, vol. 457, pp. 188 – 193, 2015. http://www.sciencedirect.com/science/article/pii/S0921452614007881spa
dc.relation.references[114] M. Killi, S. Wu, y A. Paramekanti, “Band structures of bilayer graphene superlattices,” Phys. Rev. Lett., vol. 107, p. 086801, 2011. https://link.aps.org/doi/10.1103/ PhysRevLett.107.086801spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembSuperconductorseng
dc.subject.lembSuperconductoresspa
dc.subject.lembElectric conductivityeng
dc.subject.lembConductividad eléctricaspa
dc.subject.proposalFunciones de Greenspa
dc.subject.proposalSuperconductividadspa
dc.subject.proposalGrafenospa
dc.subject.proposalBicapas de grafenospa
dc.subject.proposalReflexiones de Andreevspa
dc.subject.proposalLentes de Veselagospa
dc.subject.proposalGreen functionseng
dc.subject.proposalSuperconductivityeng
dc.subject.proposalGrapheneeng
dc.subject.proposalBilayers grapheneeng
dc.subject.proposalAndreev reflectioneng
dc.subject.proposalVeselago lenseng
dc.subject.unescoCarbonospa
dc.subject.unescoCarboneng
dc.titleDensidad de estados y transporte eléctrico en superconductores y sistemas periódicos nanoestructuradosspa
dc.title.translatedDensity of states and electric transport in superconductors and systems with periodic nanoestructureeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePrograma de becas doctorales de Colcienciasspa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80190330.2021.pdf
Tamaño:
7.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: