Characterization of heart dynamics in echocardiography

dc.contributor.advisorRomero Castro, Eduardo
dc.contributor.authorJara Hurtado, Jorge Daniel
dc.contributor.cvlacJara Hurtado, Jorge Daniel [0000128191]spa
dc.contributor.googlescholarJara-Hurtado, Daniel [gb6iLxMAAAAJ&hl]spa
dc.contributor.orcidJara, Daniel [0000-0002-0666-0320]spa
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2023-01-13T16:50:03Z
dc.date.available2023-01-13T16:50:03Z
dc.date.issued2022-11-28
dc.descriptionilustraciones, fotografías, gráficasspa
dc.description.abstractLas enfermedades cardiovasculares son la principal causa de muerte a nivel mundial. Para el 2019, se estimó que el 32% de todas las muertes a nivel mundial se dieron por esta causa. Este fenómeno se repite a nivel nacional, de acuerdo al Instituto Nacional de Salud, es la principal causa de muerte con un 23.5% de las muertes en el país. Para su diagnóstico, las imagenes ecocardiografía son la primer elección. La técnica permite evaluar las estructuras cardíacas y su función en la mayoría de ambientes clínicos. La ecocardiografía cuenta con diferentes modalidades que tomando ventaja de principios claves de ultrasonido permiten obtener modalidades como el análisis Doppler y técnicas de rastreo de patrones speckle, permitiendo a su vez evaluar el flujo de la sangre en puntos clave, así como el movimiento del músculo cardíaco. Además de los diferentes modos de imagen, de la ecografía se pueden obtener diferentes medidas para una evaluación completa: grosor de las paredes ventriculares, dimensiones de la cámara cardíaca, volúmenes de los ventrículos, velocidades de flujo y fracciones de eyección. Sin embargo, estas técnicas están dirigidas a ver las características de la sangre y del músculo por separado. Dadas estas razones y recordando que la función cardíaca es dependiente de interacciones entre tejidos de diferentes características (sangre y músculo), así como de la construcción misma del ventrículo (que explica varios elementos del movimiento cardíaco). Este trabajo propone explorar la evaluación de la función cardíaca en términos de la interacción dinámica entre estos tejidos, pues puede aportar información complementaria a los indicadores de evaluación actuales. (Texto tomado de la fuente)spa
dc.description.abstractCardiovascular diseases are the leading cause of death worldwide. In 2019, it was estimated that 32% of all deaths globally were due to this cause. This happens at national level, according to the colombian National Institute of Health (Instituto Nacional de Salud de Colombia - INS), this is the first cause of death with a 23.5% of all deaths in the country. In order to diagnose the cardiovascular disease, the echocardiography images are the first choice. This technique allows to evaluate the cardiac structures and its function in most of clinical environments. Echocardiography imaging has several modalities that by taking advantage of key principles of ultrasound, as Doppler imaging and speckle tracking techniques, allows to assess the blood flow in key points, as well as the motion of the cardiac muscle. Besides the different imaging techniques, from echocardiography, it is possible to obtain different measurements to perform a complete assessment: ventricular walls thickness, cardiac chamber dimensions, ventricular volumes, blood flow velocities and ejection fraction. Nevertheless, this techniques are devised to observe muscular and blood features separately. Given these reasons and remembering that the cardiac function is dependant on interactions between tissues of different characteristics (blood and muscle), This work aims to explore the cardiac function in terms of the dynamic interaction between these tissues, since it may provide complementary information to the current cardiac indicators.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.researchareaAnatomía digital por imágenesspa
dc.format.extentx, 34 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82918
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesWorld Health Organization. Cardiovascular diseases (cvds), Jun 2011.spa
dc.relation.referencesObservatorio Nacional de Salud Instituto Nacional de Salud. Enfermedad cardiovascu- lar: principal causa de muerte en colombia, Dec 2013.spa
dc.relation.referencesDoust J. Glasziou P. Lehman, R. Cardiac impairment or heart failure?, 2005.spa
dc.relation.referencesJane E Carreiro. Chapter 4 - the cardiovascular system. In Jane E Carreiro, editor, An Osteopathic Approach to Children (Second Edition), pages 73–83. Churchill Livingstone, Edinburgh, second edition edition, 2009.spa
dc.relation.referenceset al. Trianini J. Fundamentos de la nueva mec ́anica cardiaca: la bomba de succio ́n. page 112, 2015.spa
dc.relation.referencesFrancisco Torrent-Guasp, Mladen J. Kocica, Antonio Corno, Masashi Komeda, James Cox, A. Flotats, Manel Ballester-Rodes, and Francesc Carreras-Costa. Systolic ventri- cular filling. European Journal of Cardio-Thoracic Surgery, 25(3):376–386, 03 2004.spa
dc.relation.referencesKatherine C. Michelis, David L. Narotsky, and Brian G. Choi. Cardiovascular Imaging in Global Health Radiology, pages 207–224. Springer International Publishing, Cham, 2019.spa
dc.relation.referencesSasikumar N. Ahmed I. Echocardiography imaging techniques, 2021.spa
dc.relation.referencesRahko Peter S. Blauwet Lori A. Canaday Barry Finstuen Joshua A. Foster Michael C. Horton Kenneth Ogunyankin Kofo O. Palma Richard A. Velazquez Eric J. Mitchell, Carol. Imaging: Echocardiology—assessment of cardiac structure and function. pages 1–64. Elsevier, 2019.spa
dc.relation.referencesD. Bamira and M.H. Picard. Imaging: Echocardiology—assessment of cardiac structure and function. In Ramachandran S. Vasan and Douglas B. Sawyer, editors, Encyclopedia of Cardiovascular Research and Medicine, pages 35–54. Elsevier, Oxford, 2018.spa
dc.relation.referencesK. Kusunose. Current Cardiology Reports, 22(89), 2020.spa
dc.relation.referencesTurner Patrick L. Gazewood, John D. Heart failure with preserved ejection fraction: Diagnosis and management. American family physician, 96(9):582–588, 2017.spa
dc.relation.referencesMarc A. Pfeffer, Amil M. Shah, and Barry A. Borlaug. Heart failure with preserved ejection fraction in perspective. Circulation Research, 124(11):1598–1617, 2019.spa
dc.relation.referencesJuan Cosın Aguilar. Francisco torrent-guasp (1931-2005). Revista Espanola de Cardiologıa (English Edition), 58(6):759–760, 2005.spa
dc.relation.referencesTatiana Chumarnaya, Olga Solovyova, Yulia Alueva, Sergey P. Mikhailov, Valentina V. Kochmasheva, and Vladimir S. Markhasin. Left ventricle functional geometry in cardiac pathology. In 2015 Computing in Cardiology Conference (CinC), pages 353–356, 2015.spa
dc.relation.referencesNeha Goyal, Victor Mor-Avi, Valentina Volpato, Akhil Narang, Shuo Wang, Michael Salerno, Roberto M. Lang, and Amit R. Patel. Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventri- cular volumes from cardiac magnetic resonance images. Magnetic Resonance Imaging, 67:28–32, 2020.spa
dc.relation.referencesMuqing Deng, Cong Wang, Min Tang, and Tongjia Zheng. Extracting cardiac dynamics within ecg signal for human identification and cardiovascular diseases classification. Neural Networks, 100:70–83, 2018.spa
dc.relation.referenceset al. Nyrnes S. A. Blood speckle-tracking based on high–frame rate ultrasound imaging in pediatric cardiology. 33(4):493–503, 2020.spa
dc.relation.referencesSri Oktamuliani, Kaoru Hasegawa, and Yoshifumi Saijo. Left ventricular vortices in myocardial infarction observed with echodynamography. In 2019 41st Annual Interna- tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5816–5819, 2019.spa
dc.relation.referencesAngelica Atehortua, Eduardo Romero, and Mireille Garreau. Characterization of motion patterns by a spatio-temporal saliency descriptor in cardiac cine mri. Computer Methods and Programs in Biomedicine, 218:106714, 2022.spa
dc.relation.referencesFelipe M. Parages, Thomas S. Denney, Himanshu Gupta, Steven G. Lloyd, Louis J. Dell’Italia, and Jovan G. Brankov. Estimation of left ventricular motion from cardiac gated tagged mri using an image-matching deformable mesh model. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(2):147–157, 2017.spa
dc.relation.referencesVinayak Kumar, Alexander J. Ryu, Armando Manduca, Chaitanya Rao, Raymond J. Gibbons, Bernard J. Gersh, Krishnaswamy Chandrasekaran, Samuel J. Asirvatham, Philip A. Araoz, Jae K. Oh, Alexander C. Egbe, Atta Behfar, Barry A. Borlaug, and Nandan S. Anavekar. Cardiac mri demonstrates compressibility in healthy myocar- dium but not in myocardium with reduced ejection fraction. International Journal of Cardiology, 322:278–283, 2021.spa
dc.relation.referencesDouglas L. Mann and Michael R. Bristow. Mechanisms and models in heart failure. Circulation, 111(21):2837–2849, 2005.spa
dc.relation.referencesHan H. C. Voorhees, A. P. Biomechanics of cardiac function. Comprehensive Physiology, 5(4):1623–1644, 2015.spa
dc.relation.referenceset al. Trianini J. Fundamentos de la Nueva Mec ́anica Cardiaca: la Bomba de Succi ́on. Lumen, 2015.spa
dc.relation.referencesMichael Dandel, Hans Lehmkuhl, Christoph Knosalla, Nino Suramelashvili, and Roland Hetzer. Strain and strain rate imaging by echocardiography-basic concepts and clinical applicability. Current cardiology reviews, 5(2):133–148, 2009.spa
dc.relation.referencesJoseph T Poterucha, Shelby Kutty, Rebecca K Lindquist, Ling Li, and Benjamin W Eidem. Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. Journal of the American Society of Echocardiography, 25(7):733–740, 2012.spa
dc.relation.referencesJavier Bermejo, Yolanda Benito, Marta Alhama, Raquel Yotti, Pablo Mart ́ınez-Legazpi, Candelas P ́erez del Villar, Esther P ́erez-David, Ana Gonz ́alez-Mansilla, Cristina Santa- Marta, Alicia Barrio, Francisco Ferna ́ndez-Avil ́es, and Juan C. del A ́lamo. Intraven- tricular vortex properties in nonischemic dilated cardiomyopathy. American Jour- nal of Physiology-Heart and Circulatory Physiology, 306(5):H718–H729, 2014. PMID: 24414062.spa
dc.relation.referencesIman Borazjani, John Westerdale, Eileen M McMahon, Prathish K Rajaraman, Je↵rey J Heys, and Marek Belohlavek. Left ventricular flow analysis: recent advances in numeri- cal methods and applications in cardiac ultrasound. Computational and mathematical methods in medicine, 2013, 2013.spa
dc.relation.referencesMehedi Hasan Talukder, Mitsuhara Ogiya, and Masato Takanokura. Hybrid technique for despeckling medical ultrasound images. In Proceedings of the International Multi- Conference of Engineers and Computer Scientists, volume 1, 2018.spa
dc.relation.referencesAlberto Cadena-Bonfanti Sonia H. Contreras-Ortiz Jader Giraldo-Guzm ́an, Oscar Porto-Solano. Speckle reduction in echocardiography by temporal compounding and anisotropic di↵usion filtering, 2015.spa
dc.relation.referencesG. Ramos-Llorden, G. Vegas-Sanchez-Ferrero, M. Martin-Fernandez, C. Alberola-Lopez, and S. Aja-Fernandez. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Transactions on Image Processing, 24(1):345–358, Jan 2015.spa
dc.relation.referencesS. Aja-Fernandez and C. Alberola-Lopez. On the estimation of the coe ffient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing, 15(9):2694–2701, Sep. 2006.spa
dc.relation.referencesYanfeng Gu, Zhaoyu Cui, Chunhong Xiu, and Lanfeng Wang. Ultrasound echocardiography despeckling with non-local means time series filter. Neurocomputing, 124:120 – 130, 2014.spa
dc.relation.referencesA. Buades, B. Coll, and J. . Morel. A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 60–65 vol. 2, June 2005.spa
dc.relation.referencesSimarjot Kaur Randhawa, Ramesh Kumar Sunkaria, and Emjee Puthooran. Despeckling of ultrasound images using novel adaptive wavelet thresholding function. Multidimen- sional Systems and Signal Processing, Sep 2018.spa
dc.relation.referencesNishtha Rawat, Manminder Singh, and Birmohan Singh. Wavelet and total variation based method using adaptive regularization for speckle noise reduction in ultrasound images. Wireless Personal Communications, 106(3):1547–1572, Jun 2019.spa
dc.relation.referencesX. Zhang, S. Cheng, H. Ding, H. Wu, N. Gong, and R. Cheng. Ultrasound medical image denoising based on multi-direction median filter. In 2016 8th International Conference on Information Technology in Medicine and Education (ITME), pages 835–839, Dec 2016.spa
dc.relation.referencesParisa Gifani, Hamid Behnam, Farzan Haddadi, Zahra Alizadeh Sani, and Peyman Gifa- ni. Echocardiography noise reduction using sparse representation. Computers Electrical Engineering, 53:301 – 318, 2016.spa
dc.relation.referencesS. Rajalaxmi and S. Nirmala. Entropy-based straight kernel filter for echocardiography image denoising. Journal of Digital Imaging, 27(5):610–624, Oct 2014.spa
dc.relation.referencesYongjian Yu and S. T. Acton. Speckle reducing anisotropic di↵usion. IEEE Transactions on Image Processing, 11(11):1260–1270, Nov 2002.spa
dc.relation.referencesO. Bernard, J. G. Bosch, B. Heyde, M. Alessandrini, D. Barbosa, S. Camarasu-Pop, F. Cervenansky, S. Valette, O. Mirea, M. Bernier, P. Jodoin, J. S. Domingos, R. V. Stebbing, K. Keraudren, O. Oktay, J. Caballero, W. Shi, D. Rueckert, F. Milletari, S. Ahmadi, E. Smistad, F. Lindseth, M. van Stralen, C. Wang, O ̈. Smedby, E. Donal, M. Monaghan, A. Papachristidis, M. L. Geleijnse, E. Galli, and J. D’hooge. Standardized evaluation system for left ventricular segmentation algorithms in 3d echocardiography. IEEE Transactions on Medical Imaging, 35(4):967–977, April 2016.spa
dc.relation.referencesJose V. Manjon, Pierrick Coupe, Luis Martı-Bonmati, D. Louis Collins, and Montserrat Robles. Adaptive non-local means denoising of mr images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1):192–203, 2010.spa
dc.relation.referencesNagashettappa Biradar, M.L. Dewal, ManojKumar Rohit, and Ishan Jindal. Echocar- diographic image denoising using extreme total variation bilateral filter. Optik, 127(1):30 – 38, 2016.spa
dc.relation.referencesAnita. Sadeghpour and Azin. Alizadehasl. Chapter 5 - echocardiography. In Majid Maleki, Azin Alizadehasl, and Majid Haghjoo, editors, Practical Cardiology, pages 67 – 111. Elsevier, 2018.spa
dc.relation.referencesJames N. Kirkpatrick, Mani A. Vannan, Jagat Narula, and Roberto M. Lang. Echocar- diography in heart failure. Journal of the American College of Cardiology, 50(5):381– 396, 2007.spa
dc.relation.referencesThomas H. Marwick. The role of echocardiography in heart failure. Journal of Nuclear Medicine, 56(Supplement 4):31S–38S, 2015.spa
dc.relation.referenceset al. Dandel M. Strain and strain rate imaging by echocardiography – basic concepts and clinical applicability. 5(2):133–148, 2009.spa
dc.relation.referenceset al. Vos H. J. Contrast-enhanced high-frame-rate ultrasound imaging of flow patterns in cardiac chambers and deep vessels. 46(11):2875–2890, 2020.spa
dc.relation.referencesRadhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Su ̈sstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2274–2282, 2012.spa
dc.relation.referencesJorge Daniel Jara-Hurtado, Alvaro Andres Sandino, Angelica Atehortua, Carlos Alberto Ortız Davila, and Eduardo Romero. Speckle noise reduction in echocardiography using a bank of filters based on oriented structuring elements. In 15th International Symposium on Medical Information Processing and Analysis, volume 11330, pages 27 – 32. International Society for Optics and Photonics, SPIE, 2020.spa
dc.relation.referencesQuinn T.A.-Holmes J. W. Richardson W. J., Clarke S. A. Richardson, w. j., clarke, s. a., quinn, t. a., holmes, j. w. (2015). physiological implications of myocardial scar structu- re. comprehensive physiology, 5(4), 1877–1909. https://doi.org/10.1002/cphy.c140067. Comprehensive Physiology, 5(4):1877–1909, 2015.spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.decsPruebas de Función Cardíacaspa
dc.subject.decsHeart Function Testseng
dc.subject.decsTécnicas de Diagnóstico Cardiovascularspa
dc.subject.decsDiagnostic Techniques, Cardiovasculareng
dc.subject.proposalDinámica cardíacaspa
dc.subject.proposalEcocadiografíaspa
dc.subject.proposalFunción cardíacaspa
dc.subject.proposalEnfermedades cardiovascularesspa
dc.subject.proposalImágenes de ultrasonidospa
dc.subject.proposalCardiac dynamiceng
dc.subject.proposalEchocardiographyeng
dc.subject.proposalCardiac functioneng
dc.subject.proposalCardiovascular diseaseseng
dc.subject.proposalUltrasound imageseng
dc.titleCharacterization of heart dynamics in echocardiographyeng
dc.title.translatedCaracterización de la Dinámica Cardíaca en Ecocardiografíaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020776429.2022.pdf
Tamaño:
2.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: