Aprendizaje computacional para disminución de error en la detección y estadificación de malaria

dc.contributor.advisorVinck Posada, Herbertspa
dc.contributor.advisorSalcedo Reyes, Juan Carlosspa
dc.contributor.authorRodriguez Henao, Jesús Albertospa
dc.contributor.cvlacRodriguez, Jesus A. [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000130814]spa
dc.contributor.orcidRodríguez Henao, Jesús Alberto [0000-0002-0615-2465]spa
dc.contributor.projectleaderGomez, Cindy Lorenaspa
dc.contributor.researcherFuentes Cabrera, Miguelspa
dc.contributor.researcherGuerra Vega, Angela Patriciaspa
dc.contributor.researcherVargas Calderon, Vladimirspa
dc.contributor.researcherFranco Correa, Marcelaspa
dc.contributor.researcherCortes Cortes, Liliana Jazminspa
dc.contributor.researcherGodoy Enciso, Sofiaspa
dc.contributor.researcherGomez Arias, Santiagospa
dc.contributor.researchgroupGrupo de Óptica E Información Cuánticaspa
dc.contributor.researchgroupSuperconductividad y Nanotecnologíaspa
dc.date.accessioned2025-05-08T20:10:07Z
dc.date.available2025-05-08T20:10:07Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl presente trabajo se centra en la aplicación de técnicas de aprendizaje computacional, específicamente k-means y YOLO, para reducir el error en la detección de malaria en imágenes de muestras cultivadas de sangre infectada con el parásito de la especie Plasmodium falciparum, obtenidas mediante el método de sangre extendida. El proceso incluye el uso de preprocesamiento de imágenes, la transformación al espacio colorimétrico CIELAB para la caracterización de las estructuras del parásito, y la generación de cuatro modelos YOLO entrenados con imágenes sRGB, CIELAB e imágenes aumentadas en función de los rangos de caracterización de los parásitos. La investigación implicó varios pasos clave: revisión de la literatura y colaboración con el Instituto Nacional de Salud para comprender las técnicas de toma de muestras y el proceso de tinción por sangre extendida, así como la recopilación y digitalización de 266 imágenes de muestras de sangre infectada con P. falciparum. Estas imágenes fueron segmentadas y organizadas en una base de datos pública en Kaggle, con un total de 3820 segmentos de glóbulos infectados etiquetados. Por medio de k-means, se caracterizaron las estructuras del P. falciparum, definiendo los rangos de cada eje CIELAB para cromatina y citoplasma, para luego crear un nuevo grupo de imágenes sRGB y CIELAB con color falso en función de los rangos calculados, denominados en esta investigación como imágenes sRGB+ y CIELAB+. Posteriormente, cuatro modelos YOLO fueron entrenados utilizando las imágenes sRGB, CIELAB, sRGB+ y CIELAB+. Los resultados mostraron un alto desempeño, con una precisión media promedio (mAP) de detección de hasta 96.2% (Box) y 96.4% (Mask) en los modelos entrenados con imágenes en sRGB. El modelo con mejor rendimiento diagnóstico fue el sRGB, con una sensibilidad del 96%, precisión del 97.4% y exactitud del 93.4%. Finalmente, respecto a la disminución del error, se compararon las métricas de rendimiento diagnóstico mínimas requeridas para los microscopistas junior con las obtenidas por los modelos, encontrando que los modelos las equiparan y superan con una sensibilidad del 90% frente al 96%, precisión del 95% frente al 98% y exactitud del 80% frente al 93% para microscopistas y modelos, respectivamente. (Texto tomado de la fuente).spa
dc.description.abstractThe present work focuses on the application of computational learning techniques, specifically k-means and YOLO, to reduce the error in malaria detection in images of blood samples infected with the Plasmodium falciparum parasite, obtained through the thin blood smear method. The process includes the use of image preprocessing, transformation to the CIELAB color space for the characterization of the parasite's structures, and the generation of four YOLO models trained with sRGB, CIELAB, and augmented images based on the characterization ranges of the parasites. The research involved several key steps: a literature review and collaboration with the National Institute of Health to understand the sampling techniques and the thin blood smear staining process, as well as the collection and digitization of 266 images of blood samples infected with P. falciparum. These images were segmented and organized into a public database on Kaggle, with a total of 3,820 labeled segments of infected red blood cells. Through k-means, the structures of P. falciparum were characterized, defining the ranges of each CIELAB axis for chromatin and cytoplasm, and then creating a new set of sRGB and CIELAB images with false color based on the calculated ranges, referred to in this research as sRGB+ and CIELAB+ images. Subsequently, four YOLO models were trained using the sRGB, CIELAB, sRGB+, and CIELAB+ images. The results showed high performance, with an average precision (mAP) of up to 96.2% (Box) and 96.4% (Mask) in the models trained with sRGB images. The best-performing diagnostic model was sRGB, with a sensitivity of 96%, a precision of 97.4%, and an accuracy of 93.4%. Finally, regarding error reduction, the minimum diagnostic performance metrics required for junior microscopists were compared with those obtained by the models, finding that the models matched and exceeded them, with a sensitivity of 90% versus 96%, precision of 95% versus 98%, and accuracy of 80% versus 93% for microscopists and models, respectively.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extentvi, 99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88157
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de F´ısicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.indexedBiremespa
dc.relation.referencesWHO, "Malaria," 2021.spa
dc.relation.referencesWHO, "Global technical strategy for malaria 2016-2030," 2015.spa
dc.relation.referencesWHO, "World malaria report 2023," 2023.spa
dc.relation.referencesWHO, _World malaria report 2019_. World Health Organization, 1 ed., 2019.spa
dc.relation.referencesN. Moreno, "Lucha contra la malaria en colombia: ?como la ops/oms estan abordando la creciente carga de la enfermedad?," 2024.spa
dc.relation.referencesO. Ospina, L. Cortes, Z. Cucunuba, N. Mendoza, and P. Chaparro, "Characterization of the national malaria diagnostic network, colombia, 2006-2010 -- caracterizacion de la red nacional de diagnostico de malaria, colombia, 2006-2010," _Biomedica_, vol. 32, 2012.spa
dc.relation.referencesM. C. T. R. Lopez-Velez, "Aspectos practicos del diagnostico de laboratorio y profilaxis de la malaria,"spa
dc.relation.referencesL. J. Cortes and Angela Patricia Guerra, "Analisis de concordancia de tres pruebas para el diagnostico de malaria en la poblacion sintomatica de los municipios endemicos de colombia," _Biometaca_, vol. 40, pp. 117-145, 2020.spa
dc.relation.referencesM. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, "Image analysis and machine learning for detecting malaria," _Translational Research_, vol. 194, pp. 36-55, 4 2018.spa
dc.relation.referencesB. Srivastava, A. R. Anvikar, S. K. Ghosh, N. Mishra, N. Kumar, A. Houri-Yafin, J. J. Pollak, S. J. Salpeter, and N. Valecha, "Computer-vision-based technology for fast, accurate and cost effective diagnosis of malaria," _Malaria Journal_, vol. 14, p. 526, 12 2015.spa
dc.relation.referencesT. A. Aris, A. S. Nasir, L. C. Chin, H. Jaafar, and Z. Mohamed, "Fast k-means clustering algorithm for malaria detection in thick blood smear," in _2020 IEEE 10th International Conference on System Engineering and Technology, ICSET 2020 - Proceedings_, 2020.spa
dc.relation.referencesA. Nanoti, S. Jain, C. Gupta, and G. Vyas, "Detection of malaria parasite species and life cycle stages using microscopic images of thin blood smear," in _2016 International Conference on Inventive Computation Technologies (ICICT)_, p. 1, 2016.spa
dc.relation.referencesM. Mujahid, F. Rustam, R. Shafique, E. C. Montero, E. S. Alvarado, I. de la Torre Diez, and I. Ashraf, "Efficient deep learning-based approach for malaria detection using red blood cell smears," _Scientific Reports 2024 14:1_, vol. 14, pp. 1-16, 6 2024.spa
dc.relation.referencesR. R. S. Barrios, "Implementacion de un modelo para la identificacion de parasitos plasmodium en imagenes de muestras de sangre mediante la utilizacion de redes neuronales convolucionales," 2020.spa
dc.relation.referencesJ. Mosquera, "Modelamiento de casos de malaria en la region de ashanti-ghana usando regresion logistica, machine learning y discriminante lineal de fisher," 2024.spa
dc.relation.referencesL. J. Cortes, L. Munoz, and M. S. Ayala, "Comparacion entre metodologias para el diagnostico microscopico de malaria," _Biomedica_, vol. 38, pp. 244-252, 6 2018.spa
dc.relation.referencesMinsalud, "Malaria."spa
dc.relation.referencesCDC, "Malaria," 2024.spa
dc.relation.referencesCDC, "Anopheles," 2004.spa
dc.relation.referencesT. Vickers, "Malaria," 2006.spa
dc.relation.referencesCDC, "Where malaria occurs," 2024.spa
dc.relation.referencesINS and Minsalud, "Manual para el diagnostico de malaria no complicada en puestos de diagnostico y tratamiento," 2015.spa
dc.relation.referencesWHO, "Malaria map," 2024.spa
dc.relation.referencesF. Minsalud, "Malaria - memorias," 2013.spa
dc.relation.referencesWHO, "Paludismo," 2023.spa
dc.relation.referencesK. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, "Towards ultrasensitive malaria diagnosis using surface enhanced raman spectroscopy," _Scientific Reports_, vol. 6, 2016.spa
dc.relation.referencesD. M. Rojas Campino, "Espectroscopia raman como metodo de apoyo al diagnostico de malaria," 2023-01-19.spa
dc.relation.referencesF. D. Krampa, Y. Aniweh, P. Kanyong, and G. Awandare, "Recent advances in the development of biosensors for malaria diagnosis," _Sensors_, vol. 20, p. 799, 2020.spa
dc.relation.referencesD. M. Newman, J. Heptinstall, R. J. Matelon, L. Savage, M. L. Wears, J. Beddow, M. Cox, H. Schallig, and P. F. Mens, "A magneto-optic route toward the in vivo diagnosis of malaria: Preliminary results and preclinical trial data," _Biophysical Journal_, vol. 95, 2008.spa
dc.relation.referencesS. E. McBirney, D. Chen, A. Scholtz, H. Ameri, and A. M. Armani, "Rapid diagnostic for point-of-care malaria screening," _ACS Sensors_, vol. 3, 2018.spa
dc.relation.referencesV. Baptista, M. Silva, G. M. Ferreira, C. Calçada, G. Minas, M. I. Veiga, and S. O. Catarino, "Optical spectrophotometry as a promising method for quantification and stage differentiation of plasmodium falciparum parasites," _ACS Infectious Diseases_, vol. 9, pp. 140-149, 1 2023.spa
dc.relation.referencesJ. A. Adegoke, A. D. Paoli, I. O. Afara, K. Kochan, D. J. Creek, P. Heraud, and B. R. Wood, "Ultraviolet/visible and near-infrared dual spectroscopic method for detection and quantification of low-level malaria parasitemia in whole blood," Analytical Chemistry, vol. 93, 2021.spa
dc.relation.referencesS. Kasetsirikul, J. Buranapong, W. Srituravanich, M. Kaewthamasorn, and A. Pimpin, "The development of malaria diagnostic techniques: A review of the approaches with focus on dielectrophoretic and magnetophoretic methods," 2016.spa
dc.relation.referencesS. Juul, C. J. Nielsen, R. Labouriau, A. Roy, C. Tesauro, P. W. Jensen, C. Harmsen, E. L. Kristoffersen, Y. L. Chiu, R. Frohlich, P. Fiorani, J. Cox-Singh, D. Tordrup, J. Koch, A. L. Bienvenu, A. Desideri, S. Picot, E. Petersen, K. W. Leong, Y. P. Ho, M. Stougaard, and B. R. Knudsen, "Droplet microfluidics platform for highly sensitive and quantitative detection of malaria-causing plasmodium parasites based on enzyme activity measurement," ACS Nano, vol. 6, 2012.spa
dc.relation.referencesG. T. Webster, K. A. D. Villiers, T. J. Egan, S. Deed, L. Tilley, M. J. Tobin, K. R. Bambery, D. McNaughton, and B. R. Wood, "Discriminating the intracrythrocytic li-fecycle stages of the malaria parasite using synchrotron ft-ir microspectroscopy and an artificial neural network," Analytical Chemistry, vol. 81, 2009.spa
dc.relation.referencesY. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, "Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells," Journal of Biomedical Optics, vol. 15, 2010.spa
dc.relation.referencesN. Singla and V. Srivastava, "Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size," Optics and Laser Technology, vol. 130, 2020.spa
dc.relation.referencesE. de Jesus Gonzalez Cruz, A. D. Contreras, D. H. G. Aburto, F. E. R. Rosado, and M. Ángel de la Cruz Nicolas, "Manual de tinciones citoquímicas especiales en hematología," 2019.spa
dc.relation.referencesWHO, "Malaria microscopy quality assurance manual," 2016.spa
dc.relation.referencesCDC, "Clinical testing and diagnosis for malaria," 2024.spa
dc.relation.referencesL. Ortega, L. Marrero, O. Valdespino, M. Pomier, O. Trujillo, and C. Rojas, "Evolucion satisfactoria de un paciente adulto con malaria grave y complicada por plasmodium falciparum," Revista Cubana de Medicina Tropical, vol. 74, p. 917, 12 2022.spa
dc.relation.referencesD. A. Q. Moreno, L. M. M. Sanchez, M. A. A. Giraldo, L. E. V. Asprilla, and J. H. M. Rios, "Malaria, enfermedad tropical de multiples metodos diagnosticos," Archivos de Medicina (Manizales), vol. 17, pp. 402-414, 12 2017.spa
dc.relation.referencesR. Paschotta, Colorimetry - an encyclopedia article. RP Photonics AG, 2019.spa
dc.relation.referencesL. Hsien-Che, Introduction to Color Imaging Science. Cambridge University Press, 2005.spa
dc.relation.referencesK. Boyd and D. Turbert, "Eye anatomy: Parts of the eye and how we see," 4 2023.spa
dc.relation.referencesRECYL, "La retina," 2024.spa
dc.relation.referencesU. of Florida, "Image gallery: Vision and the eye."spa
dc.relation.referencesA. A. of Ophthalmology, "Rods," 2018.spa
dc.relation.referencesM. Olmo and R. Nave, "Bastones y conos."spa
dc.relation.referencesA. A. of Ophthalmology, "Cones," 2018.spa
dc.relation.referencesM. Applebury, M. Antoch, L. Baxter, L. Chun, J. Falk, F. Farhangfar, K. Kage, M. Krzystolik, L. Lyass, and J. Robbins, "The murine cone photoreceptor," Neuron, vol. 27, pp. 513-523, 9 2000.spa
dc.relation.referencesP. K. Ahnelt, "The photoreceptor mosaic," Eye, vol. 12, pp. 531-540, 5 1998.spa
dc.relation.referencesR. Sabesan, H. Hofer, and A. Roorda, "Characterizing the human cone photoreceptor mosaic via dynamic photopigment densitometry," PLOS ONE, vol. 10, p. e0144891, 12 2015.spa
dc.relation.referencesF.-C. Lin, J. K. Zao, K.-C. Tu, Y. Wang, Y.-P. Huang, C.-W. Chuang, H.-Y. Kuo, Y.-Y. Chien, C.-C. Chou, and T.-P. Jung, "Snr analysis of high-frequency steady-state visual evoked potentials from the foveal and extrafoveal regions of human retina," in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1810-1814, IEEE, 8 2012.spa
dc.relation.referencesDatacolor, "Color measurement-the cie color space," 2019.spa
dc.relation.referencesR. Paschotta, Scotopic and Photopic Vision - an encyclopedia article. RP Photonics AG, 2019.spa
dc.relation.referencesM. Olmo, R. Nave, and T. Beaulieu, "Brillo."spa
dc.relation.referencesM. Olmo and R. Nave, "Mezcla de color aditiva."spa
dc.relation.referencesC.-Y. Wen and C.-M. Chou, "Color image models and its applications to document examination," 2002.spa
dc.relation.referencesN. a Ibraheem, M. M. Hasan, R. Z. Khan, and P. K. Mishra, "Understanding color models : A review," ARPN Journal of Science and Technology, vol. 2, 2012.spa
dc.relation.referencesL. Morgado, E. G. de Mariscal, H. S. Heil, and R. Henriques, "The rise of data-driven microscopy powered by machine learning," 2024.spa
dc.relation.referencesA. Jung, "Machine learning," 2022.spa
dc.relation.referencesA. Aljuaid and M. Anwar, "Survey of supervised learning for medical image processing," SN Computer Science, vol. 3, 2022.spa
dc.relation.referencesR. Sen and S. Das, Unsupervised Learning. 2023.spa
dc.relation.referencesS. Naeem, A. Ali, S. Anam, and M. M. Ahmed, "An unsupervised machine learning algorithms: Comprehensive review," International Journal of Computing and Digital Systems, vol. 13, 2023.spa
dc.relation.referencesJ. E. van Engelen and H. H. Hoos, "A survey on semi-supervised learning," Machine Learning, vol. 109, 2020.spa
dc.relation.referencesD. Bergmann, "¿qué es el aprendizaje semisupervisado? -- ibm," 2023.spa
dc.relation.referencesK. Siren, A. Millard, B. Petersen, M. T. P. Gilbert, M. R. Clokie, and T. Sicheritz-Ponten, "Rapid discovery of novel prophages using biological feature engineering and machine learning," NAR Genomics and Bioinformatics, vol. 3, 2021.spa
dc.relation.referencesG. Kumar, R. Banerjee, D. K. Singh, N. Choubey, and Arnaw, "Mathematics for machine learning," Journal of Mathematical Sciences & Computational Mathematics, vol. 1, 2020.spa
dc.relation.referencesM. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," 2015.spa
dc.relation.referencesK. Fu, D. Cheng, Y. Tu, and L. Zhang, "Credit card fraud detection using convolutional neural networks," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9949 LNCS, 2016.spa
dc.relation.referencesI. BV, "trainyolo," 2023.spa
dc.relation.referencesA. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollar, and R. Girshick, "Segment anything," 2023.spa
dc.relation.referencesD. Reis, J. Kupec, J. Hong, and A. Daoudi, "Real-time flying object detection with yolov8," 5 2023.spa
dc.relation.referencesG. Jocher, A. Chaurasia, and J. Qiu, "Ultralytics yolov8," 2023.spa
dc.relation.referencesJ. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 779-788, 6 2015.spa
dc.relation.referencesJ. Redmon and A. Farhadi, "Yolo9000: Better, faster, stronger," Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 6517-6525, 12 2016.spa
dc.relation.referencesJ. Redmon and A. Farhadi, "Yolov3: An incremental improvement," 2018.spa
dc.relation.referencesA. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," 4 2020.spa
dc.relation.referencesNERSC, "Getting started at nersc - nersc documentation."spa
dc.relation.referencesNERSC, "Architecture - nersc documentation."spa
dc.relation.referencesNERSC, "National energy research scientific computing center."spa
dc.relation.referencesOpenCV, "Opencv: Color conversions."spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsAprendizaje Automático/estadística & datos numéricosspa
dc.subject.decsMachine Learning/statistics & numerical dataeng
dc.subject.decsMalaria/diagnóstico por imagenspa
dc.subject.decsMalaria/imaging diagnosticeng
dc.subject.decsInterpretación de Imagen Asistida por Computador/métodosspa
dc.subject.decsImage Interpretation, Computer-Assisted/methodseng
dc.subject.proposalMalariaspa
dc.subject.proposalGold estándarspa
dc.subject.proposalSangre extendidaspa
dc.subject.proposalPreprocesamiento de imágenesspa
dc.subject.proposalColorimetríaspa
dc.subject.proposalAprendizaje computacionalspa
dc.subject.proposalK-meansspa
dc.subject.proposalYOLOspa
dc.subject.proposalMalariaeng
dc.subject.proposalGold standardeng
dc.subject.proposalThin blood filmeng
dc.subject.proposalImage preprocessingeng
dc.subject.proposalColorimetryeng
dc.subject.proposalComputational learningeng
dc.subject.proposalK-meanseng
dc.subject.proposalYOLOeng
dc.titleAprendizaje computacional para disminución de error en la detección y estadificación de malariaspa
dc.title.translatedComputational learning for error reduction in malaria detection and stagingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1047446020.2025.pdf
Tamaño:
103.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: