Aprendizaje computacional para disminución de error en la detección y estadificación de malaria
dc.contributor.advisor | Vinck Posada, Herbert | spa |
dc.contributor.advisor | Salcedo Reyes, Juan Carlos | spa |
dc.contributor.author | Rodriguez Henao, Jesús Alberto | spa |
dc.contributor.cvlac | Rodriguez, Jesus A. [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000130814] | spa |
dc.contributor.orcid | Rodríguez Henao, Jesús Alberto [0000-0002-0615-2465] | spa |
dc.contributor.projectleader | Gomez, Cindy Lorena | spa |
dc.contributor.researcher | Fuentes Cabrera, Miguel | spa |
dc.contributor.researcher | Guerra Vega, Angela Patricia | spa |
dc.contributor.researcher | Vargas Calderon, Vladimir | spa |
dc.contributor.researcher | Franco Correa, Marcela | spa |
dc.contributor.researcher | Cortes Cortes, Liliana Jazmin | spa |
dc.contributor.researcher | Godoy Enciso, Sofia | spa |
dc.contributor.researcher | Gomez Arias, Santiago | spa |
dc.contributor.researchgroup | Grupo de Óptica E Información Cuántica | spa |
dc.contributor.researchgroup | Superconductividad y Nanotecnología | spa |
dc.date.accessioned | 2025-05-08T20:10:07Z | |
dc.date.available | 2025-05-08T20:10:07Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El presente trabajo se centra en la aplicación de técnicas de aprendizaje computacional, específicamente k-means y YOLO, para reducir el error en la detección de malaria en imágenes de muestras cultivadas de sangre infectada con el parásito de la especie Plasmodium falciparum, obtenidas mediante el método de sangre extendida. El proceso incluye el uso de preprocesamiento de imágenes, la transformación al espacio colorimétrico CIELAB para la caracterización de las estructuras del parásito, y la generación de cuatro modelos YOLO entrenados con imágenes sRGB, CIELAB e imágenes aumentadas en función de los rangos de caracterización de los parásitos. La investigación implicó varios pasos clave: revisión de la literatura y colaboración con el Instituto Nacional de Salud para comprender las técnicas de toma de muestras y el proceso de tinción por sangre extendida, así como la recopilación y digitalización de 266 imágenes de muestras de sangre infectada con P. falciparum. Estas imágenes fueron segmentadas y organizadas en una base de datos pública en Kaggle, con un total de 3820 segmentos de glóbulos infectados etiquetados. Por medio de k-means, se caracterizaron las estructuras del P. falciparum, definiendo los rangos de cada eje CIELAB para cromatina y citoplasma, para luego crear un nuevo grupo de imágenes sRGB y CIELAB con color falso en función de los rangos calculados, denominados en esta investigación como imágenes sRGB+ y CIELAB+. Posteriormente, cuatro modelos YOLO fueron entrenados utilizando las imágenes sRGB, CIELAB, sRGB+ y CIELAB+. Los resultados mostraron un alto desempeño, con una precisión media promedio (mAP) de detección de hasta 96.2% (Box) y 96.4% (Mask) en los modelos entrenados con imágenes en sRGB. El modelo con mejor rendimiento diagnóstico fue el sRGB, con una sensibilidad del 96%, precisión del 97.4% y exactitud del 93.4%. Finalmente, respecto a la disminución del error, se compararon las métricas de rendimiento diagnóstico mínimas requeridas para los microscopistas junior con las obtenidas por los modelos, encontrando que los modelos las equiparan y superan con una sensibilidad del 90% frente al 96%, precisión del 95% frente al 98% y exactitud del 80% frente al 93% para microscopistas y modelos, respectivamente. (Texto tomado de la fuente). | spa |
dc.description.abstract | The present work focuses on the application of computational learning techniques, specifically k-means and YOLO, to reduce the error in malaria detection in images of blood samples infected with the Plasmodium falciparum parasite, obtained through the thin blood smear method. The process includes the use of image preprocessing, transformation to the CIELAB color space for the characterization of the parasite's structures, and the generation of four YOLO models trained with sRGB, CIELAB, and augmented images based on the characterization ranges of the parasites. The research involved several key steps: a literature review and collaboration with the National Institute of Health to understand the sampling techniques and the thin blood smear staining process, as well as the collection and digitization of 266 images of blood samples infected with P. falciparum. These images were segmented and organized into a public database on Kaggle, with a total of 3,820 labeled segments of infected red blood cells. Through k-means, the structures of P. falciparum were characterized, defining the ranges of each CIELAB axis for chromatin and cytoplasm, and then creating a new set of sRGB and CIELAB images with false color based on the calculated ranges, referred to in this research as sRGB+ and CIELAB+ images. Subsequently, four YOLO models were trained using the sRGB, CIELAB, sRGB+, and CIELAB+ images. The results showed high performance, with an average precision (mAP) of up to 96.2% (Box) and 96.4% (Mask) in the models trained with sRGB images. The best-performing diagnostic model was sRGB, with a sensitivity of 96%, a precision of 97.4%, and an accuracy of 93.4%. Finally, regarding error reduction, the minimum diagnostic performance metrics required for junior microscopists were compared with those obtained by the models, finding that the models matched and exceeded them, with a sensitivity of 90% versus 96%, precision of 95% versus 98%, and accuracy of 80% versus 93% for microscopists and models, respectively. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.format.extent | vi, 99 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88157 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de F´ısica | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | WHO, "Malaria," 2021. | spa |
dc.relation.references | WHO, "Global technical strategy for malaria 2016-2030," 2015. | spa |
dc.relation.references | WHO, "World malaria report 2023," 2023. | spa |
dc.relation.references | WHO, _World malaria report 2019_. World Health Organization, 1 ed., 2019. | spa |
dc.relation.references | N. Moreno, "Lucha contra la malaria en colombia: ?como la ops/oms estan abordando la creciente carga de la enfermedad?," 2024. | spa |
dc.relation.references | O. Ospina, L. Cortes, Z. Cucunuba, N. Mendoza, and P. Chaparro, "Characterization of the national malaria diagnostic network, colombia, 2006-2010 -- caracterizacion de la red nacional de diagnostico de malaria, colombia, 2006-2010," _Biomedica_, vol. 32, 2012. | spa |
dc.relation.references | M. C. T. R. Lopez-Velez, "Aspectos practicos del diagnostico de laboratorio y profilaxis de la malaria," | spa |
dc.relation.references | L. J. Cortes and Angela Patricia Guerra, "Analisis de concordancia de tres pruebas para el diagnostico de malaria en la poblacion sintomatica de los municipios endemicos de colombia," _Biometaca_, vol. 40, pp. 117-145, 2020. | spa |
dc.relation.references | M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, "Image analysis and machine learning for detecting malaria," _Translational Research_, vol. 194, pp. 36-55, 4 2018. | spa |
dc.relation.references | B. Srivastava, A. R. Anvikar, S. K. Ghosh, N. Mishra, N. Kumar, A. Houri-Yafin, J. J. Pollak, S. J. Salpeter, and N. Valecha, "Computer-vision-based technology for fast, accurate and cost effective diagnosis of malaria," _Malaria Journal_, vol. 14, p. 526, 12 2015. | spa |
dc.relation.references | T. A. Aris, A. S. Nasir, L. C. Chin, H. Jaafar, and Z. Mohamed, "Fast k-means clustering algorithm for malaria detection in thick blood smear," in _2020 IEEE 10th International Conference on System Engineering and Technology, ICSET 2020 - Proceedings_, 2020. | spa |
dc.relation.references | A. Nanoti, S. Jain, C. Gupta, and G. Vyas, "Detection of malaria parasite species and life cycle stages using microscopic images of thin blood smear," in _2016 International Conference on Inventive Computation Technologies (ICICT)_, p. 1, 2016. | spa |
dc.relation.references | M. Mujahid, F. Rustam, R. Shafique, E. C. Montero, E. S. Alvarado, I. de la Torre Diez, and I. Ashraf, "Efficient deep learning-based approach for malaria detection using red blood cell smears," _Scientific Reports 2024 14:1_, vol. 14, pp. 1-16, 6 2024. | spa |
dc.relation.references | R. R. S. Barrios, "Implementacion de un modelo para la identificacion de parasitos plasmodium en imagenes de muestras de sangre mediante la utilizacion de redes neuronales convolucionales," 2020. | spa |
dc.relation.references | J. Mosquera, "Modelamiento de casos de malaria en la region de ashanti-ghana usando regresion logistica, machine learning y discriminante lineal de fisher," 2024. | spa |
dc.relation.references | L. J. Cortes, L. Munoz, and M. S. Ayala, "Comparacion entre metodologias para el diagnostico microscopico de malaria," _Biomedica_, vol. 38, pp. 244-252, 6 2018. | spa |
dc.relation.references | Minsalud, "Malaria." | spa |
dc.relation.references | CDC, "Malaria," 2024. | spa |
dc.relation.references | CDC, "Anopheles," 2004. | spa |
dc.relation.references | T. Vickers, "Malaria," 2006. | spa |
dc.relation.references | CDC, "Where malaria occurs," 2024. | spa |
dc.relation.references | INS and Minsalud, "Manual para el diagnostico de malaria no complicada en puestos de diagnostico y tratamiento," 2015. | spa |
dc.relation.references | WHO, "Malaria map," 2024. | spa |
dc.relation.references | F. Minsalud, "Malaria - memorias," 2013. | spa |
dc.relation.references | WHO, "Paludismo," 2023. | spa |
dc.relation.references | K. Chen, C. Yuen, Y. Aniweh, P. Preiser, and Q. Liu, "Towards ultrasensitive malaria diagnosis using surface enhanced raman spectroscopy," _Scientific Reports_, vol. 6, 2016. | spa |
dc.relation.references | D. M. Rojas Campino, "Espectroscopia raman como metodo de apoyo al diagnostico de malaria," 2023-01-19. | spa |
dc.relation.references | F. D. Krampa, Y. Aniweh, P. Kanyong, and G. Awandare, "Recent advances in the development of biosensors for malaria diagnosis," _Sensors_, vol. 20, p. 799, 2020. | spa |
dc.relation.references | D. M. Newman, J. Heptinstall, R. J. Matelon, L. Savage, M. L. Wears, J. Beddow, M. Cox, H. Schallig, and P. F. Mens, "A magneto-optic route toward the in vivo diagnosis of malaria: Preliminary results and preclinical trial data," _Biophysical Journal_, vol. 95, 2008. | spa |
dc.relation.references | S. E. McBirney, D. Chen, A. Scholtz, H. Ameri, and A. M. Armani, "Rapid diagnostic for point-of-care malaria screening," _ACS Sensors_, vol. 3, 2018. | spa |
dc.relation.references | V. Baptista, M. Silva, G. M. Ferreira, C. Calçada, G. Minas, M. I. Veiga, and S. O. Catarino, "Optical spectrophotometry as a promising method for quantification and stage differentiation of plasmodium falciparum parasites," _ACS Infectious Diseases_, vol. 9, pp. 140-149, 1 2023. | spa |
dc.relation.references | J. A. Adegoke, A. D. Paoli, I. O. Afara, K. Kochan, D. J. Creek, P. Heraud, and B. R. Wood, "Ultraviolet/visible and near-infrared dual spectroscopic method for detection and quantification of low-level malaria parasitemia in whole blood," Analytical Chemistry, vol. 93, 2021. | spa |
dc.relation.references | S. Kasetsirikul, J. Buranapong, W. Srituravanich, M. Kaewthamasorn, and A. Pimpin, "The development of malaria diagnostic techniques: A review of the approaches with focus on dielectrophoretic and magnetophoretic methods," 2016. | spa |
dc.relation.references | S. Juul, C. J. Nielsen, R. Labouriau, A. Roy, C. Tesauro, P. W. Jensen, C. Harmsen, E. L. Kristoffersen, Y. L. Chiu, R. Frohlich, P. Fiorani, J. Cox-Singh, D. Tordrup, J. Koch, A. L. Bienvenu, A. Desideri, S. Picot, E. Petersen, K. W. Leong, Y. P. Ho, M. Stougaard, and B. R. Knudsen, "Droplet microfluidics platform for highly sensitive and quantitative detection of malaria-causing plasmodium parasites based on enzyme activity measurement," ACS Nano, vol. 6, 2012. | spa |
dc.relation.references | G. T. Webster, K. A. D. Villiers, T. J. Egan, S. Deed, L. Tilley, M. J. Tobin, K. R. Bambery, D. McNaughton, and B. R. Wood, "Discriminating the intracrythrocytic li-fecycle stages of the malaria parasite using synchrotron ft-ir microspectroscopy and an artificial neural network," Analytical Chemistry, vol. 81, 2009. | spa |
dc.relation.references | Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, "Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells," Journal of Biomedical Optics, vol. 15, 2010. | spa |
dc.relation.references | N. Singla and V. Srivastava, "Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size," Optics and Laser Technology, vol. 130, 2020. | spa |
dc.relation.references | E. de Jesus Gonzalez Cruz, A. D. Contreras, D. H. G. Aburto, F. E. R. Rosado, and M. Ángel de la Cruz Nicolas, "Manual de tinciones citoquímicas especiales en hematología," 2019. | spa |
dc.relation.references | WHO, "Malaria microscopy quality assurance manual," 2016. | spa |
dc.relation.references | CDC, "Clinical testing and diagnosis for malaria," 2024. | spa |
dc.relation.references | L. Ortega, L. Marrero, O. Valdespino, M. Pomier, O. Trujillo, and C. Rojas, "Evolucion satisfactoria de un paciente adulto con malaria grave y complicada por plasmodium falciparum," Revista Cubana de Medicina Tropical, vol. 74, p. 917, 12 2022. | spa |
dc.relation.references | D. A. Q. Moreno, L. M. M. Sanchez, M. A. A. Giraldo, L. E. V. Asprilla, and J. H. M. Rios, "Malaria, enfermedad tropical de multiples metodos diagnosticos," Archivos de Medicina (Manizales), vol. 17, pp. 402-414, 12 2017. | spa |
dc.relation.references | R. Paschotta, Colorimetry - an encyclopedia article. RP Photonics AG, 2019. | spa |
dc.relation.references | L. Hsien-Che, Introduction to Color Imaging Science. Cambridge University Press, 2005. | spa |
dc.relation.references | K. Boyd and D. Turbert, "Eye anatomy: Parts of the eye and how we see," 4 2023. | spa |
dc.relation.references | RECYL, "La retina," 2024. | spa |
dc.relation.references | U. of Florida, "Image gallery: Vision and the eye." | spa |
dc.relation.references | A. A. of Ophthalmology, "Rods," 2018. | spa |
dc.relation.references | M. Olmo and R. Nave, "Bastones y conos." | spa |
dc.relation.references | A. A. of Ophthalmology, "Cones," 2018. | spa |
dc.relation.references | M. Applebury, M. Antoch, L. Baxter, L. Chun, J. Falk, F. Farhangfar, K. Kage, M. Krzystolik, L. Lyass, and J. Robbins, "The murine cone photoreceptor," Neuron, vol. 27, pp. 513-523, 9 2000. | spa |
dc.relation.references | P. K. Ahnelt, "The photoreceptor mosaic," Eye, vol. 12, pp. 531-540, 5 1998. | spa |
dc.relation.references | R. Sabesan, H. Hofer, and A. Roorda, "Characterizing the human cone photoreceptor mosaic via dynamic photopigment densitometry," PLOS ONE, vol. 10, p. e0144891, 12 2015. | spa |
dc.relation.references | F.-C. Lin, J. K. Zao, K.-C. Tu, Y. Wang, Y.-P. Huang, C.-W. Chuang, H.-Y. Kuo, Y.-Y. Chien, C.-C. Chou, and T.-P. Jung, "Snr analysis of high-frequency steady-state visual evoked potentials from the foveal and extrafoveal regions of human retina," in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1810-1814, IEEE, 8 2012. | spa |
dc.relation.references | Datacolor, "Color measurement-the cie color space," 2019. | spa |
dc.relation.references | R. Paschotta, Scotopic and Photopic Vision - an encyclopedia article. RP Photonics AG, 2019. | spa |
dc.relation.references | M. Olmo, R. Nave, and T. Beaulieu, "Brillo." | spa |
dc.relation.references | M. Olmo and R. Nave, "Mezcla de color aditiva." | spa |
dc.relation.references | C.-Y. Wen and C.-M. Chou, "Color image models and its applications to document examination," 2002. | spa |
dc.relation.references | N. a Ibraheem, M. M. Hasan, R. Z. Khan, and P. K. Mishra, "Understanding color models : A review," ARPN Journal of Science and Technology, vol. 2, 2012. | spa |
dc.relation.references | L. Morgado, E. G. de Mariscal, H. S. Heil, and R. Henriques, "The rise of data-driven microscopy powered by machine learning," 2024. | spa |
dc.relation.references | A. Jung, "Machine learning," 2022. | spa |
dc.relation.references | A. Aljuaid and M. Anwar, "Survey of supervised learning for medical image processing," SN Computer Science, vol. 3, 2022. | spa |
dc.relation.references | R. Sen and S. Das, Unsupervised Learning. 2023. | spa |
dc.relation.references | S. Naeem, A. Ali, S. Anam, and M. M. Ahmed, "An unsupervised machine learning algorithms: Comprehensive review," International Journal of Computing and Digital Systems, vol. 13, 2023. | spa |
dc.relation.references | J. E. van Engelen and H. H. Hoos, "A survey on semi-supervised learning," Machine Learning, vol. 109, 2020. | spa |
dc.relation.references | D. Bergmann, "¿qué es el aprendizaje semisupervisado? -- ibm," 2023. | spa |
dc.relation.references | K. Siren, A. Millard, B. Petersen, M. T. P. Gilbert, M. R. Clokie, and T. Sicheritz-Ponten, "Rapid discovery of novel prophages using biological feature engineering and machine learning," NAR Genomics and Bioinformatics, vol. 3, 2021. | spa |
dc.relation.references | G. Kumar, R. Banerjee, D. K. Singh, N. Choubey, and Arnaw, "Mathematics for machine learning," Journal of Mathematical Sciences & Computational Mathematics, vol. 1, 2020. | spa |
dc.relation.references | M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," 2015. | spa |
dc.relation.references | K. Fu, D. Cheng, Y. Tu, and L. Zhang, "Credit card fraud detection using convolutional neural networks," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9949 LNCS, 2016. | spa |
dc.relation.references | I. BV, "trainyolo," 2023. | spa |
dc.relation.references | A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollar, and R. Girshick, "Segment anything," 2023. | spa |
dc.relation.references | D. Reis, J. Kupec, J. Hong, and A. Daoudi, "Real-time flying object detection with yolov8," 5 2023. | spa |
dc.relation.references | G. Jocher, A. Chaurasia, and J. Qiu, "Ultralytics yolov8," 2023. | spa |
dc.relation.references | J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 779-788, 6 2015. | spa |
dc.relation.references | J. Redmon and A. Farhadi, "Yolo9000: Better, faster, stronger," Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 6517-6525, 12 2016. | spa |
dc.relation.references | J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," 2018. | spa |
dc.relation.references | A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," 4 2020. | spa |
dc.relation.references | NERSC, "Getting started at nersc - nersc documentation." | spa |
dc.relation.references | NERSC, "Architecture - nersc documentation." | spa |
dc.relation.references | NERSC, "National energy research scientific computing center." | spa |
dc.relation.references | OpenCV, "Opencv: Color conversions." | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 530 - Física::535 - Luz y radiación relacionada | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Aprendizaje Automático/estadística & datos numéricos | spa |
dc.subject.decs | Machine Learning/statistics & numerical data | eng |
dc.subject.decs | Malaria/diagnóstico por imagen | spa |
dc.subject.decs | Malaria/imaging diagnostic | eng |
dc.subject.decs | Interpretación de Imagen Asistida por Computador/métodos | spa |
dc.subject.decs | Image Interpretation, Computer-Assisted/methods | eng |
dc.subject.proposal | Malaria | spa |
dc.subject.proposal | Gold estándar | spa |
dc.subject.proposal | Sangre extendida | spa |
dc.subject.proposal | Preprocesamiento de imágenes | spa |
dc.subject.proposal | Colorimetría | spa |
dc.subject.proposal | Aprendizaje computacional | spa |
dc.subject.proposal | K-means | spa |
dc.subject.proposal | YOLO | spa |
dc.subject.proposal | Malaria | eng |
dc.subject.proposal | Gold standard | eng |
dc.subject.proposal | Thin blood film | eng |
dc.subject.proposal | Image preprocessing | eng |
dc.subject.proposal | Colorimetry | eng |
dc.subject.proposal | Computational learning | eng |
dc.subject.proposal | K-means | eng |
dc.subject.proposal | YOLO | eng |
dc.title | Aprendizaje computacional para disminución de error en la detección y estadificación de malaria | spa |
dc.title.translated | Computational learning for error reduction in malaria detection and staging | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1047446020.2025.pdf
- Tamaño:
- 103.39 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: