Detección y localización de tremores tectónicos en la región NW de Suramérica y su relación con sistemas de fallas regionales

dc.contributor.advisorPrieto Gómez, Germán Andrés
dc.contributor.authorCubillos Gordillo, Sofia
dc.contributor.orcidCubillos Gordillo, Sofia [0000-0002-3690-6491]spa
dc.coverage.countryColombia
dc.date.accessioned2024-07-16T20:58:27Z
dc.date.available2024-07-16T20:58:27Z
dc.date.issued2024-06
dc.descriptionIlustraciones (algunas a color), mapas, fotografíasspa
dc.description.abstractEl descubrimiento de terremotos de baja frecuencia, en particular los tremores tectónicos, revela la complejidad y diversidad de fuentes sísmicas asociadas con deformaciones activas en diversos entornos tectónicos. A través de un análisis multitemporal de registros continuos provenientes de la red de CARMA (CARibbean Merida Andes Broadband Experiment), un arreglo de 65 estaciones de banda ancha extendidas desde el Mar Caribe en el norte de Colombia y Venezuela hasta el interior del continente que operó entre el 2016 y el 2018, se logró realizar una detección preliminar de uno de los primeros informes de terremotos de baja frecuencia en la región Caribe (Colombia). Esto se alcanza mediante la implementación de la metodología de Chao and Yu (2018) para la búsqueda de tremores detonados por el paso de ondas superficiales de telesismos. Una vez identificados 5 tremores tectónicos generado telesismos con Mw 6+, se procedió a la localización tridimensional de la actividad de tremores mediante la técnica de Back-Projection Imaging (BPI). A través de este método, se estableció una relación en la superficie entre los tremores encontrados y las fallas del Espíritu Santo, la falla de Oca-Ancón, el sistema de falla Perijá-La Tigra y el Guaicáramo thrust. Su presencia se asocia a un límite frágil-dúctil en la corteza dentro de nuestro margen estructural. Los resultados permiten avanzar en la investigación de tremores ambientales, con el objetivo de entender y caracterizar el estado de los esfuerzos en la interacción entre las placas Caribe y Suramérica. (Texto tomado de la fuente)spa
dc.description.abstractThe discovery of low-frequency earthquakes, particularly tectonic tremors, reveals the complexity and diversity of seismic sources associated with active deformations in various tectonic environments. Through a multi-temporal analysis of continuous records of the CARMA project (CARibbean Merida Andes Broadband Experiment), which operated during the period 2016-2018 and consists of an array of 65 broadband stations extended from the Caribbean Sea in northern Colombia and Venezuela to the interior of the continent, a preliminary detection of one of the first reports of low-frequency earthquakes in the Colombian Caribbean region was achieved. This was accomplished by implementing the methodology proposed by Chao and Yu (2018) for the detection of tremors triggered by the passage of surface waves from teleseisms. Once identified, 5 tectonic tremors triggered by teleseisms with a magnitude greater than 6, three-dimensional localization of tremor activity was carried out using the Back-Projection Imaging (BPI) technique. Through this method, a correlation on the surface was established between the identified tremors and the Espíritu Santo faults, the Oca-Ancón fault, the Perijá-La Tigra fault system, and the Guaicáramo thrust. We associate them with a brittle-ductile boundary in the crust within our structural margin. The results allow for the advancement of research on ambient tremors, with the aim of understanding and characterizing the state of stresses in the interaction between the Caribbean and South American plates. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geofísicaspa
dc.description.researchareaSismologíaspa
dc.format.extentxvi, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86489
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísicaspa
dc.relation.referencesAndo, R., Takeda, N., and Yamashita, T. (2012). Propagation dynamics of seismic and aseismic slip governed by fault heterogeneity and newtonian rheology. Journal of Geophysical Research: Solid Earth, 117(B11)spa
dc.relation.referencesArtman, B., Podladtchikov, I., and Witten, B. (2010). Source location using time-reverse imaging. Geophysical Prospecting, 58(5):861–873spa
dc.relation.referencesAudemard, F., Machette, M., J, C., R, H., and Haller, K. (2000). Map and Database of Quaternary Faults in Venezuela and Offshore regions (USGS Open-File Report 00-18)spa
dc.relation.referencesAudemard, F. A., Singer, A. P., Soulas, J. P., Acosta, L., Arzola, A., Beltr ́an, C., Beck, C., Bellier, O., Bonnot, D., Bousquet, J. C., Carrillo, E., Casas-Sainz, A., Castilla, R., Costa, C., De Santis, F., Diederix, H., Gallardo, C., Giraldo, C., Gonz ́alez, R., Mocquet, A., Ollarves, R., Rivero, C. A., Rodr ́ıguez, E., Rodriguez, J. A., Rojas, C., Sauret, B., Schubert, C., and Subieta, T. (2006). Quaternary faults and stress regime of Venezuela. Revista de la Asociacion Geologica Argentina, 61(4):480–491spa
dc.relation.referencesBeroza, G. C. and Ide, S. (2011). Slow earthquakes and nonvolcanic tremor. Annual Review of Earth and Planetary Sciences, 39(1):271–296spa
dc.relation.referencesBeskardes, G. D., Hole, J. A., Wang, K., Michaelides, M., Wu, Q., Chapman, M. C., Davenport, K. K., Brown, L. D., and Quiros, D. A. (2018). A comparison of earthquake backprojection imaging methods for dense local arrays. Geophysical Journal International, 212(3):1986–2002spa
dc.relation.referencesBezada, M. J., Levander, A., and Schmandt, B. (2010). Subduction in the southern caribbean: Images from finite-frequency p wave tomography. Journal of Geophysical Research: Solid Earth, 115(B12)spa
dc.relation.referencesBrown, K. M., Tryon, M. D., DeShon, H. R., Dorman, L. M., and Schwartz, S. Y. (2005). Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth and Planetary Science Letters, 238(1):189–203spa
dc.relation.referencesBrudzinski, M. R. and Allen, R. M. (2007). Segmentation in episodic tremor and slip all along Cascadia. Geology, 35(10):907–910spa
dc.relation.referencesBrudzinski, M. R., Schlanser, K. M., Kelly, N. J., Demets, C., Grand, S. P., M ́arquez-azu ́a, B., and Cabral-cano, E. (2016). Tectonic tremor and slow slip along the northwestern section of the Mexico subduction zone. Earth and Planetary Science Letters, 454:259–271spa
dc.relation.referencesCardona, A., Weber, M., Wilson, R., Cordani, U., Muñoz, C. M., y Paniagua, F. (2007). Evolución tectono-magmática de las rocas máficas-ultramáficas del Cabo de La Vela y el Stock de Parashi, Península de la Guajira: registro de la evolución orogénica Cretácica-Eocena del norte de Suramérica y el Caribe. XI Congreso Colombiano de Geologíaspa
dc.relation.referencesCediel, F. and Shaw, R. (2018). Geology and Tectonics of Northwestern South America: The Pacific- Caribbean-Andean Junction. Frontiers in Earth Sciences. Springer International Publishingspa
dc.relation.referencesCediel, F., Shaw, R. P., and Editores (2019). Geology and Tectonics of Northwestern South Americaspa
dc.relation.referencesChao, K., Peng, Z., Frank, W. B., Prieto, G. A., and Obara, K. (2019). Isolated triggered tremor spots in South America and implications for global tremor activity. Seismological Research Letters, 90(5):1726–1739spa
dc.relation.referencesChao, K., Peng, Z., Wu, C., Tang, C.-C., and Lin, C.-H. (2012). Remote triggering of non-volcanic tremor around Taiwan. Geophysical Journal International, 188(1):301–324spa
dc.relation.referencesChao, K. and Yu, C. (2018). A MATLAB GUI for Examining Triggered Tremor: A Case Study in New Zealand. Seismological Research Letters, 20(20)spa
dc.relation.referencesCornthwaite, J., Bezada, M. J., Miao, W., Schmitz, M., Prieto, G. A., Dionicio, V., Niu, F., and Le- vander, A. (2021). Caribbean Slab Segmentation Beneath Northwest South America Revealed by 3-D Finite Frequency Teleseismic P-Wave Tomography. Geochemistry, Geophysics, Geosystems, 22(4):1–19spa
dc.relation.referencesDiederix, H., Bohórquez, O., Mora-Páez, H., Peláez, J., Cardona, L., Corchuelo, Y., Ramírez, J., y Díaz-Mila, F. (2020). The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. En Gómez, J. y Pinilla-Pachón, A. (editores), The Geology of Colombia, capítulo Volume 4 Q, páginas 423-452. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, Bogotá.spa
dc.relation.referencesDragert, H., Wang, K., and Rogers, G. (2004). Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone. Earth, Planets and Space, 56(12):1143–1150spa
dc.relation.referencesFarris, D. W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S. A., Montes, C., Cardona, A., Mora, A., Speakman, R. J., Glascock, M. D., and Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11):1007–1010spa
dc.relation.referencesFink, M., Cassereau, D., Derode, A., Prada, C., Roux, P., Tanter, M., Thomas, J. L., and Wu, F. (2000). Time-reversed acoustics. Reports on Progress in Physics, 63(12):1933–1995spa
dc.relation.referencesFrank, W. B. (2016). Slow slip hidden in the noise: The intermittence of tectonic release. Geophysical Research Letters, 43(19):10,125–10,133spa
dc.relation.referencesGajewski, D., Anikiev, D., Kashtan, B., Tessmer, E., and Vanelle, C. (2007). Localization of seismic events by diffraction stacking, pages 1287–1291spa
dc.relation.referencesGarcía González, M., Cruz Guevara, L. E., Mier Umaña, R., Vásquez Pinto, M., Jiménez Jácome, M., y Moreno Castellanos, M. (2008). Evolución térmica de la subcuenca de la Baja Guajiraspa
dc.relation.referencesGhosh, A., Vidale, J. E., and Creager, K. C. (2012). Tremor asperities in the transition zone control evolution of slow earthquakes. Journal of Geophysical Research: Solid Earth, 117(10):1–9spa
dc.relation.referencesGhosh, A., Vidale, J. E., Sweet, J. R., Creager, K. C., Wech, A. G., Houston, H., and Brodsky, E. E. (2010). Rapid, continuous streaking of tremor in Cascadia. Geochemistry, Geophysics, Geosystems, 11(12):1–10spa
dc.relation.referencesGomberg, J. (2010). Lessons from (triggered) tremor. Journal of Geophysical Research: Solid Earth, 115(B10)spa
dc.relation.referencesGomberg, J., Rubinstein, J. L., Peng, Z., Creager, K. C., Vidale, J. E., and Bodin, P. (2008). Widespread Triggering of Nonvolcanic Tremor in California. Science, 319(5860):173spa
dc.relation.referencesGomez Ospina, M., Thomas, A., and Monsalve, G. (2018). Multinomial logistic regression applied to identify tectonic tremor in Northern South America by using the Colombian National Seismic Network. In AGU Fall Meeting Abstracts, volume 2018, pages S11E–0422spa
dc.relation.referencesGraham, S. E., Loveless, J. P., and Meade, B. J. (2021). A global set of subduction zone earth- quake scenarios and recurrence intervals inferred from geodetically constrained block models of interseismic coupling distributions. Geochemistry, Geophysics, Geosystems, 22(11)spa
dc.relation.referencesHulbert, C., Jolivet, R., Gardonio, B., Johnson, P. A., Ren, C. X., and Rouet-Leduc, B. (2022). Tremor Waveform Extraction and Automatic Location With Neural Network Interpretation. IEEE Transactions on Geoscience and Remote Sensing, 60:1–9spa
dc.relation.referencesIde, S. (2010). Striations, duration, migration and tidal response in deep tremor. Nature, 466(7304):356–359spa
dc.relation.referencesIde, S. (2012). Variety and spatial heterogeneity of tectonic tremor worldwide. Journal of Geophy- sical Research: Solid Earth, 117(B3)spa
dc.relation.referencesIde, S. (2019). Detection of Low-Frequency Earthquakes in Broadband Random Time Sequences: Are They Independent Events? Journal of Geophysical Research: Solid Earth, 124(8):8611–8625spa
dc.relation.referencesIde, S., Beroza, G. C., Shelly, D. R., and Uchide, T. (2007). A scaling law for slow earthquakes. Nature, 447(7140):76–79spa
dc.relation.referencesIde, S. and Nomura, S. (2022). Forecasting tectonic tremor activity using a renewal process model. Progress in Earth and Planetary Science, 9(1):1–21spa
dc.relation.referencesIdehara, K., Yabe, S., and Ide, S. (2014). Regional and global variations in the temporal clustering of tectonic tremor activity. Earth, Planets and Space, 66(1):66spa
dc.relation.referencesIdárraga-García, J. y Romero, J. (2010). Neotectonic study of the Santa Marta Fault System, western foothills of the Sierra Nevada de Santa Marta, Colombia. Journal of South American Earth Sciences, 29(4):849-860spa
dc.relation.referencesIshii, M., Shearer, P. M., Houston, H., and Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044):933–936spa
dc.relation.referencesKanasewich, E. (1981). Time Sequence Analysis in Geophysics: Third Edition. University of Alberta Pressspa
dc.relation.referencesKellogg, J. N. and Bonini, W. E. (1982). Subduction of the Caribbean Plate and basement uplifts in the overriding South American Plate. Tectonics, 1(3):251–276spa
dc.relation.referencesKiser, E. and Ishii, M. (2017). Back-Projection Imaging of Earthquakes. Annual Review of Earth and Planetary Sciences, 45:271–299spa
dc.relation.referencesKokowski,J.andRudzinski,L�����.(2023).Estimationoflocationerrorsforlocalseismicnetworkin an area with intense and weak seismicity. Geophysical Journal International, 234(2):839–851spa
dc.relation.referencesLevander, A. (2016). Caribbean-merida andes experiment. International Federation of Digital Seismograph Networksspa
dc.relation.referencesLi, B., Wu, B., Bao, H., Oglesby, D. D., Ghosh, A., Gabriel, A.-A., Meng, L., and Chu, R. (2022). Rupture heterogeneity and directivity effects in back-projection analysis. Journal of Geophysical Research: Solid Earth, 127(3)spa
dc.relation.referencesLizarazo, S. C., Sagiya, T., and Mora-P ́aez, H. (2021). Interplate coupling along the caribbean coast of colombia and its implications for seismic/tsunami hazards. Journal of South American Earth Sciences, 110spa
dc.relation.referencesLozano, E., Zamora, N., and ANH (2014). Anexo K. Compilación de la cuenca Sinú - San Jacinto. pages 1–43spa
dc.relation.referencesMiller, J. B. (1962). Tectonic trends in sierra de perija and adjacent parts of venezuela and colombia. AAPG Bulletin, 46:1565–1595spa
dc.relation.referencesMiyazawa, M. and Brodsky, E. E. (2008). Deep low-frequency tremor that correlates with passing surface waves. Journal of Geophysical Research: Solid Earth, 113(B1)spa
dc.relation.referencesMiyazawa, M. and Mori, J. (2006). Evidence suggesting fluid flow beneath japan due to periodic seismic triggering from the 2004 sumatra-andaman earthquake. Geophysical Research Letters, 33(5)spa
dc.relation.referencesMora, J. A., Oncken, O., Le Breton, E., Ib ́anez-Mejia, M., Faccenna, C., Veloza, G., V ́elez, V., de Freitas, M., and Mesa, A. (2017). Linking late cretaceous to eocene tectonostratigraphy of the san jacinto fold belt of nw colombia with caribbean plateau collision and flat subduction. Tectonics, 36(11):2599–2629spa
dc.relation.referencesMurillo-Martíneza, C. A. and Agudelo-Zambranob, W. M. (2021). Sensitivity analysis of the back- projection imaging method for seismic event location. CTyF - Ciencia, Tecnologia y Futuro, 11(1):21–32spa
dc.relation.referencesNadeau, R. M. and Dolenc, D. (2005). Nonvolcanic Tremors Deep Beneath the San Andreas Fault. Science, 307(5708):389spa
dc.relation.referencesNakata, N. and Beroza, G. C. (2016). Reverse time migration for microseismic sources using the geometric mean as an imaging condition. Geophysics, 81(2):KS51–KS60spa
dc.relation.referencesNeo, J. C., Fan, W., Huang, Y., and Dowling, D. (2022). Frequency-difference backprojection of earthquakes. Geophysical Journal International, 231(3):2173–2185spa
dc.relation.referencesObara, K. (2002). Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan. Science, 296(5573):1679–1681spa
dc.relation.referencesObara, K. (2010). Phenomenology of deep slow earthquake family in southwest Japan: Spatiotemporal characteristics and segmentation. Journal of Geophysical Research: Solid Earth, 115(B8)spa
dc.relation.referencesObara, K. (2011). Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan. Journal of Geodynamics, 52(3):229–248spa
dc.relation.referencesOjeda, A. and Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5(4):575–593spa
dc.relation.referencesOkada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., and Yamamoto, A. (2004). Recent progress of seismic observation networks in Japan-Hi-net, F-net, K-NET and KiK-net. Earth, Planets and Space, 56(8):xv–xxviiispa
dc.relation.referencesPage, W. D. (1986). Geología sísmica y sismicidad del noroeste de Colombia. Interconexión Eléctrica SAspa
dc.relation.referencesParis, G., Machette, M. N., Dart, R. L., and Haller, K. M. (2000). Map and database of Quaternary faults and folds in Colombia and its offshore regions. Technical reportspa
dc.relation.referencesPayero, J. S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez-Campos, X., and Clayton, R. W. (2008). Nonvolcanic tremor observed in the Mexican subduction zone. Geophysical Research Letters, 35(7)spa
dc.relation.referencesPeng, Z. (2014). A Student’s Guide on Examining Remotely Triggered Seismicity from Waveform Dataspa
dc.relation.referencesPeng, Z. and Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Publishing Group, 3(9):599–607spa
dc.relation.referencesPeng, Z., Gonzalez-Huizar, H., Chao, K., Aiken, C., Moreno, B., and Armstrong, G. (2013). Tectonic Tremor beneath Cuba Triggered by the Mw 8.8 Maule and Mw 9.0 Tohoku-Oki Earthquakes. The Bulletin of the Seismological Society of America, 103:595–600spa
dc.relation.referencesPeng, Z., Vidale, J. E., Wech, A. G., Nadeau, R. M., and Creager, K. C. (2009). Remote triggering of tremor along the San Andreas Fault in central California. Journal of Geophysical Research: Solid Earth, 114(7):1–18spa
dc.relation.referencesPoiata, N., Satriano, C., Vilotte, J.-P., Bernard, P., and Obara, K. (2016). Multiband array de- tection and location of seismic sources recorded by dense seismic networks. Geophysical Journal International, 205(3):1548–1573spa
dc.relation.referencesPoiata, N., Vilotte, J. P., Bernard, P., Satriano, C., and Obara, K. (2018). Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method. Geophysical Journal International, 213(3):2193–2213spa
dc.relation.referencesPosada, G; Monsalve, G;Abad, A. M. (2017). No Title. Boletín de Ciencias de la Tierra, (42):36–44spa
dc.relation.referencesReshef, M. and Kosloff, D. (1986). Migration of common-shot gathers. Geophysics, 51(2):324–331spa
dc.relation.referencesRubinstein, J. L., Rocca, M. L., Vidale, J. E., Creager, K. C., and Wech, A. G. (2008). Tidal Modulation of Nonvolcanic Tremor. Science, 319(5860):186–189spa
dc.relation.referencesRubinstein, J. L., Shelly, D. R., and Ellsworth, W. L. (2010). Non-volcanic tremor: A window into the roots of fault zones. New Frontiers in Integrated Solid Earth Sciences, pages 287–314.spa
dc.relation.referencesRubinstein, J. L., Vidale, J. E., Gomberg, J., Bodin, P., Creager, K. C., and Malone, S. D. (2007). Non-volcanic tremor driven by large transient shear stresses. Nature, 448(7153):579–582spa
dc.relation.referencesRyberg, T., Haberland, C. H., Fuis, G. S., Ellsworth, W. L., and Shelly, D. R. (2010). Locating non- volcanic tremor along the San Andreas Fault using a multiple array source imaging technique. Geophysical Journal International, 183(3):1485–1500spa
dc.relation.referencesSethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595spa
dc.relation.referencesSethian, J. A. (1999). Fast marching methods. SIAM Review, 41(2):199–235spa
dc.relation.referencesShearer, P. M. (2009). Aspects of observational seismologyspa
dc.relation.referencesShelly, D. (2013). Tectonic Tremor BT - Encyclopedia of Natural Hazards. pages 1004–1006. Springer Netherlands, Dordrechtspa
dc.relation.referencesShelly, D. R., Beroza, G. C., Zhang, H., Thurber, C. H., and Ide, S. (2006). High-resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. Journal of Geophysical Research: Solid Earth, 111(6):1–10spa
dc.relation.referencesShelly, D. R., Peng, Z., Hill, D. P., and Aiken, C. (2011). Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nature Geoscience, 4(6):384–388spa
dc.relation.referencesSun, M., Bezada, M. J., Cornthwaite, J., Prieto, G. A., Niu, F., and Levander, A. (2022). Over- lapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577spa
dc.relation.referencesTaboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., and Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5):787–813spa
dc.relation.referencesThomas, A. M., Bürgmann, R., Shelly, D. R., Beeler, N. M., and Rudolph, M. L. (2012). Tidal triggering of low frequency earthquakes near Parkfield, California: Implications for fault mechanics within the brittle-ductile transition. Journal of Geophysical Research: Solid Earth, 117(B5)spa
dc.relation.referencesTrenkamp, R., Kellogg, J., Freymueller, J., and Mora-Paez, H. (2002). Wide plate margin deformation, southern central america and northwestern south america, casa gps observations. Journal of South American Earth Sciences, 15:157–171spa
dc.relation.referencesTrugman, D. T., Daub, E. G., Guyer, R. A., and Johnson, P. A. (2013). Modeling dynamic triggering of tectonic tremor using a brittle-ductile friction model. Geophysical Research Letters, 40(19):5075–5079spa
dc.relation.referencesVan Benthem, S., Govers, R., Spakman, W., and Wortel, R. (2013). Tectonic evolution and mantle structure of the caribbean. Journal of Geophysical Research: Solid Earth, 118(6):3019–3036.spa
dc.relation.referencesVan Der Hilst, R. and Mann, P. (1994). Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, 22(5):451–454.spa
dc.relation.referencesVeloza, G., Styron, R., and Taylor, M. (2012). Open-source archive of active faults for northwest South America. GSA Today, 22(10):4–10.spa
dc.relation.referencesVenton, D. (2016). Tectonic tremors could offer insights into the big shakers. Proceedings of the National Academy of Sciences, 113(29):7930–7931.spa
dc.relation.referencesWalter, Jacob I.; Schwartz, S. Y. P. J. M. G. V. (2011). Persistent tremor within the northern costa rica seismogenic zone. Geophysical Research Letters, 38(1).spa
dc.relation.referencesWech, A. G. (2021). Cataloging Tectonic Tremor Energy Radiation in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(10).spa
dc.relation.referencesWhite, M. C. A., Fang, H., Nakata, N., and Ben-Zion, Y. (2020). PyKonal: A Python Package for Solving the Eikonal Equation in Spherical and Cartesian Coordinates Using the Fast Marching Method. Seismological Research Letters, 91(4):2378–2389.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.lembTerremotosspa
dc.subject.lembEarthquakeseng
dc.subject.lembGeologíaspa
dc.subject.lembGeologyeng
dc.subject.lembPredicción sísmicaspa
dc.subject.lembEarthquake predictioneng
dc.subject.proposalTerremotos de baja frecuenciaspa
dc.subject.proposalTremor Tectónicospa
dc.subject.proposalCaribe Colombianospa
dc.subject.proposalBackprojectioneng
dc.titleDetección y localización de tremores tectónicos en la región NW de Suramérica y su relación con sistemas de fallas regionalesspa
dc.title.translatedDetection and location of tectonic tremor in the NW region of South America and its relation with regional fault systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032501453.2024.pdf
Tamaño:
88.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias-Geofísica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: