Prediction of colligatives effects in the system Water + NaCl through Machine Learning

dc.contributor.advisorCarrero, Javier Ignacio
dc.contributor.authorLondoño Arango, Jorge Eduardo
dc.contributor.researchgroupGrupo de Fisicoquímica Computacionalspa
dc.date.accessioned2023-10-02T16:13:26Z
dc.date.available2023-10-02T16:13:26Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractThe use of traditional models such asthemodifiedDebye-Hückelmodel, the Pitzer model, MSE (MixedSolvent Electrolyte), or e-NRTL (Non-Random Two Liquid - Electrolyte) for predicting colligative effects in the Water + NaCl system is challenging. While these models have shown good results in terms of predictions, their statistical and computational implementation has required significant effort. On the other hand, certain Machine Learning algorithms have been studied for phase equilibrium prediction in systems with dissolved electrolytes. In this study, the implementation of three Machine Learning algorithms (Neural Networks, Least Squares Support Vector Machines, and Regression Decision Trees) was evaluated for predicting the decrease in melting temperature and saturation pressure of the Water + NaCl system. The results were compared with the prediction provided by an empirical variant of the Debye-Hückel model. Zero mean, normality, and residual independence tests were conducted for all models to statistically evaluate the regression results. It was found that machine learning models have the potential to predict colligative effects in electrolyte solutions, particularly the Regression Decision Tree model, which met all the assumptions studied for both effects and proved to be a reliable prediction tool. Finally, it was demonstrated that computationally, the implementation of machine learning models was straightforward, and their implementation for new studies in property prediction is a promising research area. (Texto tomado de la fuente)eng
dc.description.abstractEl uso de los modelos tradicionales como el modelo modificado de Debye-Hückel, el modelo de Pitzer, MSE (Mixed-Solvent Electrolyte) o e-NRTL (Non-Random Two Liquid - Electrolyte) para la predicción de los efectos coligativos del sistema Agua + NaC es díficil porque aunque han tenido buenos resultados en términos predicciones, su implementación de forma estadística y computacional ha requerido diferentes esfuerzos. Por otro lado, se ha estudiado la aplicación de algoritmos de Machine Learning para la predicción de equilibrios de fase en sistemas con electrolitos disueltos. En este trabajo se evaluó la implementación de 3 algoritmos de Machine Learning (Redes Neuronales, Máquinas de Soporte de Vectores de Mínimos Cuadrados y Árboles de Decisión de Regresión) para la predicción de la disminución en la temperatura de fusión y la presión de saturación del sistema Agua + NaCl. Los resultados se compararon con la predicción dada por una variante empírica del modelo de Debye-Hückel. Para todos los modelos se realizaron pruebas de media cero, normalidad e independencia de residuales con el objetivo de evaluar estadísticamente los resultados de regresión. Se comprobó que los modelos de aprendizaje de máquina tienen potencial para la predicción de los efectos coligativos de soluciones de electrolitos; especialmente se encontró que el modelo árbol de decisión de regresión cumplio con todos los supuestos estudiados para ambos efectos, y es una herramienta de precisión fiable. Finalmente, se mostró que computacionalmente los modelos de aprendizaje automático fueron sencillos de implementar y que su implementación para nuevos estudios en la predicción de propiedades es un área de estudios prometedora.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.format.extentxi, 52 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84737
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Caldasspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesGómez G, M. Á.; Ibarra T, H. N., Equilibrio de fases para sistemas electrolíticos. Universidad Nacional de Colombia: Manizales, Col, 2015.spa
dc.relation.referencesLoehe, J. R.; Donohue, M. D. AIChE Journal 1997, 43, 180–195.spa
dc.relation.referencesMay, P. M.; Rowland, D. Journal of Chemical & Engineering Data 2017, 62, 2481–2495.spa
dc.relation.referencesLee, J. H.; Shin, J.; Realff, M. J. Computers & Chemical Engineering 2018, 114, 111–121.spa
dc.relation.referencesBrunton, S. L.; Noack, B. R.; Koumoutsakos, P. Annual Review of Fluid Mechanics 2020, 52, 477–508.spa
dc.relation.referencesLund, H.; Østergaard, P. A.; Connolly, D.; Mathiesen, B. V. Energy 2017, 137, 556–565.spa
dc.relation.referencesO’Dwyer, E.; Pan, I.; Acha, S.; Shah, N. Applied Energy 2019, 237, 581–597.spa
dc.relation.referencesFlah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M. L. Archives of Computational Methods in Engineering 2021, 28, 2621–2643.spa
dc.relation.referencesEslamimanesh, A.; Gharagheizi, F.; Mohammadi, A.H.; Richon,D.; Illbeigi, M.; Fazlali, A.; Forghani, A. A.; Yazdizadeh, M. Industrial & Engineering Chemistry Research 2011, 50, 12807–12814.spa
dc.relation.referencesGharagheizi, F.; Eslamimanesh, A.; Farjood, F.; Mohammadi, A. H.; Richon, D. Industrial & Engineering Chemistry Research 2011, 50, 11382–11395.spa
dc.relation.referencesRafiee-Taghanaki, S.; Arabloo, M.; Chamkalani, A.; Amani, M.; Zargari, M. H.; Adelzadeh, M. R. Fluid Phase Equilibria 2013, 346, 25–32.spa
dc.relation.referencesShokrollahi, A.; Arabloo, M.; Gharagheizi, F.; Mohammadi, A. H. Fuel 2013, 112, 375–384.spa
dc.relation.referencesGhiasi, M. M.; Bahadori, A.; Zendehboudi, S. Fuel 2014, 117, 33–42.spa
dc.relation.referencesKakkar, S.; Kwapinski, W.; Howard, C. A.; Kumar, K. V. Education for Chemical Engineers 2021, 36, 115–127.spa
dc.relation.referencesNing, C.; You, F. Computers & Chemical Engineering 2019, 125, 434–448.spa
dc.relation.referencesQin, S. J.; Chiang, L. H. Computers & Chemical Engineering 2019, 126, 465–473.spa
dc.relation.referencesQin, S. J.; Dong, Y. IFAC-PapersOnLine 2020, 53, 11325–11331.spa
dc.relation.referencesThon, C.; Finke, B.; Kwade, A.; Schilde, C. Advanced Intelligent Systems 2021, 3, 2000261.spa
dc.relation.referencesUdugama, I. A.; Gargalo, C. L.; Yamashita, Y.; Taube, M. A.; Palazoglu, A.; Young, B. R.; Gernaey, K. V.; Kulahci, M.; Bayer, C. Industrial & Engineering Chemistry Research 2020, 59, 15283–15297.spa
dc.relation.referencesVenkatasubramanian, V. AIChE Journal 2019, 65, 466–478.spa
dc.relation.referencesYarveicy, H.; Moghaddam, A. K.; Ghiasi, M. M. Journal of Natural Gas Science and Engineering 2014, 20, 414–421.spa
dc.relation.referencesDebye V, P. Phisikalische Zeeitschrift 1923, 24, 185.spa
dc.relation.referencesMourouga, G.; Chery, D.; Baudrin, E.; Randriamahazaka, H.; Schmidt, T. J.; Schumacher, J. O. iScience 2022, 25, 104901.spa
dc.relation.referencesSandler, S. I., Chemical, biochemical, and engineering thermodynamics, Fifth edition; Wiley: Hoboken, NJ, 2017.spa
dc.relation.referencesVasilyev, F.; Virolainen, S.; Sainio, T. Chemical Engineering Science 2018, 175, 267–277.spa
dc.relation.referencesJaime-Leal, J.; Bonilla-Petriciolet, A.; Bhargava, V.; Fateen, S. Chemical Engineering Research and Design 2015, 93, 464–472.spa
dc.relation.referencesJohansson, R., Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib, 2nd ed; Apress: 2019.spa
dc.relation.referencesMachado Cavalcanti, F.; Emilia Kozonoe, C.; André Pacheco, K.; Maria de Brito Alves, R. In Deep Learning Applications, Luigi Mazzeo, P., Spagnolo, P., Eds.; IntechOpen: 2021.spa
dc.relation.referencesAcharya, P. V.; Bahadur, V. Fluid Phase Equilibria 2021, 530, 112894.spa
dc.relation.referencesDing, J.; Xu, N.; Nguyen, M. T.; Qiao, Q.; Shi, Y.; He, Y.; Shao, Q. Chinese Journal of Chemical Engineering 2021, 31, 227–239.spa
dc.relation.referencesKoksal, E. S.; Aydin, E. Computers & Chemical Engineering 2023, 174, 108244.spa
dc.relation.referencesManavi, S.; Becker, T.; Fattahi, E. International Communications in Heat and Mass Transfer 2023, 142, 106662.spa
dc.relation.referencesPoort, J. P.; Ramdin, M.; van Kranendonk, J.; Vlugt, T. J. Fluid Phase Equilibria 2019, 490, 39–47.spa
dc.relation.referencesDel-Mazo-Alvarado, O.; Bonilla-Petriciolet, A. Fluid Phase Equilibria 2022, 561, 113537.spa
dc.relation.referencesRittig, J. G.; Ben Hicham, K.; Schweidtmann, A. M.; Dahmen, M.; Mitsos, A. Computers & Chemical Engineering 2023, 171, 108153.spa
dc.relation.referencesMasi, F.; Stefanou, I.; Vannucci, P.; Maffi-Berthier, V. Journal of the Mechanics and Physics of Solids 2021, 147, 104277.spa
dc.relation.referencesLondon, H. K. Neural Networks, Springer-Verlag 1996.spa
dc.relation.referencesCardona, A. C. Inteligencia artificial 2012, 194.spa
dc.relation.referencesKhosravi, R.; Rabiei, S.; Bahiraei, M.; Teymourtash, A. International Communications in Heat and Mass Transfer 2019, 109, 104351.spa
dc.relation.referencesTafarroj, M. M.; Mahian, O.; Kasaeian, A.; Sakamatapan, K.; Dalkilic, A. S.; Wongwises, S. International Communications in Heat and Mass Transfer 2017, 86, 25–31.spa
dc.relation.referencesDüğenci, M.; Aydemir, A.; Esen, İ.; Aydın, M. E. Engineering Applications of Artificial Intelligence 2015, 45, 71–79.spa
dc.relation.referencesKurt, H.; Atik, K.; Özkaymak, M.; Recebli, Z. International Journal of Thermal Sciences 2008, 47, 192–200.spa
dc.relation.referencesÇolak, A. B.; Açıkgöz, Ö.; Mercan, H.; Dalkılıç, A. S.; Wongwises, S. Case Studies in Thermal Engineering 2022, 39, 102391.spa
dc.relation.referencesAli, A.; Abdulrahman, A.; Garg, S.; Maqsood, K.; Murshid, G. Greenhouse Gases: Science and Technology 2019, 9, 67–78.spa
dc.relation.referencesAlrashed, A. A.; Karimipour, A.; Bagherzadeh, S. A.; Safaei, M. R.; Afrand, M. International Journal of Heat and Mass Transfer 2018, 127, 925–935.spa
dc.relation.referencesCarranza-Abaid, A.; Svendsen, H. F.; Jakobsen, J. P. Fluid Phase Equilibria 2023, 564, 113597.spa
dc.relation.referencesChamkalani, A.; Mohammadi, A. H.; Eslamimanesh, A.; Gharagheizi, F.; Richon, D. Chemical Engineering Science 2012, 81, 202–208.spa
dc.relation.referencesChamkalani, A. Petroleum Science and Technology 2015, 33, 31–38.spa
dc.relation.referencesSuykens, J. A. K.; Vandewalle, J. Kluwer Academic Publishers 1999.spa
dc.relation.referencesChamkalani, A.; Zendehboudi, S.; Chamkalani, R.; Lohi, A.; Elkamel, A.; Chatzis, I. Fluid Phase Equilibria 2013, 358, 189–202.spa
dc.relation.referencesAbe, S., Support vector machines for pattern classification; Springer: 2005; Vol. 2.spa
dc.relation.referencesBurges, C. J. C. Data Mining and Knowledge Discovery 1998.spa
dc.relation.referencesArabloo, M.; Shokrollahi, A.; Gharagheizi, F.; Mohammadi, A.H. Fuel Processing Technology 2013, 116, 317–324.spa
dc.relation.referencesPelckmans, K.; Suykens, J. A. K.; Gestel, T. V.; Brabanter, J. D.; Lukas, L.; Hamers, B.; Moor, B. D.; Vandewalle, J. Kasteelpark Arenberg 10 2002.spa
dc.relation.referencesEslamimanesh, A.; Gharagheizi, F.; Illbeigi, M.; Mohammadi, A. H.; Fazlali, A.; Richon, D. Fluid Phase Equilibria 2012, 316, 34–45.spa
dc.relation.referencesFord, D. M.; Dendukuri, A.; Kalyoncu, G.; Luu, K.; Patitz, M. J. Computers & Chemical Engineering 2020, 141, 106989.spa
dc.relation.referencesSerfidan, A. C.; Uzman, F.; Türkay, M. Computers & Chemical Engineering 2020, 134, 106711.spa
dc.relation.referencesNarayana Moorthy, N. S. H.; Martins, S. A.; Sousa, S. F.; Ramos, M. J.; Fernandes, P. A. RSC Advances. 2014, 4, 61624–61630.spa
dc.relation.referencesDi Caprio, U.; Wu, M.; Vermeire, F.; Van Gerven, T.; Hellinckx, P.; Waldherr, S.; Kayahan, E.; Leblebici, M. E. Journal of CO2 Utilization 2023, 70, 102452.spa
dc.relation.referencesSomvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S. International Conference on Computing Communication Control and automation (ICCUBEA) 2016, 1–7.spa
dc.relation.referencesLi, L.; Zhang, X. International Conference On Computer Design and Applications 2010, 1, V1–155.spa
dc.relation.referencesGupta, A.; Bansal, A.; Roy, K., et al. 5th International Conference on Intelligent Computing and Control Systems (ICICCS) 2021, 489–495.spa
dc.relation.referencesSingh Kushwah, J.; Kumar, A.; Patel, S.; Soni, R.; Gawande, A.; Gupta, S. Materials Today: Proceedings 2022, 56, First International Conference on Design and Materials, 3571–3576.spa
dc.relation.referencesChauhan, V. K.; Shukla, S. K.; Tirkey, J. V.; Singh Rathore, P. K. Journal of Cleaner Production 2021, 284, 124719.spa
dc.relation.referencesLiu, X.; Zhang, J.; Pei, Z. Progress in Materials Science 2023, 131, 101018.spa
dc.relation.referencesJohnson, N.; Vulimiri, P.; To, A.; Zhang, X.; Brice, C.; Kappes, B.; Stebner, A. Additive Manufacturing 2020, 36, 101641.spa
dc.relation.referencesKarkouch, A.; Mousannif, H.; Al Moatassime, H.; Noel, T. Journal of Network and Computer Applications 2016, 73, 57–81.spa
dc.relation.referencesAl Samara, M.; Bennis, I.; Abouaissa, A.; Lorenz, P. Journal of Network and Computer Applications 2023, 211, 103563.spa
dc.relation.referencesHao, X.; Zhang, Z.; Xu, Q.; Huang, G.; Wang, K. Chemometrics and Intelligent Laboratory Systems 2022, 220, 104461.spa
dc.relation.referencesBanus, J.; Lorenzi, M.; Camara, O.; Sermesant, M. Medical Image Analysis 2021, 72, 102089.spa
dc.relation.referencesGould, B. A. The Astronomical Journal 1855, 4, 81.spa
dc.relation.referencesRoss, S. M. et al. Journal of engineering technology 2003, 20, 38–41.spa
dc.relation.referencesMahalanobis, P. C. Proceedings of the National Institute of Sciences of India 1936, 2, 49–55.spa
dc.relation.referencesBeaulieu St-Laurent, P.; Gosselin, L.; Duchesne, C. International Journal of Refrigeration 2018, 90, 132–144.spa
dc.relation.referencesRousseeuw, P. J.; Driessen, K. V. Technometrics 1999, 41, 212–223.spa
dc.relation.referencesHardin, J.; Rocke, D. M. Computational Statistics & Data Analysis 2004, 44, 625–638.spa
dc.relation.referencesFernández, Á.; Bella, J.; Dorronsoro, J. R. Neurocomputing 2022, 486, 77–92.spa
dc.relation.referencesHundi, P.; Shahsavari, R. Applied Energy 2020, 265, 114775.spa
dc.relation.referencesHoyle, B.; Rau, M. M.; Paech, K.; Bonnett, C.; Seitz, S.; Weller, J. Monthly Notices of the Royal Astronomical Society 2015, 452, 4183–4194.spa
dc.relation.referencesTsutsui, K.; Moriguchi, K. Calphad 2021, 74, 102303.spa
dc.relation.referencesDrapper Norman R. Smith, H., Applied Regression Analysis, Third edition; Wiley: New York, NY, 1998.spa
dc.relation.referencesCarrero-Mantilla, J. I.; Ramírez-Ramírez, D. d. J.; Súarez-Cifuentes, J. F. Fluid Phase Equilibria 2016, 412, 158–167.spa
dc.relation.referencesDurbin, J.; Watson, G. S. In Breakthroughs in Statistics: Methodology and Distribution, Kotz, S., Johnson, N. L., Eds.; Springer New York: New York, NY, 1992, pp 260–266.spa
dc.relation.referencesWisniak, J.; Polishuk, A. Fluid Phase Equilibria 1999, 164, 61–82.spa
dc.relation.referencesKim, H. Applied Economics 2022, 54, 3197–3205.spa
dc.relation.referencesSingh, S.; Kulshreshtha, N. M.; Goyal, S.; Brighu, U.; Bezbaruah, A. N.; Gupta, A. B. Journal of Water Process Engineering 2022, 50, 103264.spa
dc.relation.referencesSwed, F. S.; Eisenhart, C. The Annals of Mathematical Statistics 1943, 14, 66–87.spa
dc.relation.referencesDraper Norman R.;Smith, H., Applied Regression Analysis, 3rd edition; Wiley: 2014.spa
dc.relation.referencesMara, U. T. Journal of Statistical Modeling and Analytics 2011.spa
dc.relation.referencesUba, G.; Zandam, N. D.; Mansur, A.; Shukor, M. Y. Bioremediation Science and Technology Research 2021, 9, 13–19.spa
dc.relation.referencesD’Agostino Ralph B. Sthepens, M. A., Goodness-of-fit techniques; Marcel Dekker, INC: New York, NY, 1986.spa
dc.relation.referencesPrausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. d., Molecular thermodynamics of fluid-phase equilibria, 2nd ed; Prentice-Hall: Englewood Cliffs, N.J, 1986.spa
dc.relation.referencesRodebush, W. H. Journal of the American Chemical Society 1918, 40, 1204–1213.spa
dc.relation.referencesGibbard, H. F.; Gossmann, A. F. Journal of Solution Chemistry 1974, 3, 385–393.spa
dc.relation.referencesHall, D. L.; Sterner, S. M.; Bodnar, R. J. Economic Geology 1988, 83, 197–202.spa
dc.relation.referencesHaghighi, H.; Chapoy, A.; Tohidi, B. Industrial & Engineering Chemistry Research 2008, 47, 3983–3989.spa
dc.relation.referencesGel, Y. R.; Miao, W.; Gastwirth, J. L. Computational Statistics & Data Analysis 2007, 51, 2734–2746.spa
dc.relation.referencesLi, G.-L.; Sato, O. Acta Crystallographica Section E Crystallographic Communications 2017, 73, 993–995.spa
dc.relation.referencesZhang, N.; Yang, Z.; Chen, Z.; Li, Y.; Liao, Y.; Li, Y.; Gong, M.; Chen, Y. Catalysts 2018, 8, 246.spa
dc.relation.referencesHsu, C.-W.; Chang, C.-C.; Lin, C.-J. Department of Computer Science National Taiwan University.spa
dc.relation.referencesJabbar, M. A.; Deekshatulu, B.; Chandra, P. Procedia Technology 2013, 10, 85–94.spa
dc.relation.referencesHastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning; Springer Series in Statistics; Springer New York: New York, 2009.spa
dc.relation.referencesAlMutawa, J. Journal of Process Control 2009, 19, 879–887.spa
dc.relation.referencesDescamps, C.; Coquelet, C.; Bouallou, C.; Richon, D. Thermochimica Acta 2005, 430, 1–7.spa
dc.relation.referencesErdős, M.; Frangou, M.; Vlugt, T. J.; Moultos, O. A. Fluid Phase Equilibria 2021, 528, 112842.spa
dc.relation.referencesKim, Y. S. Expert Systems with Applications 2008, 34, 1227–1234.spa
dc.relation.referencesPoling, B. E.; Prausnitz,J. M.; O’Connell,J. P., The properties of gases and liquids, 5th ed; McGrawHill: New York, 2001.spa
dc.relation.referencesGrundl, G.; Tsurko, E.; Neueder, R.; Kunz, W. The Journal of Chemical Thermodynamics 2019, 139, 105878.spa
dc.relation.referencesGibbard, H. F.; Scatchard, G.; Rousseau, R. A.; Creek, J. L. Journal of Chemical & Engineering Data 1974, 19, 281–288.spa
dc.relation.referencesEngels, H., Phase Equilibria and Phase Diagrams of Electrolytes; Schön Wetzel GmbH: Frankfurt/-Main, FR, 1990.spa
dc.relation.referencesHang, P.; Zhou, L.; Liu, G. Journal of Cleaner Production 2021, 296, 126615.spa
dc.relation.referencesDohnal, V.; Fenclová, D. Fluid Phase Equilibria 1985, 19, 1–12.spa
dc.relation.referencesDieudonné, N. T.; Armel, T. K. F.; Hermann, D. T.; Vidal, A. K. C.; René, T. Technological Forecasting and Social Change 2023, 187, 122212.spa
dc.relation.referencesSriananthakumar, S. Economic Modelling 2013, 33, 126–136.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.proposalPredictioneng
dc.subject.proposalColligative effectseng
dc.subject.proposalCryoscopic effecteng
dc.subject.proposalBoiling point elevationeng
dc.subject.proposalWater + NaCleng
dc.subject.proposalEmpirical Modeleng
dc.subject.proposalDebue-Hückel modeleng
dc.subject.proposalMachine Learningeng
dc.subject.proposalNeural networkseng
dc.subject.proposalLeast-Squares Support Vector Machineeng
dc.subject.proposalRegression Decision Treeseng
dc.subject.proposalElectrolyte solutioneng
dc.subject.proposalMelting temperatureeng
dc.subject.proposalSaturation pressureeng
dc.subject.proposalPredicciónspa
dc.subject.proposalEfectos coligativosspa
dc.subject.proposalEfecto crioscópicospa
dc.subject.proposalEfecto ebulloscópicospa
dc.subject.proposalAgua + NaClspa
dc.subject.proposalModelos empíricosspa
dc.subject.proposalModelo de Debye-Hückelspa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalMáquinas de soporte de vectores de mínimos cuadradosspa
dc.subject.proposalÁrboles de decisión de regresiónspa
dc.subject.proposalSolución electrolíticaspa
dc.subject.proposalTemperatura de fusiónspa
dc.subject.proposalPresión de saturaciónspa
dc.titlePrediction of colligatives effects in the system Water + NaCl through Machine Learningeng
dc.title.translatedPredicción de los efectos coligativos en el sistema Agua + NaCl mediante Machine Learningspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053870569.2023.pdf
Tamaño:
2.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: