Extracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulación

dc.contributor.advisorSerna Cock, Liliana
dc.contributor.authorTobar Delgado, Magaly Elizabeth
dc.contributor.educationalvalidatorTorres Castañeda, Harlen
dc.contributor.educationalvalidatorYarce Castellanos, Cristhian Javier
dc.date.accessioned2023-02-09T16:50:44Z
dc.date.available2023-02-09T16:50:44Z
dc.date.issued2023-01-05
dc.descriptionIlustraciones, gráficas, tablasspa
dc.description.abstractLos subproductos generados de la agroindustria alimentaria representan una fuente de fitonutrientes como los compuestos fenólicos, que pueden explorarse como bioactivos en la industria de productos naturales, generar valor agregado a los residuos y contribuir con las medidas de mitigación del impacto ambiental. Sin embargo, cuando los compuestos se extraen de la matriz de origen, son altamente susceptibles a la degradación por fenómenos fisicoquímicos. En este sentido, la presente investigación estudia la extracción asistida por ultrasonido de compuestos fenólicos obtenidos a partir del cáliz de uchuva (Physalis peruviana L.) y la formulación de sistemas liposomales como mecanismo de protección de la capacidad antioxidante. El desarrollo metodológico incluye la evaluación individual y optimización de los factores que intervienen en la extracción de compuestos fenólicos, extracción de flavonoles, evaluación de la capacidad antioxidante in vitro y cuantificación del flavonol Rutina mediante HPLC. Por su parte, en el método de encapsulación, se optimizaron parámetros de formulación de sistemas liposomales respecto a las variables de respuesta diámetro de partícula y eficiencia de encapsulación, se realizó la caracterización de liposomas respecto índice de polidispersidad, potencial eléctrico, capacidad antioxidante (ORAC) y liberación in vitro de compuestos fenólicos. La extracción durante 10 min con etanol acuoso (60%), el porcentaje de amplitud de onda (60%), la relación líquido sólido (40 mL/g) y el tamaño de partícula (210 µm) permitieron extraer flavonoles a partir del cáliz de P. peruviana (74.6±1.4 mg ER/g), mientras que, en la optimización de la extracción de compuestos fenólicos, los factores: porcentaje de amplitud de onda (53%) relación liquido-sólido (32 mL/g) y tamaño de partícula (200 µm) maximizaron la respuesta (54.52 mg EAG/g). Se demostró la capacidad antioxidante del extracto mediante diferentes mecanismos de acción y se encontró una concentración de Rutina de 18.932 mg/g. Se comprobó que los sistemas liposomales formulados protegieron la capacidad antioxidante del extracto de cáliz de P. peruviana. Los resultados de la optimización y caracterización de los liposomas evidenciaron sistemas con una distribución monodispersa y un diámetro medio de partícula en el rango nanométrico, se obtuvo una eficiencia de encapsulación de compuestos fenólicos de 68.32%, y porcentaje de liberación in vitro de 81.32%. (Texto tomado de la fuente)spa
dc.description.abstractFood waste is a source of phytonutrients such as phenolic compounds, food waste can be explored as bioactive in the natural products industry, increase added value to waste and contribute to environmental impact mitigation measures. However, when the compounds are extracted from the original matrix, they are highly susceptible to degradation by physicochemical mechanisms. Accordingly, the present investigation studies the ultrasound-assisted extraction of phenolic compounds from the cape gooseberry (Physalis peruviana L.) calyx and the formulation of liposomal systems as a mechanism to protect antioxidant capacity. The methodological development includes the individual evaluation and optimization of the factors involved in the extraction of phenolic compounds, extraction of flavonols, evaluation of the antioxidant capacity in vitro and quantification of Rutin flavonol by HPLC. On the other hand, in the encapsulation method, formulation parameters of liposomal systems were optimized with respect to the response variables: particle diameter and encapsulation efficiency, in addition, the characterization of liposomes was performed regarding polydispersity index, electrical potential, antioxidant capacity. (ORAC) and in vitro release of phenolic compounds. Extraction for 10 min with aqueous ethanol (60%), wave amplitude (60%), liquid-solid ratio (40 mL/g) and particle size (210 µm) were the initial conditions for the extraction of flavonols from of the calyx of P. peruviana (74.6±1.4 mg RE/g), while, in the optimization of the extraction of phenolic compounds, the factors: wave amplitude (53%) liquid-solid ratio (32 mL/g) and particle size (200 µm) maximized the response (54.52 mg EAG/g). The antioxidant capacity of the extract was determined through different mechanisms of action and a Rutin concentration of 18,932 mg/g was found. In addition, liposomal systems protected the antioxidant capacity of the P. peruviana calyx extract. The results of the optimization and characterization of the liposomes showed systems with a monodisperse distribution and an average diameter of particles in the nanometric range, encapsulation efficiency of phenolic compounds of 68.32%, and percentage of in vitro release of 81.32%.spa
dc.description.curricularareaIngeniería.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Agroindustrialspa
dc.description.methodsEl desarrollo metodológico incluye la evaluación individual y optimización de los factores que intervienen en la extracción de compuestos fenólicos, extracción de flavonoles, evaluación de la capacidad antioxidante in vitro y cuantificación del flavonol Rutina mediante HPLC. Por su parte, en el método de encapsulación, se optimizaron parámetros de formulación de sistemas liposomales respecto a las variables de respuesta diámetro de partícula y eficiencia de encapsulación, se realizó la caracterización de liposomas respecto índice de polidispersidad, potencial eléctrico, capacidad antioxidante (ORAC) y liberación in vitro de compuestos fenólicos. La extracción durante 10 min con etanol acuoso (60%), el porcentaje de amplitud de onda (60%), la relación líquido sólido (40 mL/g) y el tamaño de partícula (210 µm) permitieron extraer flavonoles a partir del cáliz de P. peruviana (74.6±1.4 mg ER/g), mientras que, en la optimización de la extracción de compuestos fenólicos, los factores: porcentaje de amplitud de onda (53%) relación liquido-sólido (32 mL/g) y tamaño de partícula (200 µm) maximizaron la respuesta (54.52 mg EAG/g).spa
dc.format.extentxviii, 127 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83402
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrialspa
dc.relation.referencesAltin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005spa
dc.relation.referencesBaldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023spa
dc.relation.referencesBernardo, J., Videira, R. A., Valentão, P., Veiga, F., & Andrade, P. B. (2019). Extraction of phospholipid-rich fractions from egg yolk and development of liposomes entrapping a dietary polyphenol with neuroactive potential. Food and Chemical Toxicology, 133(July), 110749. https://doi.org/10.1016/j.fct.2019.110749spa
dc.relation.referencesBoggs, J. M. (1987). Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. BBA - Reviews on Biomembranes, 906(3), 353–404. https://doi.org/10.1016/0304-4157(87)90017-7spa
dc.relation.referencesBryła, A., Lewandowicz, G., & Juzwa, W. (2015). Encapsulation of elderberry extract into phospholipid nanoparticles. Journal of Food Engineering, 167, 189–195. https://doi.org/10.1016/j.jfoodeng.2015.07.025spa
dc.relation.referencesAbou Baker, D. H., & Mohammed, D. M. (2022). Polyphenolic rich fraction of Physalis peruviana calyces and its nano emulsion induce apoptosis by caspase 3 up-regulation and G2/M arrest in hepatocellular carcinoma. Food Bioscience, 50(PA), 102007. https://doi.org/10.1016/j.fbio.2022.102007spa
dc.relation.referencesAhmadi, E., & Amir Hossein Elhamirad, Nasrin Mollania, M. R. S. A. (2021). Incorporation of white tea extract in nano-liposomes: optimization, characterization, and stability. Science of Food and Agriculture. https://doi.org/https://doi.org/10.1002/jsfa.11544spa
dc.relation.referencesAlara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4(December 2020), 200–214. https://doi.org/10.1016/j.crfs.2021.03.011spa
dc.relation.referencesAlemán, A., Marín, D., Taladrid, D., Montero, P., & Carmen Gómez-Guillén, M. (2019). Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International, 119(May 2018), 665–674. https://doi.org/10.1016/j.foodres.2018.10.044spa
dc.relation.referencesAli, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology (Philadelphia), 53(14), 2192–2205. https://doi.org/10.1080/01496395.2018.1443137spa
dc.relation.referencesAltin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91–98. https://doi.org/10.1016/j.jfoodeng.2017.12.005spa
dc.relation.referencesArruda, H. S., Neri-Numa, I. A., Kido, L. A., Maróstica Júnior, M. R., & Pastore, G. M. (2020). Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. Journal of Functional Foods, 75(August), 104203. https://doi.org/10.1016/j.jff.2020.104203spa
dc.relation.referencesAtzberger, P. J. (2006). Velocity correlations of a thermally fluctuating Brownian particle: A novel model of the hydrodynamic coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 351(4–5), 225–230. https://doi.org/10.1016/j.physleta.2005.10.107spa
dc.relation.referencesAvendaño, W. A., Muñoz, H. F., Leal, L. J., Deaquiz, Y. A., & Castellanos, D. A. (2022). Physicochemical characterization of cape gooseberry (Physalis peruviana L.) fruits ecotype Colombia during preharvest development and growth. Journal of Food Science. https://doi.org/10.1111/1750-3841.16318spa
dc.relation.referencesBaldisserotto, A., Vertuani, S., Bino, A., De Lucia, D., Lampronti, I., Milani, R., Gambari, R., & Manfredini, S. (2015). Design, synthesis and biological activity of a novel Rutin analogue with improved lipid soluble properties. Bioorganic and Medicinal Chemistry, 23(1), 264–271. https://doi.org/10.1016/j.bmc.2014.10.023spa
dc.relation.referencesBallesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019a). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054spa
dc.relation.referencesBallesteros-Vivas, D., Álvarez-Rivera, G., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019b). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compound. Journal of Chromatography A, 1584, 144–154. https://doi.org/10.1016/j.chroma.2018.11.054spa
dc.relation.referencesBangham, A. D. (1961). Correlation between Surface Charge and Coagulant Action of Phospholipids. Nature.spa
dc.relation.referencesBatzri, S., & Korn, E. D. (1973). Single bilayer liposomes prepared without sonication. BBA - Biomembranes, 298(4), 1015–1019. https://doi.org/10.1016/0005-2736(73)90408-2spa
dc.relation.referencesBelwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S. F., Nabavi, S. M., & Atanasov, A. G. (2018). A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 100, 82–102. https://doi.org/10.1016/j.trac.2017.12.018spa
dc.relation.referencesben Sghaier, M., Pagano, A., Mousslim, M., Ammari, Y., Kovacic, H., & Luis, J. (2016). Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomedicine and Pharmacotherapy, 84, 1972–1978. https://doi.org/10.1016/j.biopha.2016.11.001spa
dc.relation.referencesBravo, K., Sepulveda Ortega, S., Lara Guzman, O., Navas Arboleda, A., & Osorio, E. (2011). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape Gooseberry ( Physalis peruviana L .). https://doi.org/10.1002/jsfa.6866spa
dc.relation.referencesBueno, D. (2014). Liposomas, ¿la medicina del futuro? Naukas. https://naukas.com/2014/09/24/liposomas-la-medicina-del-futurospa
dc.relation.referencesCardona, M. I., Dominguez, G. P., Echeverry, S. M., Valderrama, I. H., Bernkop-Schnürch, A., & Aragón, M. (2021). Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalis peruviana. Journal of Drug Delivery Science and Technology, 66(April). https://doi.org/10.1016/j.jddst.2021.102797spa
dc.relation.referencesCastañeda-Reyes, E. D., Perea-Flores, M. de J., Davila-Ortiz, G., Lee, Y., & de Mejia, E. G. (2020). Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review. International Journal of Nanomedicine, 15, 7627–7650. https://doi.org/10.2147/IJN.S263516spa
dc.relation.referencesCastro, J., Ocampo, Y., & Franco, L. (2015). Cape Gooseberry [Physalis peruviana L.] Los cálices mejoran la colitis inducida por ácido TNBS en ratas. Journal of Crohn’s and Colitis Advance Access.spa
dc.relation.referencesChan, C. H., Yusoff, R., & Ngoh, G. C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169–1186. https://doi.org/10.1016/j.cherd.2013.10.001spa
dc.relation.referencesChebil, L., Humeau, C., Anthony, J., Dehez, F., Engasser, J. M., & Ghoul, M. (2007). Solubility of flavonoids in organic solvents. Journal of Chemical and Engineering Data, 52(5), 1552–1556. https://doi.org/10.1021/je7001094spa
dc.relation.referencesChen, L. X., Xia, G. Y., Liu, Q. Y., Xie, Y. Y., & Qiu, F. (2014). Chemical constituents from the calyces of Physalis alkekengi var. franchetii. Biochemical Systematics and Ecology, 54, 31–35. https://doi.org/10.1016/j.bse.2013.12.030spa
dc.relation.referencesChua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150(3), 805–817. https://doi.org/10.1016/j.jep.2013.10.036spa
dc.relation.referencesContreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., & García-Villanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44(7), 2047–2053. https://doi.org/10.1016/j.foodres.2010.11.003spa
dc.relation.referencesDag, D., Guner, S., & Oztop, M. H. (2019). Physicochemical mechanisms of different biopolymers’ (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules, 138, 473–482. https://doi.org/10.1016/j.ijbiomac.2019.07.106spa
dc.relation.referencesDasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381–400. https://doi.org/10.1016/j.foodres.2015.01.005spa
dc.relation.referencesDomínguez Moré, G. P., Feltrin, C., Brambila, P. F., Cardona, M. I., Echeverry, S. M., Simões, C. M. O., & Aragón, D. M. (2020). Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. Journal of Pharmacy and Pharmacology, 72(5), 738–747. https://doi.org/10.1111/jphp.13248spa
dc.relation.referencesDong, B., An, L., Yang, X., Zhang, X., Zhang, J., Tuerhong, M., Jin, D. Q., Ohizumi, Y., Lee, D., Xu, J., & Guo, Y. (2019). Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chemistry, 87(February), 585–593. https://doi.org/10.1016/j.bioorg.2019.03.051spa
dc.relation.referencesDzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35(February), 100547. https://doi.org/10.1016/j.fbio.2020.100547spa
dc.relation.referencesEl-Sawi, S. A., Ibrahim, M. E., Sleem, A. A., Farghaly, A. A., Awad, G. E. A., & Merghany, R. M. (2022). Development of alternative medicinal sources from golden berry, bananas and carrot wastes as antioxidant, cytotoxic and antimicrobial agents. Acta Ecologica Sinica, 42(3), 224–232. https://doi.org/10.1016/j.chnaes.2021.04.006spa
dc.relation.referencesEtzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chemistry, 245(October 2017), 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120spa
dc.relation.referencesFathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23(1), 13–27. https://doi.org/10.1016/j.tifs.2011.08.003spa
dc.relation.referencesFigueroa-Robles, A., Antunes-Ricardo, M., & Guajardo-Flores, D. (2021). Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. International Journal of Pharmaceutics, 593(September 2020), 120125. https://doi.org/10.1016/j.ijpharm.2020.120125spa
dc.relation.referencesFilipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 156, 4–22. https://doi.org/10.1016/j.addr.2020.06.022spa
dc.relation.referencesFranco, L. A., Matiz, G. E., Calle, J., Pinzón, R., & Ospina, L. F. (2007). Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L. Biomedica, 27(1), 110–115. https://doi.org/10.7705/biomedica.v27i1.237spa
dc.relation.referencesFranco, L. A., Ocampo, Y. C., Gómez, H. A., De La Puerta, R., Espartero, J. L., & Ospina, L. F. (2014). Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Medica, 80(17), 1605–1614. https://doi.org/10.1055/s-0034-1383192spa
dc.relation.referencesFujita, M., & Yamaguchi, Y. (2010). Mesoscale modeling for self-organization of colloidal systems. Current Opinion in Colloid and Interface Science, 15(1–2), 8–12. https://doi.org/10.1016/j.cocis.2009.06.001spa
dc.relation.referencesGabriele, M., Caddeo, C., Lubrano, V., Valenti, D., & Pucci, L. (2022). Encapsulation of bioactive fermented wheat (Lisosan G) in Eudragit-liposomes. Lwt, 156(September 2021), 113044. https://doi.org/10.1016/j.lwt.2021.113044spa
dc.relation.referencesGad, F. I., Salem, E. G., Abdullatef, O. A., & Aborhyem, S. M. (2022). Potential hepatic-protective effect of Physalis peruviana against lead-induced toxicity in albino rats. 11(4), 1367–1381. https://doi.org/10.11591/ijphs.v11i4.21737spa
dc.relation.referencesGalanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science and Technology, 26(2), 68–87. https://doi.org/10.1016/j.tifs.2012.03.003spa
dc.relation.referencesGibis, M., Ruedt, C., & Weiss, J. (2016). In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Research International, 88, 105–113. https://doi.org/10.1016/j.foodres.2016.02.010spa
dc.relation.referencesGibis, M., Vogt, E., & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food and Function, 3(3), 246–254. https://doi.org/10.1039/c1fo10181aspa
dc.relation.referencesGibis, M., Zeeb, B., & Weiss, J. (2014). Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food Hydrocolloids, 38, 28–39. https://doi.org/10.1016/j.foodhyd.2013.11.014spa
dc.relation.referencesGuiné, R. P. F., Gonçalves, F. J. A., Oliveira, S. F., & Correia, P. M. R. (2020). Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in Physalis Peruviana L. International Journal of Fruit Science, 20(S2), S470–S490. https://doi.org/10.1080/15538362.2020.1741056spa
dc.relation.referencesGuldiken, B., Linke, A., Capanoglu, E., Boyacioglu, D., Kohlus, R., Weiss, J., & Gibis, M. (2019). Formation and characterization of spray dried coated and uncoated liposomes with encapsulated black carrot extract. Journal of Food Engineering, 246(June 2018), 42–50. https://doi.org/10.1016/j.jfoodeng.2018.10.025spa
dc.relation.referencesGültekin-Özgüven, M., Karadaʇ, A., Duman, Ş., Özkal, B., & Özçelik, B. (2016). Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry, 201, 205–212. https://doi.org/10.1016/j.foodchem.2016.01.091spa
dc.relation.referencesHanasaki, Y., Ogawa, S., & Fukui, S. (1994). the Correlation Between Active Oxygens Scavenging and. Free Radical Biology & Medicine, 16(6), 845–850.spa
dc.relation.referencesHarwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51(January), 224–233. https://doi.org/10.1016/j.jddst.2019.03.006spa
dc.relation.referencesHassan, H. A., Ghareb, N. E., & Azhari, G. F. (2017). Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. Hepatoma Research, 3(2), 27. https://doi.org/10.20517/2394-5079.2016.33spa
dc.relation.referencesHe, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z., & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 9(1), 36–48. https://doi.org/10.1016/j.apsb.2018.06.005spa
dc.relation.referencesHeim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5spa
dc.relation.referencesJahanfar, S., Gahavami, M., Khosravi-Darani, K., Jahadi, M., & Mozafari, M. R. (2021). Entrapment of rosemary extract by liposomes formulated by Mozafari method: physicochemical characterization and optimization. Heliyon, 7(12), e08632. https://doi.org/10.1016/j.heliyon.2021.e08632spa
dc.relation.referencesKowalska, H., Czajkowska, K., Cichowska, J., & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science and Technology, 67, 150–159. https://doi.org/10.1016/j.tifs.2017.06.016spa
dc.relation.referencesKrstić, Đ. D., Ristivojević, P. M., Gašić, U. M., Lazović, M., Fotirić Akšić, M. M., Milivojević, J., Morlock, G. E., Milojković-Opsenica, D. M., & Trifković, J. (2023). Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chemistry, 402(April 2022). https://doi.org/10.1016/j.foodchem.2022.134184spa
dc.relation.referencesLarge, D. E., Abdelmessih, R. G., Fink, E. A., & Auguste, D. T. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews, 176, 113851. https://doi.org/10.1016/j.addr.2021.113851spa
dc.relation.referencesLasic, D. D. (1995). Mechanisms of liposome formation. Journal of Liposome Research, 5(3), 431–441. https://doi.org/10.3109/08982109509010233spa
dc.relation.referencesLiu, W., Hou, Y., Jin, Y., Wang, Y., Xu, X., & Han, J. (2020). Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends in Food Science and Technology, 104(March), 177–189. https://doi.org/10.1016/j.tifs.2020.08.012spa
dc.relation.referencesMacit, M., Eyupoglu, O. E., Macit, C., & Duman, G. (2021). Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. Journal of Drug Delivery Science and Technology, 64(May), 102605. https://doi.org/10.1016/j.jddst.2021.102605spa
dc.relation.referencesManconi, M., Marongiu, F., Castangia, I., Manca, M. L., Caddeo, C., Tuberoso, C. I. G., D’hallewin, G., Bacchetta, G., & Fadda, A. M. (2016). Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids and Surfaces B: Biointerfaces, 146, 910–917. https://doi.org/10.1016/j.colsurfb.2016.07.043spa
dc.relation.referencesMarín, D., Alemán, A., Sánchez-Faure, A., Montero, P., & Gómez-Guillén, M. C. (2018). Freeze-dried phosphatidylcholine liposomes encapsulating various antioxidant extracts from natural waste as functional ingredients in surimi gels. Food Chemistry, 245(July 2017), 525–535. https://doi.org/10.1016/j.foodchem.2017.10.141spa
dc.relation.referencesMarín, D. P. (2019). Nanoliposomas a partir de productos naturales infrautilizados y residuos agroalimentarios como ingrediente funcional en alimentos. Universidad Complutense de Madrid, Facueltad de Ciencias Biollógicas. https://eprints.ucm.es/id/eprint/57956/1/T41485.pdfspa
dc.relation.referencesMason, T. J., Riera, E., Vercet, A., & Lopez-buesa, P. (2005). Ultrasound. In Emerging Technologies for Food Processing: An Overview. Elsevier Ltd. https://doi.org/10.1016/B978-0-12-676757-5.50015-3spa
dc.relation.referencesMedina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., Durand, T., Galano, J. M., & Gil-Izquierdo, Á. (2017). Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 99(5), 2194–2204. https://doi.org/10.1002/jsfa.9413spa
dc.relation.referencesMilićević, N., Kojić, P., Sakač, M., Mišan, A., Kojić, J., Perussello, C., Banjac, V., Pojić, M., & Tiwari, B. (2021). Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrasonics Sonochemistry, 79, 105761. https://doi.org/10.1016/j.ultsonch.2021.105761spa
dc.relation.referencesMonkad, S. M., Embaby, H., & Swalilam, H. (2017). Techno-funnctional Department of Food Technology , Faculty of Agriculture , Suez Canal University , National Center for Radiation , Research and Technology ( NCRRT ), Atomic Energy. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.11.117spa
dc.relation.referencesMunin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. In Pharmaceutics (Vol. 3, Issue 4). https://doi.org/10.3390/pharmaceutics3040793spa
dc.relation.referencesN. Marasini, K.A. Ghaffar, M. Skwarczynski, T. (2017). Liposomes as a Vaccine Delivery System. In Micro- and Nanotechnology in Vaccine Development. Elsevier Inc. https://doi.org/10.1016/B978-0-323-39981-4/00012-9spa
dc.relation.referencesNguyen, K. N. H., Nguyen, N. V. T., & Kim, K. H. (2021). Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia, 68(2), 501–509. https://doi.org/10.3897/PHARMACIA.68.E66044spa
dc.relation.referencesocetti, D., Núñez, H., Puente, L., Espinosa, A., & Romero, F. (2020). Composition and biological effects of goldenberry byproducts: an overview. Journal of the Science of Food and Agriculture, 100(12), 4335–4346. https://doi.org/10.1002/jsfa.10386spa
dc.relation.referencesOlivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science and Technology, 57, 83–92. https://doi.org/10.1016/j.tifs.2016.09.009spa
dc.relation.referencesOzkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(August 2018), 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205spa
dc.relation.referencesPrior, R. L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods, 18, 797–810. https://doi.org/10.1016/j.jff.2014.12.018spa
dc.relation.referencesRafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115–122. https://doi.org/10.1016/j.foodchem.2016.09.207spa
dc.relation.referencesRavi, G. S., Charyulu, R. N., Dubey, A., Prabhu, P., Hebbar, S., & Mathias, A. C. (2018). Nano-lipid Complex of Rutin: Development, Characterisation and In Vivo Investigation of Hepatoprotective, Antioxidant Activity and Bioavailability Study in Rats. AAPS PharmSciTech, 19(8), 3631–3649. https://doi.org/10.1208/s12249-018-1195-9spa
dc.relation.referencesRoohi, R., Abedi, E., Hashemi, S. M. B., Marszałek, K., Lorenzo, J. M., & Barba, F. J. (2019). Ultrasound-assisted bleaching: Mathematical and 3D computational fluid dynamics simulation of ultrasound parameters on microbubble formation and cavitation structures. Innovative Food Science and Emerging Technologies, 55(May), 66–79. https://doi.org/10.1016/j.ifset.2019.05.014spa
dc.relation.referencesŠeremet, D., Vugrinec, K., Petrović, P., Butorac, A., Kuzmić, S., Vojvodić Cebin, A., Mandura, A., Lovrić, M., Pjanović, R., & Komes, D. (2022). Formulation and characterization of liposomal encapsulated systems of bioactive ingredients from traditional plant mountain germander (Teucrium montanum L.) for the incorporation into coffee drinks. Food Chemistry, 370(September 2021), 0–2. https://doi.org/10.1016/j.foodchem.2021.131257spa
dc.relation.referencesSharma, S., Ali, A., Ali, J., Sahni, J. K., & Baboota, S. (2013). Rutin: Therapeutic potential and recent advances in drug delivery. Expert Opinion on Investigational Drugs, 22(8), 1063–1079. https://doi.org/10.1517/13543784.2013.805744spa
dc.relation.referencesSilva Paccha, E. S. (2021). Revisión bibliográfica sobre la relación entre la presencia de compuestos fenólicos en extractos vegetales y su actividad antioxidante determinada por el método ORAC. Universidad Central Del Ecuador, Facultad de Ciencias Químicas, Figura 1, 2–3.spa
dc.relation.referencesSingh, H., Singh, T., Singh, A. P., Kaur, S., Arora, S., & Singh, B. (2022). Hepatoprotective effect of Physalis divaricata in paracetamol induced hepatotoxicity: In vitro, in silico and in vivo analysis. Journal of Ethnopharmacology, 290(January), 115024. https://doi.org/10.1016/j.jep.2022.115024spa
dc.relation.referencesSingh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008spa
dc.relation.referencesStanisavljević, I. T., Lazić, M. L., & Veljković, V. B. (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrasonics Sonochemistry, 14(5), 646–652. https://doi.org/10.1016/j.ultsonch.2006.10.003spa
dc.relation.referencesSuang Ng, H., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Chi-Wei Lan, J. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 302(135), 122889. https://doi.org/10.1016/j.biortech.2020.122889spa
dc.relation.referencesTaladrid, D., Marín, D., Alemán, A., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Research International, 100(July), 541–550. https://doi.org/10.1016/j.foodres.2017.07.052spa
dc.relation.referencesTeigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 706, 136033. https://doi.org/10.1016/j.scitotenv.2019.13603spa
dc.relation.referencesVillena de Francisco, E., & García-Estepa, R. M. (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238(November 2017), 1–11. https://doi.org/10.1016/j.jfoodeng.2018.05.024spa
dc.relation.referencesVinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC - Trends in Analytical Chemistry, 97, 159–178. https://doi.org/10.1016/j.trac.2017.09.002spa
dc.relation.referencesVinatoru, Mircea. (2015). Ultrasonically assisted extraction (UAE) of natural products some guidelines for good practice and reporting. Ultrasonics Sonochemistry, 25(1), 94–95. https://doi.org/10.1016/j.ultsonch.2014.10.003spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocCompuestos fenólicos
dc.subject.agrovocPhenolic compounds
dc.subject.agrovocUchuva
dc.subject.agrovocCape gooseberry
dc.subject.agrovocPhysalis peruviana
dc.subject.agrovocExtraction
dc.subject.agrovocCáliz
dc.subject.agrovocCalyx
dc.subject.agrovocSeparación
dc.subject.agrovocEncapsulación
dc.subject.agrovocEncapsulation
dc.subject.agrovocLiposomes (organelles)
dc.subject.agrovocLiposomas (organulos)
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.otherExtraction Methods
dc.subject.otherUltrasound Assisted Extraction
dc.subject.proposalResiduos agroalimentariosspa
dc.subject.proposalLecitina de sojaspa
dc.subject.proposalCapacidad antioxidantespa
dc.subject.proposalExtracciónspa
dc.subject.proposalRutinaspa
dc.subject.proposalMetodologías sosteniblesspa
dc.subject.proposalEncapsulación de antioxidantesspa
dc.subject.proposalSistemas coloidalesspa
dc.subject.proposalNanotecnologíaspa
dc.titleExtracción asistida por ultrasonido de compuestos fenólicos a partir de cáliz de uchuva (Physalis peruviana L.) y formulación de sistemas liposomales como método de encapsulaciónspa
dc.title.translatedUltrasound-assisted extraction of phenolic compounds from golden berry calix(Physalis peruviana L.) and encapsulation in liposomal systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088218102.2023.pdf
Tamaño:
3.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería Agroindustrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: