Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas

dc.contributor.advisorCárdenas Herrera, Pedro Fabián
dc.contributor.authorJiménez López, Andrés Fernando
dc.contributor.financerGobernación de Boyacá
dc.contributor.researchgroupUNROBOT-Grupo de Plataformas Robóticasspa
dc.date.accessioned2021-08-12T15:29:51Z
dc.date.available2021-08-12T15:29:51Z
dc.date.issued2020
dc.descriptionilustraciones, fotografías, gráficas, mapas, tablasspa
dc.description.abstractEl uso eficiente del agua es fundamental para la sostenibilidad de la agricultura y la seguridad alimentaria, al reducir la vulnerabilidad en la producción de cultivos, causada por la escasez o el desperdicio del recurso. El objetivo principal de esta tesis fue desarrollar un modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas. Se buscó avanzar más allá de la simulación de un sistema multi-agente a su implementación en un escenario real. El modelo se implementó en el Distrito de Riego de Usochicamocha, ubicado en Boyacá, Colombia. Se desarrolló un agente ciber-físico de riego que permite determinar y aplicar las cantidades de agua en los cultivos de acuerdo con criterios técnicos y un modelo basado en agentes (MBA) para la distribución del agua utilizando funciones de utilidad basadas en el estado de los cultivos y aspectos sociales entre los agentes de la vecindad. En los resultados, el sistema permitió mantener la humedad del suelo dentro de los valores del déficit máximo permitido para varios cultivos. En conclusión, el modelo propuesto es promisorio en el diseño de sistemas distribuidos para el manejo del riego agrícola, ya que integra múltiples tecnologías y permite el manejo del riego a nivel de finca y de distrito de riego. Además, se ha demostrado, que se puede mejorar la eficiencia en el uso del agua, incorporando inteligencia artificial, sistemas multi-agente e internet de las cosas en el riego de precisión, de acuerdo con las variaciones espacio-temporales del sistema suelo-planta-atmósfera. (Texto tomado de la fuente)spa
dc.description.abstractThe efficient use of water is essential for the sustainability of agriculture and food security, by reducing vulnerability in crop production, caused by scarcity or waste of the resource. The main objective of this thesis was to develop a model based on intelligent agents to support irrigation management in agricultural crops. It was sought to advance beyond the simulation of a multi-agent system to its implementation in a real scenario. The model was implemented in the Usochicamocha Irrigation District, located in Boyacá, Colombia. A cyber-physical irrigation agent was developed that allows determining and applying the amounts of water in crops according to technical criteria and an agent-based model (MBA) for the distribution of water was established using utility functions based on the state of the crops and social aspects among the agents of the neighborhood. In the results, the system allowed to maintain soil moisture within the values of the maximum deficit allowed for various crops. In conclusion, the proposed model is promising in the design of distributed systems for agricultural irrigation management since it integrates multiple technologies and allows irrigation management at the farm and irrigation district level. In addition, it was proved that efficiency in the use of water can be improved, by incorporating artificial intelligence, multi-agent systems and the internet of things in precision irrigation, according to the spatio-temporal variations of the soil-plant-atmosphere system. (Text taken from source)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.description.researchareaAutomatización - Agricultura de Precisiónspa
dc.description.researchareaIngeniería de Automatización, Control y Mecatrónicaspa
dc.format.extent321 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79927
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.referencesAbdullah, S.S., & Malek, M.A. 2016. Empirical penman-monteith equation and artificial intelligence techniques in predicting reference evapotranspiration: a review. International journal of water, 10 (1), 55-66.spa
dc.relation.referencesAbioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M. H. I., Abd Rahman, M. K. I., Otuoze, A. O., Onotu, P., & Ramli, M. S. A. 2020. A review on monitoring and advanced control strategies for precision irrigation. Computers and electronics in agriculture, 173, 105441.spa
dc.relation.referencesAdeyemi, O., Grove, I., Peets, S., & Norton, T. 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability, 9(3), 353.spa
dc.relation.referencesAdeyemi, O., Grove, I., Peets, S., Domun, Y., & Norton, T. 2018. Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling. Sensors, 18(10), 3408.spa
dc.relation.referencesAdla, S., Rai, N. K., Karumanchi, S. H., Tripathi, S., Disse, M., & Pande, S. 2020. Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors. Sensors, 20(2), 363.spa
dc.relation.referencesAdnan, S., & Khan, A. H. 2009. Effective rainfall for irrigated agriculture plains of pakistan. Pakistan journal of meteorology, 6(11), 61-72.spa
dc.relation.referencesAgbemabiese, Y. K. 2015. Modelling biomass and bulb yield of onion (allium cepa) under different irrigation regimes using the aquacrop model. Ph.D. thesis.spa
dc.relation.referencesAgbemabiese, Y.K., Shaibu, A.G., & Gbedzi, V.D. 2017. Validation of aquacrop for different irrigation regimes of onion (allium cepa) in bontanga irrigation scheme. International journal of irrigation and agricultural development (ijirad), 1(1), 1-12.spa
dc.relation.referencesAkhbari, M., & Grigg, N. S. 2013. A framework for an agent-based model to manage water resources conflicts. Water resources management, 27(11), 4039-4052.spa
dc.relation.referencesAl-Amin, S., Berglund, E.Z., & Mahinthakumar, K. 2015. Coupling agent-based and groundwater modeling to explore demand management strategies for shared resources. Pages 141- 150. World environmental and water resources congress 2016.spa
dc.relation.referencesAl-Kaisi, M. M., Broner, I., & Andales, A.A. 2009. Crop water use and growth stages. Fact sheet (Colorado state university. extension). crop series; no. 4.715.spa
dc.relation.referencesAlameen, A. A., Al-Gaadi, K. A., & Tola, E. 2019. Development and performance evaluation of a control system for variable rate granular fertilizer application. Computers and electronics in agriculture, 160, 31-39.spa
dc.relation.referencesAlexakis, D. D., Mexis, F.D., Vozinaki, A.E., Daliakopoulos, I.N., & Tsanis, I.K. 2017. Soil moisture content estimation based on sentinel-1 and auxiliary earth observation products. A hydrological approach. Sensors, 17(6), 1455.spa
dc.relation.referencesAli, M.H., Abustan, I., & Puteh, A.B. 2013. Irrigation management strategies for winter wheat using aquacrop model. Journal of natural resources and development, 3(10), 106-113.spa
dc.relation.referencesAli, O., Germain, B., Van Belle, J., Valckenaers, P., Van Brussel, H., & Van Noten, J. 2010. Multiagent coordination and control system for multi-vehicle agricultural operations. Pages 1621-1622 of: Proceedings of the 9th international conference on autonomous agents and multiagent systems: volume 1-volume 1. International Foundation for Autonomous Agents and Multiagent Systems.spa
dc.relation.referencesAllen, R. G., Pereira, L. S., Raes, D., & Smith, M.and others. 1998. Crop evapotranspiration guidelines for computing crop water requirements-fao irrigation and drainage paper 56. Fao, rome, 300(9), D05109.spa
dc.relation.referencesAllen, R.G. 2006. Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos. Vol. 56. Food & Agriculture Org.spa
dc.relation.referencesAlvino, A., & Marino, S. 2017. Remote sensing for irrigation of horticultural crops. Horticulturae, 3(2), 40.spa
dc.relation.referencesAn, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. 2005. Exploring complexity in a human-environment system: an agent-based spatial model for multidisciplinary and multiscale integration. Annals of the association of american geographers, 95(1), 54-79.spa
dc.relation.referencesAndales, A. A., Chávez, J. L., Bauder, T. A., & Broner, I. 2011. Irrigation scheduling: the water balance approach. Service in action; no. 4.707.spa
dc.relation.referencesAretouyap, Z., Nouck, N.P., Nouayou, R., Melii, J.L., Kemgang Ghomsi, F.E., Piepi Toko, A.D., & Asfahani, J. 2015. Influence of the variogram model on an interpolative survey using kriging technique. J earth sci clim change, 6(316), 2.spa
dc.relation.referencesAtta, R., Boutraa, T., & Akhkha, A. 2011. Smart irrigation system for wheat in saudi arabia using wireless sensors network technology. International journal of water resources and arid environments, 1(6), 478-482.spa
dc.relation.referencesBalafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Wal, T. V., Soto, I., Gómez-Barbero, M., Barnes, A., & Eory, V. 2017. Precision agriculture technologies positively contributing to emissions mitigation, farm productivity and economics. Sustainability, 9(8), 1339.spa
dc.relation.referencesBarradas, J.M., Matula, S., & Dolezal, F. 2012. A decision support system-fertigation simulator (dss-fs) for design and optimization of sprinkler and drip irrigation systems. Computers and electronics in agriculture, 86, 111-119.spa
dc.relation.referencesBarreteau, O., Bousquet, F., Millier, C., & Weber, J. 2004. Suitability of multi-agent simulations to study irrigated system viability: application to case studies in the senegal river valley. Agricultural systems, 80(3), 255-275.spa
dc.relation.referencesBelaqziz, S., et al. 2011a. An agent-based modeling approach for decision-making in gravity irrigation systems. Pages 673{680 of: 2011 international conference for internet technology and secured transactions. IEEE.spa
dc.relation.referencesBelaqziz, S., et al. 2011b. An agent-based modeling approach for decision-making in gravity irrigation systems. Pages 673{680 of: Internet technology and secured transactions (icitst), 2011 international conference for. IEEE.spa
dc.relation.referencesBelaqziz, S., Fazziki, A.E., Mangiarotti, S., Le Page, M., Khabba, S., Raki, S. E., Adnani, M. E., & Jarlan, L. 2013a. An agent based modeling for the gravity irrigation management. Procedia environmental sciences, 19, 804-813. Belaqziz, S., El Fazziki, A., Mangiarotti, S., Le Page, M., Khabba, S., Raki, S., El Adnani, M., & Jarlan, L. 2013b. An agent based modeling for the gravity irrigation management. Procedia environmental sciences, 19, 804-813.spa
dc.relation.referencesBelaqziz, S., Khabba, S., Er-Raki, S., Jarlan, L., Le Page, M., Kharrou, M.H., El Adnani, M., & Chehbouni, A. 2013c. A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling. Agricultural water management, 119, 1-9.spa
dc.relation.referencesBelaqziz, S., Mangiarotti, S., Le Page, M., Khabba, S., Er-Raki, S., Agouti, T., Drapeau, L., Kharrou, M.H., El Adnani, M., & Jarlan, L. 2014. Irrigation scheduling of a classical gravity network based on the covariance matrix adaptation evolutionary strategy algorithm. Computers and electronics in agriculture, 102, 64-72.spa
dc.relation.referencesBelaqziz, S., Aparicio, C.F., Le Page, M., Kharrou, M.H., Khabba, S., El-Fazziki, A., Hennigan, P., & Jarlan, L. 2016. Simulating negotiations over limited water resources: A multi-agent system approach for irrigation systems. Conductual, 4(2).spa
dc.relation.referencesBelokonov, I., Skobelev, P., Simonova, E., Travin, V., & Zhilyaev, A. 2015. Multi-agent planning of the network between nanosatellites and ground stations. Procedia engineering, 104,118-130.spa
dc.relation.referencesBenayache, Z., Besancon, G., & Georges, D. 2008. A new nonlinear control methodology for irrigation canals based on a delayed input model. Ifac proceedings volumes, 41(2), 2544-2549.spa
dc.relation.referencesBendre, M.R., Thool, R.C., & Thool, V.R. 2015. Big data in precision agriculture: Weather forecasting for future farming. Pages 744{750 of: Proceedings of the next generation computing technologies (ngct), 2015 1st international conference on. IEEE.spa
dc.relation.referencesBergstra, J., & Bengio, Y. 2012. Random search for hyper-parameter optimization. The journal of machine learning research, 13(1), 281-305.spa
dc.relation.referencesBeysolow II, T. 2017. Introduction to deep learning using r: A step-by-step guide to learning and implementing deep learning models using r. Apress.spa
dc.relation.referencesBezerra, B.G., Bezerra, J.R., Silva, B.B., & Santos, C.A. 2015. Surface energy exchange and evapotranspiration from cotton crop under full irrigation conditions in the rio grande do norte state, brazilian semi-arid. Bragantia, 74(1), 120-128.spa
dc.relation.referencesBhatt, R., Arora, S., & Chew, C. C. 2016. Improving irrigation water productivity using tensiometers. Journal of soil and water conservation, 15(2), 120-124.spa
dc.relation.referencesBondesan, L., Ortiz, B.V., Morata, G.T., Damianidis, D., Jimenez, A.F., Vellidis, G., & Morari, F. 2019. Evaluating and improving soil sensor-based variable irrigation scheduling on farmers fields in Alabama. Pages 713-720 of: Precision agriculture19. Wageningen Academic Publishers.spa
dc.relation.referencesBoussaada, Z., Curea, O., Remaci, A., Camblong, H., & Mrabet Bellaaj, N. 2018. A nonlinear autoregressive exogenous (narx) neural network model for the prediction of the daily directsolar radiation. Energies, 11(3), 620.spa
dc.relation.referencesBratman, M., et al. 1987. Intention, plans, and practical reason. Vol. 10. Harvard University Press Cambridge, MA.spa
dc.relation.referencesBroner, I. 2005. Irrigation scheduling: The water-balance approach.spa
dc.relation.referencesByrski, A., Drezewski, R., Siwik, L., & Kisiel-Dorohinicki, M. 2015. Evolutionary multi-agent systems. The knowledge engineering review, 30(2), 171-186.spa
dc.relation.referencesCadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. 2016. Wind speed prediction using a univariate arima model and a multivariate narx model. Energies, 9(2), 109.spa
dc.relation.referencesCai, J., & Xiong, H. 2017. An agent-based simulation of cooperation in the use of irrigation systems. Complex adaptive systems modeling, 5(1), 9.spa
dc.relation.referencesCalegari, R., Ciatto, G., Denti, E., & Omicini, A. 2020. Logic-based technologies for intelligent systems: State of the art and perspectives. Information, 11(3), 167.spa
dc.relation.referencesCandea, C., Hu, H., Iocchi, L., Nardi, D., & Piaggio, M. 2001. Coordination in multi-agent robocup teams. Robotics and autonomous systems, 36(2-3), 67-86.spa
dc.relation.referencesCárdenas-Lailhacar, B., & Dukes, M. D. 2010. Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural water management, 97(5), 666-672.spa
dc.relation.referencesCarrasco-Benavides, M., Mora, M., Maldonado, G., Olguín-Cáceres, J., von Bennewitz, E., Ortega-Faras, S., Gajardo, J., & Fuentes, S. 2016. Assessment of an automated digital method to estimate leaf area index (lai) in cherry trees. New zealand journal of crop and horticultural science, 44(4), 247-261.spa
dc.relation.referencesCastelletti, A., & Soncini-Sessa, R. 2007. Bayesian networks and participatory modelling in water resource management. Environmental modelling & software, 22(8), 1075-1088.spa
dc.relation.referencesCastro, H., Cely, G., & Vásquez, N. 2009. Criterios técnicos para un manejo eficiente del riego en cebolla de bulbo: Distrito de riego del alto Chicamocha-Boyacá.spa
dc.relation.referencesCastro Franco, M., García Ramírez, D. Y., & Jiménez López, A. F. 2017. Comparación de técnicas de interpolación espacial de propiedades del suelo en el piedemonte llanero colombiano. Tecnura, 21(53), 78-95.spa
dc.relation.referencesCaudill, M. 1989. Neural networks primer, part viii. Ai expert, 4(8), 61-67.spa
dc.relation.referencesCely, G. 2010. Determinación de parámetros de riego para el cultivo cebolla de bulbo en el distrito de riego del alto chicamocha. M.Phil. thesis, Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesCerón, G. 2005. Economía aplicada a la valoración de impactos ambientales. Universidad de Caldas.spa
dc.relation.referencesCervenka, R., Trencansky, I., & Calisti, M. 2005. Modeling social aspects of multi-agent systems: The aml approach. Pages 28{39 of: International workshop on agent-oriented software engineering. Springer.spa
dc.relation.referencesChandler, D. G., Seyfried, M., Murdock, M., & McNamara, J.P. 2004. Field calibration of water content reflectometers. Soil science society of america journal, 68(5), 1501{1507.spa
dc.relation.referencesChen, Z., & Liu, G. 2010. Application of artificial intelligence technology in water resources planning of river basin. Pages 322{325 of: Information science and management engineering (isme), 2010 international conference of, vol. 1. IEEE.spa
dc.relation.referencesChitu, E., & Paltineanu, C. 2019. Relationships between mds, soil, and weather variables for topaz apple tree cultivated in coarse-textured soils. Journal of irrigation and drainage engineering, 145(2), 04018039.spa
dc.relation.referencesChollet, F., others. 2015. Keras.spa
dc.relation.referencesClemmens, A.J. 2006. Improving irrigated agriculture performance through an understanding of the water delivery process. Irrigation and drainage: The journal of the international commission on irrigation and drainage, 55(3), 223-234.spa
dc.relation.referencesClulow, A.D., Everson, C.S., Mengistu, M.G., Price, J.S., Nickless, A., & Jewitt, G.P.W. 2015. Extending periodic eddy covariance latent heat fluxes through tree sap flow measurements to estimate long-term total evaporation in a peat swamp forest. Hydrology and earth system sciences, 19(5), 2513.spa
dc.relation.referencesCoelho, V.N., Cohen, M., Coelho, I., Liu, N., & Guimaraes, F. G. 2017. Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids. Applied energy, 187, 820-832.spa
dc.relation.referencesCong, D., Nguyen H. Ascough J. Maier H. Dandy G. Andales A. 2017. Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. environ. modell. software.spa
dc.relation.referencesCórdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Celleri, R. 2015. Evaluation of the penman-monteith (fao 56 pm) method for calculating reference evapotranspiration using limited data. Mountain research and development, 35(3), 230-239.spa
dc.relation.referencesDaneshfar, F., & Bevrani, H. 2009. Multi-agent systems in control engineering: a survey. Journal of control science and engineering, 2009.spa
dc.relation.referencesDaniyan, Lanre, Nwachukwu, Ezechi, Daniyan, Ilesanmi, & Bonaventure, Okere. 2019. Development and optimization of an automated irrigation system. Journal of automation, mobile robotics and intelligent systems, 37-45.spa
dc.relation.referencesDe la Cruz, Y., Martínez, C., & Pantoja, A. 2015a. Drip irrigation system based on distributed control|part 1: Design and model. Pages 1{6 of: 2015 ieee 2nd colombian conference on automatic control (ccac). IEEE.spa
dc.relation.referencesDe la Cruz, Y., Martinez, C., & Pantoja, A. 2015b. Drip irrigation system based on distributed control|part 2: Implementation. Pages 7{12 of: 2015 ieee 2nd colombian conference on automatic control (ccac). IEEE.spa
dc.relation.referencesDe Lorenzi, F., Aleri, S.M., Monaco, E., Bonfante, A., Basile, A., Patane, C., & Menenti, M. 2017. Adaptability to future climate of irrigated crops: The interplay of water management and cultivars responses. a case study on tomato. Biosystems engineering, 157, 45-62.spa
dc.relation.referencesDessalegne, T., & Nicklow, J.W. 2012. Artificial life algorithm for management of multi-reservoir river systems. Water resources management, 26(5), 1125-1141.spa
dc.relation.referencesDivya, P., Sonkiya, S., Das, P., Manjusha, V.V., & Ramesh, M. V. 2014. Cawis: Context aware wireless irrigation system. Pages 310{315 of: 2014 international conference on computer, communications, and control technology (i4ct). IEEE.spa
dc.relation.referencesDjaman, K., ONeill, M., Owen, C. K., Smeal, D., Koudahe, K., West, M., Allen, S., Lombard, K., & Irmak, S. 2018. Crop evapotranspiration, irrigation water requirement and water productivity of maize from meteorological data under semiarid climate. Water, 10(4), 405.spa
dc.relation.referencesDurner, W. 1992. Predicting the unsaturated hydraulic conductivity using multi-porosity water retention curves. Indirect methods for estimating the hydraulic properties of unsaturated soils, 185-202.spa
dc.relation.referencesEbrahimi-Mollabashi, E., Huth, N. I., Holzwoth, D. P., Ordóñez, R. A., Hateld, J. L., Huber, I., Castellano, M. J., & Archontoulis, S. V. 2019. Enhancing apsim to simulate excessive moisture effects on root growth. Field crops research, 236, 58-67.spa
dc.relation.referencesEdwards, M., Ferrand, N., Goreaud, F., & Huet, S. 2005. The relevance of aggregating a water consumption model cannot be disconnected from the choice of information available on the resource. Simulation modelling practice and theory, 13(4), 287-307.spa
dc.relation.referencesEntekhabi, D., Njoku, E. G., ONeill, P.E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., et al. 2010. The soil moisture active passive (smap) mission. Proceedings of the ieee, 98(5), 704-716.spa
dc.relation.referencesEsmaeili, A., Mozayani, N., Motlagh, M. R. J., & Matson, E.T. 2017. A socially-based distributed self-organizing algorithm for holonic multi-agent systems: Case study in a task environment. Cognitive systems research, 43, 21-44.spa
dc.relation.referencesEvans, R.G., LaRue, J., Stone, K. C., & King, B. A. 2013. Adoption of site-specific variable rate sprinkler irrigation systems. Irrigation science, 31(4), 871-887.spa
dc.relation.referencesEvett, S. R., Peters, R.T., & Howell, T.A. 2006. Controlling water use efficiency with irrigation automation: Cases from drip and center pivot irrigation of corn and soybean. Pages 57-66 of: Proc. 28th annual southern conservation systems conf.spa
dc.relation.referencesFAO. 2020. Food and agriculture organization of the united nations. onion. urlhttp://www.fao.org/land-water/databases-and-software/crop-information/onion/en.spa
dc.relation.referencesFard, F. H., & Far, B.H. 2014. On the usage of network visualization for multiagent system verification. Pages 201{228 of: Online social media analysis and visualization. Springer.spa
dc.relation.referencesFarol., S., M uller, J., & Bonte, B. 2010. An iterative construction of multi-agent models to represent water supply and demand dynamics at the catchment level. Environmental modelling & software, 25(10), 1130-1148.spa
dc.relation.referencesFarooq, M. S., Riaz, S., Abid, A., Umer, T., & Zikria, Y. B. 2020. Role of iot technology in agriculture: A systematic literature review. Electronics, 9(2), 319.spa
dc.relation.referencesFedra, K. 1994. Models, gis, and expert systems: integrated water resources models. Pages 297-308 of: Applications of geographic information systems in hydrology and water resources management. proc. international conference, Vienna, 1993. IAHS Press.spa
dc.relation.referencesFeng, Y., Cui, N., Gong, D., Zhang, Q., & Zhao, L. 2017a. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural water management, 193, 163-173.spa
dc.relation.referencesFeng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. 2017b. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and electronics in agriculture, 136, 71-78.spa
dc.relation.referencesFernández-Pacheco, D.G., Escarabajal-Henarejos, D., Ruiz-Canales, A., Conesa, J., & Molina Martínez, J.M. 2014. A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of spain. Biosystems engineering, 117, 23-34.spa
dc.relation.referencesFlint, A.L., Campbell, G.S., Ellett, K.M., & Calissendor, C. 2002. Calibration and temperature correction of heat dissipation matric potential sensors. Soil science society of america journal, 66(5), 1439-1445.spa
dc.relation.referencesFoster, T., Brozovic, N., Butler, A.P., Neale, C.M.U., Raes, D., Steduto, P., Fereres, E., & Hsiao, T. C. 2017. Aquacrop-os: An open source version of faos crop water productivity model. Agricultural water management, 181, 18-22.spa
dc.relation.referencesFougeres, A., & Ostrosi, E. 2018. Intelligent agents for feature modelling in computer aided design. Journal of computational design and engineering, 5(1), 19-40.spa
dc.relation.referencesGao, L., Zhang, M., & Chen, G. 2013. An intelligent irrigation system based on wireless sensor network and fuzzy control. Jnw, 8(5), 1080-1087.spa
dc.relation.referencesGarcía, M., Raes, D., & Jacobsen, S.E. 2003. Evapotranspiration analysis and irrigation requirements of quinoa (chenopodium quinoa) in the bolivian highlands. Agricultural water management, 60(2), 119-134.spa
dc.relation.referencesGarrett, Hardin. 1968. The tragedy of the commons. Science, 162(3859), 1243-1248.spa
dc.relation.referencesGeorge, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. 1998. The belief-desire intention model of agency. Pages 1{10 of: International workshop on agent theories, architectures, and languages. Springer.spa
dc.relation.referencesGerhards, H., Wollschlager, Ute., Yu, Q., Schiwek, P., Pan, X., & Roth, K. 2008. Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground-penetrating radar. Geophysics, 73(4), J15-J23.spa
dc.relation.referencesGhorbani, M.A., Shamshirband, S., Haghi, D.Z., Azani, A., Bonakdari, H., & Ebtehaj, I. 2017. Application of algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil and tillage research, 172, 32-38.spa
dc.relation.referencesGiusti, E., & Marsili-Libelli, S. 2015. A fuzzy decision support system for irrigation and water conservation in agriculture. Environmental modelling & software, 63, 73-86.spa
dc.relation.referencesGoap, Amarendra, Sharma, Deepak, Shukla, A Krishna, & Krishna, C Rama. 2018. An iot based smart irrigation management system using machine learning and open source technologies. Computers and electronics in agriculture, 155, 41-49.spa
dc.relation.referencesGomes, J., Mariano, P., & Christensen, A. L. 2015. Cooperative coevolution of morphologically heterogeneous robots. Pages 312-319 of: Artificial life conference proceedings 13. MIT Press.spa
dc.relation.referencesGonzález, E., Pérez, A., Rodríguez, C., Manrique, M., Arévalo, Y., & Otálora, C. 2012. Robótica cooperativa experiencias de sistemas multiagentes sma. Editorial pontificia universidad javeriana, universidad de los andes, colciencias, maloka, Bogotá DC, Colombia.spa
dc.relation.referencesGonzález, J., & Yu, W. 2018. Non-linear system modeling using lstm neural networks. Ifac papersonline, 51(13), 485-489.spa
dc.relation.referencesGonzález-Dugo, V., Zarco-Tejada, P., Nicolás, E., Nortes, P.A., Alarcón, J.J., Intrigliolo, D.S., & Fereres, E. 2013. Using high resolution uav thermal imagery to assess the variability in the water status of fruit tree species within a commercial orchard. Precision agriculture, 14(6), 660{678.spa
dc.relation.referencesGonzález-Dugo, V., Goldhamer, D., Zarco-Tejada, P.J., & Fereres, E. 2015. Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrigation science, 33(1), 43-52.spa
dc.relation.referencesGonzález-Esquiva, J.M., Oates, M.J., García-Mateos, G., Moros-Valle, B., Molina-Martínez, J.M., & Ruiz-Canales, A. 2017a. Development of a visual monitoring system for water balance estimation of horticultural crops using low cost cameras. Computers and electronics in agriculture, 141, 15-26.spa
dc.relation.referencesGonzález-Esquiva, J.M., García-Mateos, G., Escarabajal-Henarejos, D., Hernández-Hernández, J.L., Ruiz-Canales, A., & Molina-Martínez, J.M. 2017b. A new model for water balance estimation on lettuce crops using effective diameter obtained with image analysis. Agricultural water management, 183, 116-122.spa
dc.relation.referencesGonzález-Esquiva, J.M., García-Mateos, G., Hernández-Hernández, J.L., Ruiz-Canales, A., Escarabajal-Henerajos, D., & Molina-Martínez, J.M. 2017c. Web application for analysis of digital photography in the estimation of irrigation requirements for lettuce crops. Agricultural water management, 183, 136-145.spa
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. 2016. Deep learning. MIT press. Grafton, R.Q., Williams, J., Perry, C.J., Molle, F., Ringler, C., Steduto, P., Udall, B., Wheeler, S.A., Wang, Y., Garrick, D., et al. 2018. The paradox of irrigation effciency. Science, 361(6404), 748-750. Grashey-Jansen, S. 2014a. Optimizing irrigation efficiency through the consideration of soil hydrological properties examples and simulation approaches. Erdkunde, 33-48.spa
dc.relation.referencesGrashey-Jansen, S. 2014b. Optimizing irrigation efficiency through the consideration of soil hydrological properties examples and simulation approaches. Erdkunde, 33-8.spa
dc.relation.referencesGrovermann, C., Schreinemachers, P., Riwthong, S., & Berger, T. 2017. Policies to reduce pesticide use and avoid income trade-os: An agent-based model applied to thai agriculture. Ecological economics, 132, 91-103.spa
dc.relation.referencesGurgen, A., & Yldz, S. 2019. Artificial neural network approach for protection of the color of dried golden and pink oyster mushrooms with pretreatments. Color research & application, 44(6), 1006-1016.spa
dc.relation.referencesGuyennon, N., Romano, E., & Portoghese, I. 2016. Long-term climate sensitivity of an integrated water supply system: The role of irrigation. Science of the total environment, 565, 68-81.spa
dc.relation.referencesHamouda, Y.E.M. 2017. Smart irrigation decision support based on fuzzy logic using wireless sensor network. Pages 109-113 of: Promising electronic technologies (icpet), 2017 international conference on. IEEE.spa
dc.relation.referencesHan, J., Wang, C., & Yi, G. 2013. Cooperative control of uav based on multi-agent system. Pages 96{101 of: Industrial electronics and applications (iciea), 2013 8th ieee conference on. IEEE.spa
dc.relation.referencesHarmouch, F. Z., Krami, N., Benhaddou, D., Hmina, N., Zayer, E., & Margoum, E. 2016. Survey of multiagents systems application in microgrids. Pages 270{275 of: Electrical and information technologies (iceit), 2016 international conference on. IEEE.spa
dc.relation.referencesHarris, N. R., & Stonard, A. 2018. A printed capacitance sensor for soil moisture measurement. Page 705 of: Multidisciplinary digital publishing institute proceedings, vol. 2.spa
dc.relation.referencesHashem, A.and Engel, B., Bralts, V., Radwan, S., & Rashad, M. 2016. Performance evaluation and development of daily reference evapotranspiration model. Irrigation & drainage systems engineering, 5, 1-6.spa
dc.relation.referencesHernández, G., Jiménez, A. F., Ortiz, B. V., Lamadrid, A. P., & Cárdenas, P. F. 2018. Decision support system for precision irrigation using interactive maps and multi-agent concepts. Pages 21-41 of: International conference of ict for adapting agriculture to climate change. Springer.spa
dc.relation.referencesHolloway-Phillips, M.M., Peng, W., Smith, D., & Terhorst, A. 2008. Adaptive scheduling in deficit irrigation a model-data fusion approach. Wit transactions on ecology and the environment, 112, 187-200.spa
dc.relation.referencesHowden, S.M., Soussana, J., Tubiello, F.N., Chhetri, N., Dunlop, M., & Meinke, H. 2007. Adapting agriculture to climate change. Proceedings of the national academy of sciences, 104(50), 19691-19696.spa
dc.relation.referencesHowell, T.A. 2003. Irrigation efficiency. Encyclopedia of water science. marcel dekker, New York, 467-472. Ihuoma, S. O., & Madramootoo, C. A. 2017. Recent advances in crop water stress detection. Computers and electronics in agriculture, 141, 267-275.spa
dc.relation.referencesIsern, D., Abello, S., & Moreno, A. 2012a. Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Computers and electronics in agriculture, 87, 1-13.spa
dc.relation.referencesIsern, D., Abello, S., & Moreno, A. 2012b. Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Computers and electronics in agriculture, 87, 1-13.spa
dc.relation.referencesJackson, R.D., Idso, S.B., Reginato, R.J., & Pinter, P.J. 1981. Canopy temperature as a crop water stress indicator. Water resources research, 17(4), 1133-1138.spa
dc.relation.referencesJaiswal, Supriya, & Ballal, Makarand S. 2020. Fuzzy inference based irrigation controller for agricultural demand side management. Computers and electronics in agriculture, 175, 105537.spa
dc.relation.referencesJanssen, M.A., & Baggio, J.A. 2016. Using agent-based models to compare behavioral theories on experimental data: Application for irrigation games. Journal of environmental psychology, 46, 106-115.spa
dc.relation.referencesJarchow, C.J., Nagler, P.L., Glenn, E.P., Ramírez-Hernández, J., & Rodríguez-Burgueño, J. E. 2017. Evapotranspiration by remote sensing: An analysis of the colorado river delta before and after the minute pulse to mexico. Ecological engineering, 106, 725-732.spa
dc.relation.referencesJaxa-Rozen, M., Kwakkel, J. H., & Bloemendal, M. 2019. A coupled simulation architecture for agent-based/geohydrological modelling with netlogo and modflow. Environmental modelling & software, 115, 19-37.spa
dc.relation.referencesJensen, M. E. 2007. Beyond irrigation efficiency. Irrigation science, 25(3), 233-245. Jiang, Yao, Xiong, Lvyang, Yao, Fuqi, & Xu, Zongxue. 2019. Optimizing regional irrigation water allocation for multi-stage pumping-water irrigation system based on multi-level optimization coordination model. Journal of hydrology x, 4, 100038.spa
dc.relation.referencesJiang-Ping, H., Zhi-Xin, L., Jin-Huan, W., Lin, W., & Xiao-Ming, H. 2013. Estimation, intervention and interaction of multi-agent systems. Acta automatica sinica, 39(11), 1796-1804.spa
dc.relation.referencesJiménez, A.F., Ravelo, D., & Gómez, J. 2010. Acquisition, storage and analysis system of phenological information for the management of pests and diseases of peach trees using precision agriculture technologies. Revista tecnura, 14, 41-51.spa
dc.relation.referencesJiménez, A.F., Herrera, E. F., Ortiz, B. V., Ruiz, A., & Cardenas, P.F. 2018. Inference system for irrigation scheduling with an intelligent agent. Pages 1-20 of: International conference of ict for adapting agriculture to climate change. Springer.spa
dc.relation.referencesJiménez, A.F., Ortiz, B.V., Bondesan, L., Morata, G., & Damianidis, D. 2019. Artificial neural networks for irrigation management: a case study from southern Alabama, USA. Pages 918-929 of: Precision agriculture19. Wageningen Academic Publishers.spa
dc.relation.referencesJiménez, A.F., Cárdenas, P.F., Jiménez, F., Canales, A., & López, A. 2020a. A cyber-physical intelligent agent for irrigation scheduling in horticultural crops. Computers and electronics in agriculture, 178, 105777.spa
dc.relation.referencesJiménez, A.F., Ortiz, B. V., Bondesan, L., Morata, G., & Damianidis, D. 2020b. Evaluation of two recurrent neural network methods for prediction of irrigation rate and timing. Transactions of the ASABE, 63(5), 1327-1348.spa
dc.relation.referencesJiménez, A.F., Ortiz, B. V., Bondesan, L., Morata, G., & Damianidis, D. 2020c. Long short-term memory neural network for irrigation management: a case study from southern Alabama, USA. Precision agriculture, 1-18.spa
dc.relation.referencesJiménez, A.F., Cárdenas, P.F., Canales, A., Jiménez, F., & Portacio, A. 2020d. A survey on intelligent agents and multi-agents for irrigation scheduling. Computers and electronics in agriculture, 105474.spa
dc.relation.referencesJiménez-Carvajal, C., Ruiz-Penalver, L., Vera-Repullo, J.A., Jiménez-Buendía, M., Antolino - Merino, A., & Molina-Martínez, J.M. 2017. Weighing lysimetric system for the determination of the water balance during irrigation in potted plants. Agricultural water management, 183, 78-85.spa
dc.relation.referencesJones, H.G. 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of experimental botany, 55(407), 2427-2436.spa
dc.relation.referencesJones, H.G. 2006. Irrigation scheduling comparison of soil, plant and atmosphere monitoring approaches. Pages 391{403 of: V international symposium on irrigation of horticultural crops 792.spa
dc.relation.referencesJosh, W., Jason, S., twmeggs, Alexandre, M. S., Aishwarya, U., Guilherme, C., Fernando, B., Badger, The Gitter, & Himanshu, M. 2017 (Oct.). Jdwarner/scikit-fuzzy: Scikit-fuzzy 0.3.1.spa
dc.relation.referencesKajitani, Y., Hipel, K.W., & McLeod, A. I. 2005. Forecasting nonlinear time series with feedforward neural networks: a case study of canadian lynx data. Journal of forecasting, 24(2), 105-117.spa
dc.relation.referencesKaluzny, S. P., Vega, S. C., Cardoso, T. P., & Shelly, A. A. 1998. Analyzing geostatistical data. Pages 67-109 of: S+ spatialstats. Springer.spa
dc.relation.referencesKanda, Edwin Kimutai, Senzanje, Aidan, & Mabhaudhi, Tafadzwanashe. 2020. Calibration and validation of the aquacrop model for full and deficit irrigated cowpea (vigna unguiculata (l.) walp). Physics and chemistry of the earth, parts a/b/c, 102941.spa
dc.relation.referencesKarasekreter, N., Bascifti, F., & Fidan, U. 2013. A new suggestion for an irrigation schedule with an artificial neural network. Journal of experimental & theoretical artificial intelligence, 25(1), 93-104.spa
dc.relation.referencesKarlik, B., & Olgac, A. V. 2011. Performance analysis of various activation functions in generalized MLP architectures of neural networks. International journal of artificial intelligence and expert systems, 1(4), 111-122.spa
dc.relation.referencesKarthikeyan, L., Pan, M.and Wanders, N., Kumar, D. N., & Wood, E.F. 2017. Four decades of microwave satellite soil moisture observations: Part 1. a review of retrieval algorithms. Advances in water resources, 109, 106-120.spa
dc.relation.referencesKaruku, G., & Mbindah, B. 2020. Validation of aquacrop model for simulation of rainfed bulb onion (allium cepa l.) yields in west ugenya sub-county, kenya. Tropical and subtropical agroecosystems, 23(1).spa
dc.relation.referencesKaur, K. 2016. Machine learning: Applications in indian agriculture. International journal of advanced research in computer and communication engineering, 5(4).spa
dc.relation.referencesKeyhani, A. 2001. Development of mini-gypsum blocks for soil moisture measurement and their calibration to compensate for temperature.spa
dc.relation.referencesKhosla, R., Westfall, D.G., Reich, R.M., Mahal, J.S., & Ganglo, W.J. 2010. Spatial variation and site-specific management zones. Pages 195-219 of: Geostatistical applications for precision agriculture. Springer.spa
dc.relation.referencesKing, B.A., & Shellie, K.C. 2016. Evaluation of neural network modeling to predict non-waterstressed leaf temperature in wine grape for calculation of crop water stress index. Agricultural water management, 167, 38-52.spa
dc.relation.referencesKoch, P., Wujek, B., Golovidov, O., & Gardner, S. 2017. Automated hyperparameter tuning for effective machine learning. Pages 1{23 of: Proceedings of the sas global forum 2017 conference. SAS Institute Inc. Cary, NC.spa
dc.relation.referencesKoestler, A. 1968. The ghost in the machine.spa
dc.relation.referencesKrishnan, R Santhana, Julie, E Golden, Robinson, Y Harold, Raja, S, Kumar, Raghvendra, Thong, Pham Huy, et al. 2020. Fuzzy logic based smart irrigation system using internet of things. Journal of cleaner production, 252, 119902.spa
dc.relation.referencesKrupakar, H., Jayakumar, A., et al. 2016. A review of intelligent practices for irrigation prediction. arxiv preprint arxiv:1612.02893.spa
dc.relation.referencesKubicek, P., Kozel, J., Stampach, R., & Lukas, V. 2013. Prototyping the visualization of geographic and sensor data for agriculture. Computers and electronics in agriculture, 97, 83-91.spa
dc.relation.referencesKuhn, M., Johnson, K., et al. 2013. Applied predictive modeling. Vol. 26. Springer.spa
dc.relation.referencesKullberg, E.G., DeJonge, K.C., & Chávez, J. 2017. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural water management, 179, 64-73.spa
dc.relation.referencesKumar, B. D., Srivastava, P., Agrawal, R., & Tiwari, V. 2017. Microcontroller based automatic plant irrigation system. International research journal of engineering and technology, 4(5), 1436-1439.spa
dc.relation.referencesKumar, R., Shankar, V., & Jat, M.K. 2013. Soil moisture dynamics modeling considering multilayer root zone. Water science and technology, 67(8), 1778-1785. Kumar Manaswi, N. 2018. Deep learning with applications using python: chatbots and face, object, and speech recognition with tensor ow and keras.spa
dc.relation.referencesKushwaha, D., Taram M. Taram A. 2015. A framework for technologically advanced smart agriculture scenario in india based on internet of things model.spa
dc.relation.referencesKyte, R. 2014 (January). Climate change is a challenge for sustainable development. [Online; posted 15-January-2014].spa
dc.relation.referencesLee, E. A., & Seshia, S. A. 2016. Introduction to embedded systems: A cyber-physical systems approach. Mit Press.spa
dc.relation.referencesLeitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. 2016. Smart agents in industrial cyber{physical systems. Proceedings of the ieee, 104(5), 1086-1101.spa
dc.relation.referencesLena, B.P., Ortiz, B. V., Jiménez-López, A. F., Sanz-Sez, A., OShaughnessy, S. A., Durstock, M. K., & Pate, G. 2020. Evaluation of infrared canopy temperature data in relation to soil water-based irrigation scheduling in a humid subtropical climate. Transactions of the ASABE, 63(5), 1217-1231.spa
dc.relation.referencesLeppanen, T., Liu, M., Harjula, E., Ramalingam, A., Ylioja, J., Narhi, P., Riekki, J., & Ojala, T. 2013. Mobile agents for integration of internet of things and wireless sensor networks. Pages 14{21 of: Systems, man, and cybernetics (smc), ieee. IEEE.spa
dc.relation.referencesLevidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. 2014. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural water management, 146, 84-94.spa
dc.relation.referencesLi, H., Karray, F., Basir, O. A., & Song, I. 2006. Multi-agent based control of a heterogeneous system. Jaciii, 10(2), 161-167.spa
dc.relation.referencesLi, L., Sigrimis, N., Anastasiou, A., Wang, M., & Patil, VC. 2012. A roadmap from internet of things to intelligent agriculture and wot. Pages 297{304 of: Aipa2012 agro-informatics and precision agriculture conference proceedings, august 1-3, 2012, hyderabad, india.spa
dc.relation.referencesLi, M., Lu, Y., & He, B. 2013a. Collaborative signal and information processing for target detection with heterogeneous sensor networks. International journal of sensor networks and data communications, 1(1), 112.spa
dc.relation.referencesLi, M., Lu, Y., & He, B. 2013b. Collaborative signal and information processing for target detection with heterogeneous sensor networks. International journal of sensor networks and data communications, 1(1), 112.spa
dc.relation.referencesLi, X., & Yeh, A.G. 2004. Multitemporal SAR images for monitoring cultivation systems using case-based reasoning. Remote sensing of environment, 90(4), 524-534.spa
dc.relation.referencesLi, Y., Huang, C., Hou, J., Gu, J., Zhu, G., & Li, X. 2017. Mapping daily evapotranspiration based on spatiotemporal fusion of aster and MODIS images over irrigated agricultural areas in the heihe river basin, northwest china. Agricultural and forest meteorology, 244, 82-97.spa
dc.relation.referencesLiu, G. P. 2017. Predictive control of networked multiagent systems via cloud computing. Ieee transactions on cybernetics, 47(8), 1852-1859.spa
dc.relation.referencesLiu, Y. Y., Dorigo, W. A., Parinussa, R.M., de Jeu, R. A.M.,Wagner, W., McCabe, M. F., Evans, J.P., & Van Dijk, A.I.J.M. 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote sensing of environment, 123, 280-297.spa
dc.relation.referencesLu, Z., Chai, L., Ye, Q., & Zhang, T. 2015. Reconstruction of time-series soil moisture from amsr2 and smos data by using recurrent nonlinear autoregressive neural networks. Pages 980{983 of: 2015 ieee international geoscience and remote sensing symposium (igarss). IEEE.spa
dc.relation.referencesMalamos, N., Barouchas, P.E., Tsirogiannis, I.L., Liopa-Tsakalidi, A., & Koromilas, Th. 2015. Estimation of monthly fao penman-monteith evapotranspiration in gis environment, through a geometry independent algorithm. Agriculture and agricultural science procedia, 4, 290-299.spa
dc.relation.referencesMango, N., Makate, C., Tamene, L., Mponela, P., & Ndengu, G. 2018. Adoption of smallscale irrigation farming as a climate-smart agriculture practice and its in uence on household income in the chinyanja triangle, southern africa. Land, 7(2), 49.spa
dc.relation.referencesMarshall, M., Thenkabail, P., Biggs, T., & Post, K. 2016. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agricultural and forest meteorology, 218, 122-134.spa
dc.relation.referencesMartÍnez, Q., RodrÍguez, L.F., Medina, C., et al. 2014. Estudio de factibilidad de una planta empacadora (packing house) para cebolla de bulbo (allium cepa l.) en el distrito de riego del alto chicamocha (Boyacá). Revista colombiana de ciencias hortÍcolas, 8(2), 287-301.spa
dc.relation.referencesMasbruch, K., & Ferre, T.P.A. 2003. A time domain transmission method for determining the dependence of the dielectric permittivity on volumetric water content. Vadose zone journal, 2(2), 186-192.spa
dc.relation.referencesMatthews, R. 2006. The people and landscape model (palm): Towards full integration of human decision-making and biophysical simulation models. Ecological modelling, 194(4), 329-343.spa
dc.relation.referencesMcCarthy, A. C., Hancock, N. H., & Raine, S. R. 2014. Simulation of irrigation control strategies for cotton using model predictive control within the variwise simulation framework. Computers and electronics in agriculture, 101, 135-147. Mercadal, E., Robles, S., Martín, R., Sreenan, C. J., & Borrell, J. 2011. Heterogeneous multiagent architecture for dynamic triage of victims in emergency scenarios. Pages 237-246 of: Advances on practical applications of agents and multiagent systems. Springer.spa
dc.relation.referencesMontes, G. A., & Goertzel, B. 2019. Distributed, decentralized, and democratized artificial intelligence. Technological forecasting and social change, 141, 354-358.spa
dc.relation.referencesMoorhead, J.E., Marek, G.W., Colaizzi, P.D., Gowda, P.H., Evett, S.R., Brauer, D.K., Marek, T.H., & Porter, D.O. 2017. Evaluation of sensible heat flux and evapotranspiration estimates using a surface layer scintillometer and a large weighing lysimeter. Sensors, 17(10), 2350.spa
dc.relation.referencesMorillo, J., Martín, M., Camacho, E., Díaz, J.A., & Montesinos, P. 2015. Toward precision irrigation for intensive strawberry cultivation. Agricultural water management, 151, 43-51.spa
dc.relation.referencesMoroizumi, T., & Sasaki, Y. 2008. Estimating the nonaqueous-phase liquid content in saturated sandy soil using amplitude domain reflectometry. Soil science society of america journal, 72(6), 1520-1526.spa
dc.relation.referencesMousa, A.K., Croock, M.S., & Abdullah, M.N. 2014. Fuzzy based decision support model for irrigation system management. International journal of computer applications, 104(9).spa
dc.relation.referencesMrinmayi, G.and Bhagyashri, D., & Atul, V. 2016. A smart irrigation system for agriculture based on wireless sensors. International journal of innovative research in science, engineering and technology, 5, 6893-6899.spa
dc.relation.referencesMullins, C. E., Smith, K.A., & Mullins, C. 2000. Matric potential. Soil and environmental analysis: Physical methods. eds ka smith and ce mullins, 65-93.spa
dc.relation.referencesNautiyal, M., Grabow, G.L., Miller, G.L., & Hu man, R.L. 2010. Evaluation of two smart irrigation technologies in cary, north carolina. Page 1 of: 2010 pittsburgh, pennsylvania, June 20-june 23, 2010. American Society of Agricultural and Biological Engineers.spa
dc.relation.referencesNeverova, N. 2016. Deep learning for human motion analysis. Ph.D. thesis, Universite de Lyon.spa
dc.relation.referencesNguyen, D. C. H., Ascough II, J. C., Maier, H. R., Dandy, G. C., & Andales, A. A. 2017. Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environmental modelling & software, 97, 32-45.spa
dc.relation.referencesNie, J., Sun, R. Z., & Li, X. H. 2014. A precision agriculture architecture with cyber-physical systems design technology. Pages 1567{1570 of: Applied mechanics and materials, vol. 543. Trans Tech Publ.spa
dc.relation.referencesNizetic, S., Solic, P., González-de, D. L., Patrono, L., et al. 2020. Internet of things (iot): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877.spa
dc.relation.referencesNolf, M., Beikircher, B., Rosner, S., Nolf, A., & Mayr, S. 2015. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions. New phytologist, 208(2), 625-632.spa
dc.relation.referencesOjha, T., Misra, S., & Raghuwanshi, N. S. 2015. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and electronics in agriculture, 118, 66-84.spa
dc.relation.referencesOShaughnessy, S.A., & Evett, S.R. 2010. Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. Agricultural water management, 97(9), 1310-1316.spa
dc.relation.referencesOshaughnessy, S.A., Evett, S.R., Colaizzi, P.D., & Howell, T.A. 2011. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural water management, 98(10), 1523-1535.spa
dc.relation.referencesOShaughnessy, S.A., Evett, S.R., Colaizzi, P.D., & Howell, T.A. 2012. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural water management, 107, 122-132.spa
dc.relation.referencesOsroosh, Y., Peters, R. T., Campbell, C.S., & Zhang, Q. 2016. Comparison of irrigation automation algorithms for drip-irrigated apple trees. Computers and electronics in agriculture, 128, 87-99.spa
dc.relation.references¬Yen, S. 2018. Forecasting multivariate time series data using neural networks. M.Phil. thesis, NTNU.spa
dc.relation.referencesOShaughnessy, S. A., Evett, S. R., & Colaizzi, P. D. 2015. Dynamic prescription maps for site-specific variable rate irrigation of cotton. Agricultural water management, 159, 123-138.spa
dc.relation.referencesPant, M., Thangaraj, R., Rani, D., Abraham, A., & Srivastava, D. K. 2010. Estimation of optimal crop plan using nature inspired metaheuristics. World journal of modelling and simulation, 6(2), 97-109.spa
dc.relation.referencesParker, D. C., Manson, S. M., Janssen, M. A., Hofmann, M.J., & Deadman, P. 2002. Multiagent systems for the simulation of land-use and land-cover change: A review. forthcoming. In: Workshop on agent-based models of land use (nag 56406), vol. 75.spa
dc.relation.referencesPatil, P., & Desai, B. 2013. Intelligent irrigation control system by employing wireless sensor networks. International journal of computer applications, 79(11).spa
dc.relation.referencesPerea, R., Poyato, E.C., Montesinos, P., & Díaz, J.A. 2015. Irrigation demand forecasting using artificial neuro-genetic networks. Water resources management, 29(15), 5551-5567.spa
dc.relation.referencesPereira, L. S., Allen, R. G., Smith, M., & Raes, D. 2015. Crop evapotranspiration estimation with fao56: Past and future. Agricultural water management, 147, 4-20.spa
dc.relation.referencesPereira, L.S., & Alves, I. 2013. Crop water requirements. reference module in earth systems and environmental sciences.spa
dc.relation.referencesPérez, C. R., & Jury, M. R. 2013. Spatial and temporal analysis of climate change in hispañola. Theoretical and applied climatology, 113(1-2), 213-224.spa
dc.relation.referencesPérez Ortola, M. 2013. Modelling the impacts of infield soil and irrigation variability on onion yield.spa
dc.relation.referencesPeters, R.T., & Evett, S.R. 2007. Spatial and temporal analysis of crop conditions using multiple canopy temperature maps created with center-pivot-mounted infrared thermometers. Transactions of the asabe, 50(3), 919-927.spa
dc.relation.referencesPisoni, E., Farina, M., Carnevale, C., & Piroddi, L. 2009. Forecasting peak air pollution levels using narx models. Engineering applications of artificial intelligence, 22(4-5), 593-602.spa
dc.relation.referencesPoblete-Echeverría, C.A., & Ortega-Farias, S.O. 2013. Evaluation of single and dual crop coefficients over a drip-irrigated m erlot vineyard (v itis vinifera l.) using combined measurements of sap flow sensors and an eddy covariance system. Australian journal of grape and wine research, 19(2), 249-260.spa
dc.relation.referencesPohlmeier, A., Oros-Peusquens, A., Javaux, M., Menzel, M.I., Vanderborght, J., Ka anke, J., Romanzetti, S., Lindenmair, J., Vereecken, H., & Shah, N.J. 2008. Changes in soil water content resulting from ricinus root uptake monitored by magnetic resonance imaging. Vadose zone journal, 7(3), 1010 - 1017.spa
dc.relation.referencesPokhrel, B., Paudel, K., & Segarra, E. 2018. Factors affecting the choice, intensity, and allocation of irrigation technologies by us cotton farmers. Water, 10(6), 706.spa
dc.relation.referencesProulx-McInnis, S., St-Hilaire, A., Rousseau, A.N., Jutras, S., Carrer, G., & Levrel, G. 2012. Automated soil lysimeter for determination of actual evapotranspiration of a bog in quebec, canada. Journal of hydrologic engineering, 19(1), 60-68.spa
dc.relation.referencesPurnomo, H., & Guizol, P. 2006. Simulating forest plantation co-management with a multi-agent system. Mathematical and computer modelling, 44(5-6), 535-552.spa
dc.relation.referencesRad, C.R., Hancu, O., Takacs, I.A., & Olteanu, G. 2015. Smart monitoring of potato crop: a cyber-physical system architecture model in the field of precision agriculture. Agriculture and agricultural science procedia, 6, 73-79.spa
dc.relation.referencesRaes, D., Steduto, P., HSIAO, T.C., & Fereres, E. 2018. Chapter 1: Fao crop-water productivity model to simulate yield response to water: Aquacrop: version 6.0-6.1: reference manual. Rome: FAO, 2018b. 19p.spa
dc.relation.referencesRafea, A., & Hassen, H.and Hazman, M. 2003. Automatic knowledge acquisition tool for irrigation and fertilization expert systems. Expert systems with applications, 24(1), 49-57.spa
dc.relation.referencesRajkumar, R., Lee, I., Sha, L., & Stankovic, J. 2010. Cyber-physical systems: the next computing revolution. Pages 731-736 of: Design automation conference. IEEE.spa
dc.relation.referencesRamezani Dooraki, A., & Lee, D.J. 2018. An end-to-end deep reinforcement learning-based intelligent agent capable of autonomous exploration in unknown environments. Sensors, 18(10), 3575.spa
dc.relation.referencesRanjithan, S.R. 2005. Role of evolutionary computation in environmental and water resources systems analysis.spa
dc.relation.referencesReddy, M.J., & Kumar, D.N. 2008. Evolving strategies for crop planning and operation of irrigation reservoir system using multi-objective differential evolution. Irrigation science, 26(2), 177-190.spa
dc.relation.referencesRege, S., Gutiérrez, T. N., Marvuglia, A., Benetto, E., & Stilmant, D. 2015. Modelling price discovery in an agent based model for agriculture in luxembourg. Pages 91{112 of: Computing in economics and finance. Springer.spa
dc.relation.referencesRiediger, J., Breckling, B., Svoboda, N., & Schr oder, W. 2016. Modelling regional variability of irrigation requirements due to climate change in northern germany. Science of the total environment, 541, 329-340.spa
dc.relation.referencesRodríguez-Ortega, W.M., Martínez, V., Rivero, R.M., Camara-Zapata, J.M., Mestre, T., & García-Sánchez, F. 2017. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural water management, 183, 158-168.spa
dc.relation.referencesRomero, R., Muriel, J.L.and García, I., & de la Peña, D. M. 2012. Research on automatic irrigation control: State of the art and recent results. Agricultural water management, 114, 59-66.spa
dc.relation.referencesRomero Vicente, R. 2011. Hydraulic modelling and control of the soil-plant-atmosphere continuum in woody crops.spa
dc.relation.referencesRuiz, L. Gonzaga B., Cuellar, M. P., Calvo-Flores, M. D., & Jiménez, M. 2016. An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies, 9(9), 684.spa
dc.relation.referencesRussell, S. J., & Norvig, P. 2016. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited.spa
dc.relation.referencesSabzi, S., Abbaspour-Gilandeh, Y., & Javadikia, H. 2017. Machine vision system for the automatic segmentation of plants under different lighting conditions. Biosystems engineering, 161, 157-173. Sakellariou, I., Kefalas, P., & Stamatopoulou, I. 2008. Enhancing netlogo to simulate bdi communicating agents. Pages 263{275 of: Hellenic conference on artificial intelligence. Springer.spa
dc.relation.referencesSalazar, R., Rangel, J.C., Pinzón, C., & Rodríguez, A. 2013a. Irrigation system through intelligent agents implemented with arduino technology. Adcaij: Advances in distributed computing and artificial intelligence journal, 2(3), 29-36.spa
dc.relation.referencesSalazar, R., Rangel, J. C., Pinzón, C., & Rodríguez, A. 2013b. Irrigation system through intelligent agents implemented with arduino technology.spa
dc.relation.referencesSample, D., Owen, J. S., Fields, J. S., Barlow, S., et al. 2016. Understanding soil moisture sensors: A fact sheet for irrigation professionals in virginia.spa
dc.relation.referencesSeidel, S. J.,Werisch, S., Barfus, K.,Wagner, M., Sch utze, N., & Laber, H. 2016. Field evaluation of irrigation scheduling strategies using a mechanistic crop growth model. Irrigation and drainage, 65(2), 214-223.spa
dc.relation.referencesSelmani, Abdelouahed, Oubehar, Hassan, Outanoute, Mohamed, Ed-Dahhak, Abdelali, Guerbaoui, Mohammed, Lachhab, Abdeslam, & Bouchikhi, Benachir. 2019. Agricultural cyberphysical system enabled for remote management of solar-powered precision irrigation. Biosystems engineering, 177, 18-30.spa
dc.relation.referencesShabani, A., Ghaary, K.A., Sepaskhah, A.R., & Kamgar-Haghighi, A.A. 2017. Using the artificial neural network to estimate leaf area. Scientia horticulturae, 216, 103-110.spa
dc.relation.referencesSha, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. 2019. Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.spa
dc.relation.referencesShamshirband, S., & Zafari, A. 2012. Evaluation of the performance of intelligent spray networks based on fuzzy logic. Research journal of recent sciences issn, 2277, 2502.spa
dc.relation.referencesSharp, R.E., & Davies, W.J. 1985. Root growth and water uptake by maize plants in drying soil. Journal of experimental botany, 36(9), 1441-1456.spa
dc.relation.referencesShekhar, Y., Dagur, E., Mishra, S., & Sankaranarayanan, S. 2017. Intelligent iot based automated irrigation system. International journal of applied engineering research, 12(18), 7306-7320.spa
dc.relation.referencesShock, C. C., & Wang, F.X. 2011. Soil water tension, a powerful measurement for productivity and stewardship. Hortscience, 46(2), 178-185.spa
dc.relation.referencesSkansi, S. 2018. Introduction to deep learning: from logical calculus to artificial intelligence. Springer.spa
dc.relation.referencesSkobelev, P., Simonova, E. V., Ivanov, A., Mayorov, I., Travin, V., & Zhilyaev, A. 2014. Real time scheduling of data transmission sessions in a microsatellites swarm and ground stations network based on multi-agent technology. Pages 153{159 of: Ijcci (ecta).spa
dc.relation.referencesSkobelev, P., Simonova, E., & Zhilyaev, A. 2016. Using multi-agent technology for the distributed management of a cluster of remote sensing satellites. Complex syst: Fundament appl, 90, 287.spa
dc.relation.referencesSmajstrla, A. G. 2008. Technical manual: Agricultural field scale irrigation requirements simulation (afsirs) model, version 5.5. St. Johns River Water Management District.spa
dc.relation.referencesSmith, D., & Peng, W. 2009. Machine learning approaches for soil classification in a multi-agent deficit irrigation control system. Pages 1{6 of: 2009 ieee international conference on industrial technology. IEEE.spa
dc.relation.referencesSmith, M., Steduto, P., et al. 2012. Yield response to water: the original fao water production function. Fao irrigation and drainage paper, 6-13.spa
dc.relation.referencesSmith, R. 2011a. Review of precision irrigation technologies and their applications. Tech. rept. University of Southern Queensland.spa
dc.relation.referencesSmith, R. 2011b. Review of precision irrigation technologies and their applications. Tech. rept. University of Southern Queensland.spa
dc.relation.referencesSoane, B.D. 2006. Irrigation and drainage performance assessment: Practical guidelines. by mg bos, ma burton and dj molden. wallingford, uk: Cabi publishing (2005), pp. 176,£ 40.00. isbn 0-85-199-967-0. Experimental agriculture, 42(1), 125-125.spa
dc.relation.referencesSpectrum Technologies, Inc. 2011. Waterscout sm100 soil moisture sensor { product manual, item 6460: Aurora, il, usa 20 pp.spa
dc.relation.referencesSpiliotopoulos, M., & Loukas, A. 2019. Hybrid methodology for the estimation of crop coefficients based on satellite imagery and ground-based measurements. Water, 11(7), 1364.spa
dc.relation.referencesSrivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.spa
dc.relation.referencesSubedi, A., & Chavez, J.L. 2015. Crop evapotranspiration (et) estimation models: a review and discussion of the applicability and limitations of et methods. Journal of agricultural science, 7(6), 50.spa
dc.relation.referencesTal, A. 2016. Rethinking the sustainability of israels irrigation practices in the drylands. Water research, 90, 387-394.spa
dc.relation.referencesTalavera, J. M., Tobón, L. E., Gómez, J. A. and Culman, M. A., Aranda, J.M., Parra, D. T., Quiroz, L. A., Hoyos, A., & Garreta, L. E. 2017. Review of iot applications in agro-industrial and environmental fields. Computers and electronics in agriculture, 142, 283-297.spa
dc.relation.referencesTalaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. 2020. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial intelligence in agriculture.spa
dc.relation.referencesTodorovic, M., Lamaddalena, N., Trisorio Liuzzi, G., et al. 2008. Modern strategies and tools for water saving and drought mitigation in southern italy. Drought management: Scientific and technological innovation.spa
dc.relation.referencesTolk, A., Diallo, S.D., Ryzhov, I.O., Yilmaz, L., Buckley, S., & Miller, J.A. 2014. Evaluation of kriging-based methods for simulation optimization with homogeneous noise.spa
dc.relation.referencesTouati, F., Al-Hitmi, M., & Benhmed, K.and Tabish, R. 2013. A fuzzy logic based irrigation system enhanced with wireless data logging applied to the state of qatar. Computers and electronics in agriculture, 98, 233-241.spa
dc.relation.referencesTrencansky, I., & Cervenka, R. 2005. Agent modeling language (aml): A comprehensive approach to modeling mas. Informatica-ljubljana, 29(4), 391.spa
dc.relation.referencesTsang, S.W., & Jim, C. Y. 2016a. Applying artificial intelligence modeling to optimize green roof irrigation. Energy and buildings, 127, 360-369.spa
dc.relation.referencesTsang, S.W., & Jim, C.Y. 2016b. Applying artificial intelligence modeling to optimize green roof irrigation. Energy and buildings, 127, 360-369.spa
dc.relation.referencesVan Der Maaten, E., van der Maaten-Theunissen, M., Smiljanic, M., Rossi, S., Simard, S., Wilmking, M., Deslauriers, A., Fonti, P., von Arx, G., & Bouriaud, O. 2016. dendrometer: Analyzing the pulse of trees in r. Dendrochronologia, 40, 12-16.spa
dc.relation.referencesVan Genuchten, R. 1978. Calculating the unsaturated hydraulic conductivity with a new closedform analytical model. Research report, no. 78-wr-08, princeton university.spa
dc.relation.referencesVan Rossum, G., & Drake, F. L. 2009. Python 2.6 reference manual.spa
dc.relation.referencesVellidis, G., Liakos, V., Porter, W., Tucker, M., & Liang, X. 2016. A dynamic variable rate irrigation control system. In: Proceedings of the 13th international conference on precision agriculture, louis, mi, usa, vol. 31.spa
dc.relation.referencesViani, F., Bertolli, M., Salucci, M., & Polo, A. 2017. Low-cost wireless monitoring and decision support for water saving in agriculture. Ieee sensors journal, 17(13), 4299-4309.spa
dc.relation.referencesVillarrubia, G., Paz, J.F., Iglesia, D.H., & Bajo, J. 2017. Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors, 17(8), 1775.spa
dc.relation.referencesVon Rosing, M., White, S., Cummins, F., & de Man, H. 2015. Business process model and notation-bpmn.spa
dc.relation.referencesWang, X., Liu, Y., Sun, C.J., Wang, B., & Wang, X. 2015. Predicting polarities of tweet by composing word embeddings with long short-term memory. Pages 1343{1353 of: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: Long papers).spa
dc.relation.referencesWanjura, D.F., Upchurch, D.R., & Mahan, J.R. 2004. Establishing differential irrigation levels using temperature-time thresholds. Applied engineering in agriculture, 20(2), 201.spa
dc.relation.referencesWanyama, T., & Far, B. 2017. Multi-agent system for irrigation using fuzzy logic algorithm and open platform communication data access. World academy of science, engineering and technology, international journal of computer, electrical, automation, control and information engineering, 11(6), 691-696.spa
dc.relation.referencesWardlaw, R., & Bhaktikul, K. 2004. Application of genetic algorithms for irrigation water scheduling. Irrigation and drainage, 53(4), 397-414.spa
dc.relation.referencesWarner, J., & Sexauer, J. 2017. scikit fuzzy, twmeggs, ams, a. Unnikrishnan, g. castelo, f. batista, tg badger, & h. mishra (2017, october). jdwarner/scikit-fuzzy: Scikit-fuzzy 0.3, 1.spa
dc.relation.referencesWeather, S. 2018. Average weather in samson alabama, united states. urlhttps://weatherspark.com/y/14512/Average-Weather-in-Samson-Alabama-United-States- Year-Round.spa
dc.relation.referencesWeather, S. 2020. Average weather in nobsa, colombia states. urlhttps://weatherspark.com/y/25267/Average-Weather-in-Nobsa-Colombia-Year-Round.spa
dc.relation.referencesWeiss, G. 2013. Multiagent systems. MIT press.spa
dc.relation.referencesWeller, U., Leuther, F., Schl uter, S., & Vogel, H. 2018. Quantitative analysis of water infiltration in soil cores using x-ray. Vadose zone journal, 17(1).spa
dc.relation.referencesWerbos, P. J. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the ieee, 78(10), 1550-1560.spa
dc.relation.referencesWilensky, U., & Rand, W. 2015. An introduction to agent-based modeling: modeling natural, social, and engineered complex systems with netlogo. MIT Press.spa
dc.relation.referencesWinter, J.M., Young, C.A., Mehta, V.K., Ruane, A.C., Azarderakhsh, M., Davitt, A., McDonald, K., Haden, V.R., & Rosenzweig, C. 2017. Integrating water supply constraints into irrigated agricultural simulations of california. Environmental modelling & software, 96, 335-346.spa
dc.relation.referencesWooldridge, M.J., & Jennings, N. R. 1995. Intelligent agents: Theory and practice. The knowledge engineering review, 10(2), 115-152.spa
dc.relation.referencesXu, J., Ma, X., Logsdon, S. D., & Horton, R. 2012. Short, multineedle frequency domain reflectometry sensor suitable for measuring soil water content. Soil science society of America journal, 76(6), 1929-1937.spa
dc.relation.referencesYe-ping, Z., & Sheng-ping, L. 2011a. Technology of agent-based crop collaborative simulation and management decision. Pages 158{162 of: Data mining and intelligent information technology applications (icmia), 2011 3rd international conference on. IEEE.spa
dc.relation.referencesYe-ping, Z., & Sheng-ping, L. 2011b. Technology of agent-based crop collaborative simulation and management decision. Pages 158{162 of: The 3rd international conference on data mining and intelligent information technology applications. IEEE.spa
dc.relation.referencesZacepins, A., Stalidzans, E., & Meitalovs, J. 2012. Application of information technologies in precision apiculture. In: Proceedings of the 13th international conference on precision agriculture (icpa 2012).spa
dc.relation.referencesZamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. 2019. Smart farming iot platform based on edge and cloud computing. Biosystems engineering, 177, 4-17.spa
dc.relation.referencesZhang, C., & Guo, P. 2018. Flfp: A fuzzy linear fractional programming approach with doublesided fuzziness for optimal irrigation water allocation. Agricultural water management, 199, 105-119.spa
dc.relation.referencesZhang, C., & Noguchi, N. 2017. Development of a multi-robot tractor system for agriculture field work. Computers and electronics in agriculture, 142, 79-90.spa
dc.relation.referencesZhang, D., Lin, Junqiang, Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X., & Zhuang, J. 2018a. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. Journal of hydrology, 565, 720-736.spa
dc.relation.referencesZhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. 2018b. Developing a long short-term memory (lstm) based model for predicting water table depth in agricultural areas. Journal of hydrology, 561, 918-929.spa
dc.relation.referencesZhao, T., Ding, R., & Man, Z. 2011. Long-range monitoring system of irrigated area wateruse based on multi-agent. Pages 580{583 of: Mechatronic science, electric engineering and computer (mec), 2011 international conference on. IEEE.spa
dc.relation.referencesZhao, T., Stark, B., Chen, Y., Ray, A.L., & Doll, D. 2017. Challenges in water stress quantification using small unmanned aerial system (suas): Lessons from a growing season of almond. Journal of intelligent & robotic systems, 88(2-4), 721-735.spa
dc.relation.referencesZhemukhov, R. S.h., & Zhemukhova, M. M. 2016. System of mathematical models to manage water and land resources at the regional level in case of anthropogenous climate changes taking into account economic indicators and ecological consequences. Pages 256{261 of: Quality management, transport and information security, information technologies (it&mq&is), ieee conference on. IEEE.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocRiego automático
dc.subject.agrovocAutomatic irrigation
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalAgente inteligentespa
dc.subject.proposalAgricultura de precisiónspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalModelo basado en agentesspa
dc.subject.proposalMulti-agentespa
dc.subject.proposalRiego de precisiónspa
dc.subject.proposalAgent based modeleng
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalIntelligent agenteng
dc.subject.proposalMulti-agenteng
dc.subject.proposalPrecision agricultureeng
dc.subject.proposalPrecision irrigationeng
dc.titleModelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolasspa
dc.title.translatedIntelligent agent-based model to support irrigation management in agricultural cropseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleModelo Basado en Agentes Inteligentes como soporte a la gestión del riego en cultivos agrícolasspa
oaire.fundernameGobernación de Boyacáspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
74184838.2020.pdf
Tamaño:
12.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: