Comparación de la eficiencia de los semiconductores Carburo de Silicio (SiC) y Nitruro de Galio (GaN) para transistores de potencia MOSFET, a través del diseño e implementación de un conversor DC-AC
dc.contributor.advisor | Baquero Rozo, Giovanni Aldemar | |
dc.contributor.author | Torres García, Edgar Daniel | |
dc.date.accessioned | 2021-06-21T16:38:10Z | |
dc.date.available | 2021-06-21T16:38:10Z | |
dc.date.issued | 2021-06-14 | |
dc.description | ilustraciones, fotografías | spa |
dc.description.abstract | Con el propósito de mejorar la eficiencia energética de los convertidores de potencia utilizados en la generación, almacenaje y distribución de energía; en la presente investigación se analizan las ventajas de implementar en los convertidores de potencia transistores tipo MOSFETs construidos con materiales semiconductores de alto valor de energía en la banda prohibida (WBG), como son el Nitruro de Galio (GaN) y el Carburo de Silicio (SiC), con respecto al convencional material semiconductor de Silicio (Si), usando como plataforma de pruebas convertidores DC-AC. Para comparar su eficiencia en la conversión de potencia se realizó el diseño e implementación de tres prototipos de convertidores DC-AC de puente completo, uno para cada tipo de semiconductor, logrando alcanzar en ellos eficiencias superiores al 90% y obteniendo del análisis realizado una comparación del desempeño energético de los tres convertidores DC-AC a diferentes frecuencias de conmutación. (Tomado de la fuente) | spa |
dc.description.abstract | To improve the energy efficiency of the power converters used in the generation, storage, and distribution of energy, the present research aims to analyze the advantages of implementing in power converters MOSFET with semiconductor materials with Wide Band Gap (WGB), as are the Gallium Nitrate (GaN) and Silicon Carbide (SiC), versus the traditional semiconductor of Silicon (Si), using converters DC-AC as the test platform. To compare its power conversion efficiency, the design and implementation of three fullbridge DC-AC converter prototypes were carried out, one for each type of semiconductor, achieving reach in them efficiencies greater than 90% and obtaining from the analysis carried out a comparison of the energy performance of the three DC-AC converters at different switching frequencies. (Tomado de la fuente) | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Electrónica de Potencia | spa |
dc.description.researcharea | Materiales semiconductores WBG | spa |
dc.description.researcharea | Energias Renovables | spa |
dc.format.extent | 201 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79657 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Electrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | A. Cervera, M. E.-Y. (March 2015). A High-Efficiency Resonant Switched Capacitor Converter With Continuous Conversion Ratio. IEEE Transactions on Power Electronics, vol. 30, no. 3(10.1109/TPEL.2014.2317758.), pp. 1373-1382. | spa |
dc.relation.references | Amidon Inc. (s.f.). Ferritas material tipo 77. Obtenido de www.amidoncorp.com Baker, B. C. (2003). Noise source in applications using capacitive coupled isalated amplifiers. Burr-Brown / Application Bulletin, AB-047, 5,6. | spa |
dc.relation.references | Baker, R. (2010). CMOS Circuit Design, Layout, and Simulation, Third Edition,. Wiley-IEEE. Recuperado el 6 de 1 de 2021, de http://worldcat.org/isbn/978-0-470-88132-3 | spa |
dc.relation.references | Cooper, T. K. (2014). FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY. Singapure: John Wiley & Sons Singapore Pte. Ltd. | spa |
dc.relation.references | E. Serban, C. P. (2019). Modulation Effects on Power-Loss and Leakage in three-phase Solar Inverter. IEEE TRANSACTIONS ON ENERGY CONVERSION, vol. 34, no. 1, pp. 339-350. doi:10.1109/TEC.2018.2879217 | spa |
dc.relation.references | Energy Start. (2020). Program Requirements for Computers, Rev. 6.4.2. Recuperado el 2020, de https://www.energystar.gov/sites/default/files/specs//private/Computers_Program_Requirements.pdf | spa |
dc.relation.references | FCT, M. . (2020). D-Sub High Density Connectors 9P MALE CRIMP DSUB . Obtenido de https://www.mouser.com/new/molex/fct-in-flight-connectors/ | spa |
dc.relation.references | GaN Systems. (2020). GS66508T_650V Enhancement Mode GaN Transistor. Obtenido de https://gansystems.com/gan-transistors/gs66508t/ | spa |
dc.relation.references | GaN Systems. (2020). Thermal Design for Packaged GaNPX® Devices. Obtenido de http://gansystems.com/wp-content/uploads/2020/11/GN002-Thermal-Design-for-GaNPX-Packaged-Devices-Rev-201127.pdf | spa |
dc.relation.references | Godignon, J. M. (2012). Wide BandGap Semiconductor Devices for Power Electrónics. Automatika Vol. 53 No. 2, 2012., 4. Obtenido de https://hrcak.srce.hr/84008 | spa |
dc.relation.references | Gutt, H.-J. a. (1998). Definition of power density as a general utilization factor of electrical machines. . Euro. Trans. Electr. Power, ( doi: 10.1002 / etep. 4450080414), 8: 305–308. | spa |
dc.relation.references | Infineon Technologies AG. (2020). Half-Bridge gate Drivers IC. Obtenido de https://www.infineon.com/cms/en/product/power/gate-driver-ics/ir2214ss/ | spa |
dc.relation.references | Keith Billings, T. M. (2011). Switchmode Power Supply (Handbook) (Vol. Thirtd Edition). United States: Mc Graw Hill. | spa |
dc.relation.references | Kimoto, T. (2014). Progress and Future Challenges of Silicon Carbide devices for integreted circuits. IEEE(978-1-4799-328-3-14), 1-2. | spa |
dc.relation.references | Muhammad H., R. (2011). Power Electronics Handbook, Thrid Edition. Oxford UK: Elsevier. | spa |
dc.relation.references | Ned Moham, T. U. (2009). Electrónica de Potencia: Convertidores, aplicaciones y Diseño (Vol. Tercera Edicion). Mexico: Mc Graw Hill. | spa |
dc.relation.references | Niehenke, 1. E. (2015). The Evolution of Transistors for Power Amplifiers: 1947 to Today. United States: IEEE . doi:978-1-4799-8275-2 | spa |
dc.relation.references | Ordonez Martin, E. G. (2018). Power Electronics and renewable Energy . Obtenido de University of British Columbia: https://www.martinordonez.com/publications | spa |
dc.relation.references | Pomona Electronics. (s.f.). Banana Jack, panel mount, tin-plated. Obtenido de https://www.pomonaelectronics.com/products/hardware/banana-jack-panel-mount-tin-plated | spa |
dc.relation.references | Rashid, M. (2011). Electronics Handbooh devices, circuits, and applications (Vol. Third Edition). Oxford UK: Elsevier Inc. | spa |
dc.relation.references | Raymond S. Pengelly, S. M. (2012). Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1. | spa |
dc.relation.references | Robert W. Erickson, D. M. (2004). Fundamentas of Power Electronics. New York: Kluwer Academic Plenum Publishers. | spa |
dc.relation.references | Rodríguez, J. M. (2011). Tecnologías de Semiconductores GaN y SiC. (M. d. España, Ed.) Sistema de observación y prospectiva tecnológica SOPT(08), Figuras de Merito Página 65. | spa |
dc.relation.references | ROHM Semiconductor. (2014). SiC Power Devices and Modules. Recuperado el 2019, de https://www.rohm.com/search/application-notes | spa |
dc.relation.references | ROHM Semiconductor. (2020). Silicon-carbide (SiC) MOSFET - SCT2080KE. Obtenido de https://www.rohm.com/products/sic-power-devices/sic-mosfet/sct2080ke-product | spa |
dc.relation.references | Sam, Y.-B. (2012). Modeling and Analysis of the Current Source Characteristics. IEEE. | spa |
dc.relation.references | Silicon Labs. (2020). Si822x/3x Automotive Isolated Gate Drivers. Obtenido de https://www.silabs.com/isolation/isolated-gate-drivers/si822x-3x-automotive-isolated-gate-drivers | spa |
dc.relation.references | Silicon Labs. (s.f.). AN486: High-Side Bootstrap Design Using. (Isolated Gate Drivers) Recuperado el 2020, de https://www.silabs.com/documents/public/application-notes/AN486.pdf | spa |
dc.relation.references | SINGH, U. K. (2008). Semiconductor Device Physics. Dordrecht Netherland: Springer. | spa |
dc.relation.references | T. Wu, C. C. (2009). Power loss analysis of grid connection photovoltaic systems. IEEE, International Conference on Power Electronics and Drive Systems (PEDS), 326-331. doi:10.1109/PEDS.2009.5385738 | spa |
dc.relation.references | TEKTRONIX INC. (12 de 2020). How Double Pulse Test Works. Obtenido de https://www.tek.com/power-efficiency/double-pulse-testing | spa |
dc.relation.references | Tsunenobu Kimoto, J. C. (2014). FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY. Solaris South Tower, Singapore: John Wiley & Sons Singapore Pte. Ltd. | spa |
dc.relation.references | Vishay. (2020). IRFP350 PRODUCT INFORMATION. Obtenido de https://www.vishay.com/product?docid=91225&tab=documents | spa |
dc.relation.references | VISHAY INTERTECHNOLOGY. (26 de 07 de 2013). AC Film Capacitors in Connection with the Mains. Obtenido de https://www.vishay.com/docs/28153/anaccaps.pdf | spa |
dc.relation.references | Wilmar Martinez, P. G. (2014). Efficiency Optimization of a Single Phase Boost Converter for electric Vehicle Applications. IEEE(978-1-4799-4032-5), 2.3. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
dc.subject.other | Materiales semiconductores | |
dc.subject.proposal | Convertidores DC-AC | spa |
dc.subject.proposal | Eficiencia en la conversión de Potencia | spa |
dc.subject.proposal | semiconductores de amplia banda prohibida WBG | spa |
dc.subject.proposal | Nitruro de Galio (GaN) | spa |
dc.subject.proposal | Carburo de Silicio (SiC) | spa |
dc.subject.proposal | DC-AC Converters | eng |
dc.subject.proposal | efficiency in power conversion | eng |
dc.subject.proposal | wide band gap semiconductors | eng |
dc.subject.proposal | Silicon Carbide (SiC) | eng |
dc.subject.proposal | Gallium Nitrate (GaN) | eng |
dc.subject.unesco | Semiconductor | |
dc.subject.unesco | Semiconductors | |
dc.title | Comparación de la eficiencia de los semiconductores Carburo de Silicio (SiC) y Nitruro de Galio (GaN) para transistores de potencia MOSFET, a través del diseño e implementación de un conversor DC-AC | spa |
dc.title.translated | Comparison of the efficiency of Silicon Carbide (SiC) and Gallium Nitride (GaN) semiconductors for power transistors MOSFET, through the design and implementation of a DC-AC converter | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 80758602.2021.pdf
- Tamaño:
- 9.06 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: