Comparación de la eficiencia de los semiconductores Carburo de Silicio (SiC) y Nitruro de Galio (GaN) para transistores de potencia MOSFET, a través del diseño e implementación de un conversor DC-AC

dc.contributor.advisorBaquero Rozo, Giovanni Aldemar
dc.contributor.authorTorres García, Edgar Daniel
dc.date.accessioned2021-06-21T16:38:10Z
dc.date.available2021-06-21T16:38:10Z
dc.date.issued2021-06-14
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractCon el propósito de mejorar la eficiencia energética de los convertidores de potencia utilizados en la generación, almacenaje y distribución de energía; en la presente investigación se analizan las ventajas de implementar en los convertidores de potencia transistores tipo MOSFETs construidos con materiales semiconductores de alto valor de energía en la banda prohibida (WBG), como son el Nitruro de Galio (GaN) y el Carburo de Silicio (SiC), con respecto al convencional material semiconductor de Silicio (Si), usando como plataforma de pruebas convertidores DC-AC. Para comparar su eficiencia en la conversión de potencia se realizó el diseño e implementación de tres prototipos de convertidores DC-AC de puente completo, uno para cada tipo de semiconductor, logrando alcanzar en ellos eficiencias superiores al 90% y obteniendo del análisis realizado una comparación del desempeño energético de los tres convertidores DC-AC a diferentes frecuencias de conmutación. (Tomado de la fuente)spa
dc.description.abstractTo improve the energy efficiency of the power converters used in the generation, storage, and distribution of energy, the present research aims to analyze the advantages of implementing in power converters MOSFET with semiconductor materials with Wide Band Gap (WGB), as are the Gallium Nitrate (GaN) and Silicon Carbide (SiC), versus the traditional semiconductor of Silicon (Si), using converters DC-AC as the test platform. To compare its power conversion efficiency, the design and implementation of three fullbridge DC-AC converter prototypes were carried out, one for each type of semiconductor, achieving reach in them efficiencies greater than 90% and obtaining from the analysis carried out a comparison of the energy performance of the three DC-AC converters at different switching frequencies. (Tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaElectrónica de Potenciaspa
dc.description.researchareaMateriales semiconductores WBGspa
dc.description.researchareaEnergias Renovablesspa
dc.format.extent201 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79657
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesA. Cervera, M. E.-Y. (March 2015). A High-Efficiency Resonant Switched Capacitor Converter With Continuous Conversion Ratio. IEEE Transactions on Power Electronics, vol. 30, no. 3(10.1109/TPEL.2014.2317758.), pp. 1373-1382.spa
dc.relation.referencesAmidon Inc. (s.f.). Ferritas material tipo 77. Obtenido de www.amidoncorp.com Baker, B. C. (2003). Noise source in applications using capacitive coupled isalated amplifiers. Burr-Brown / Application Bulletin, AB-047, 5,6.spa
dc.relation.referencesBaker, R. (2010). CMOS Circuit Design, Layout, and Simulation, Third Edition,. Wiley-IEEE. Recuperado el 6 de 1 de 2021, de http://worldcat.org/isbn/978-0-470-88132-3spa
dc.relation.referencesCooper, T. K. (2014). FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY. Singapure: John Wiley & Sons Singapore Pte. Ltd.spa
dc.relation.referencesE. Serban, C. P. (2019). Modulation Effects on Power-Loss and Leakage in three-phase Solar Inverter. IEEE TRANSACTIONS ON ENERGY CONVERSION, vol. 34, no. 1, pp. 339-350. doi:10.1109/TEC.2018.2879217spa
dc.relation.referencesEnergy Start. (2020). Program Requirements for Computers, Rev. 6.4.2. Recuperado el 2020, de https://www.energystar.gov/sites/default/files/specs//private/Computers_Program_Requirements.pdfspa
dc.relation.referencesFCT, M. . (2020). D-Sub High Density Connectors 9P MALE CRIMP DSUB . Obtenido de https://www.mouser.com/new/molex/fct-in-flight-connectors/spa
dc.relation.referencesGaN Systems. (2020). GS66508T_650V Enhancement Mode GaN Transistor. Obtenido de https://gansystems.com/gan-transistors/gs66508t/spa
dc.relation.referencesGaN Systems. (2020). Thermal Design for Packaged GaNPX® Devices. Obtenido de http://gansystems.com/wp-content/uploads/2020/11/GN002-Thermal-Design-for-GaNPX-Packaged-Devices-Rev-201127.pdfspa
dc.relation.referencesGodignon, J. M. (2012). Wide BandGap Semiconductor Devices for Power Electrónics. Automatika Vol. 53 No. 2, 2012., 4. Obtenido de https://hrcak.srce.hr/84008spa
dc.relation.referencesGutt, H.-J. a. (1998). Definition of power density as a general utilization factor of electrical machines. . Euro. Trans. Electr. Power, ( doi: 10.1002 / etep. 4450080414), 8: 305–308.spa
dc.relation.referencesInfineon Technologies AG. (2020). Half-Bridge gate Drivers IC. Obtenido de https://www.infineon.com/cms/en/product/power/gate-driver-ics/ir2214ss/spa
dc.relation.referencesKeith Billings, T. M. (2011). Switchmode Power Supply (Handbook) (Vol. Thirtd Edition). United States: Mc Graw Hill.spa
dc.relation.referencesKimoto, T. (2014). Progress and Future Challenges of Silicon Carbide devices for integreted circuits. IEEE(978-1-4799-328-3-14), 1-2.spa
dc.relation.referencesMuhammad H., R. (2011). Power Electronics Handbook, Thrid Edition. Oxford UK: Elsevier.spa
dc.relation.referencesNed Moham, T. U. (2009). Electrónica de Potencia: Convertidores, aplicaciones y Diseño (Vol. Tercera Edicion). Mexico: Mc Graw Hill.spa
dc.relation.referencesNiehenke, 1. E. (2015). The Evolution of Transistors for Power Amplifiers: 1947 to Today. United States: IEEE . doi:978-1-4799-8275-2spa
dc.relation.referencesOrdonez Martin, E. G. (2018). Power Electronics and renewable Energy . Obtenido de University of British Columbia: https://www.martinordonez.com/publicationsspa
dc.relation.referencesPomona Electronics. (s.f.). Banana Jack, panel mount, tin-plated. Obtenido de https://www.pomonaelectronics.com/products/hardware/banana-jack-panel-mount-tin-platedspa
dc.relation.referencesRashid, M. (2011). Electronics Handbooh devices, circuits, and applications (Vol. Third Edition). Oxford UK: Elsevier Inc.spa
dc.relation.referencesRaymond S. Pengelly, S. M. (2012). Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1.spa
dc.relation.referencesRobert W. Erickson, D. M. (2004). Fundamentas of Power Electronics. New York: Kluwer Academic Plenum Publishers.spa
dc.relation.referencesRodríguez, J. M. (2011). Tecnologías de Semiconductores GaN y SiC. (M. d. España, Ed.) Sistema de observación y prospectiva tecnológica SOPT(08), Figuras de Merito Página 65.spa
dc.relation.referencesROHM Semiconductor. (2014). SiC Power Devices and Modules. Recuperado el 2019, de https://www.rohm.com/search/application-notesspa
dc.relation.referencesROHM Semiconductor. (2020). Silicon-carbide (SiC) MOSFET - SCT2080KE. Obtenido de https://www.rohm.com/products/sic-power-devices/sic-mosfet/sct2080ke-productspa
dc.relation.referencesSam, Y.-B. (2012). Modeling and Analysis of the Current Source Characteristics. IEEE.spa
dc.relation.referencesSilicon Labs. (2020). Si822x/3x Automotive Isolated Gate Drivers. Obtenido de https://www.silabs.com/isolation/isolated-gate-drivers/si822x-3x-automotive-isolated-gate-driversspa
dc.relation.referencesSilicon Labs. (s.f.). AN486: High-Side Bootstrap Design Using. (Isolated Gate Drivers) Recuperado el 2020, de https://www.silabs.com/documents/public/application-notes/AN486.pdfspa
dc.relation.referencesSINGH, U. K. (2008). Semiconductor Device Physics. Dordrecht Netherland: Springer.spa
dc.relation.referencesT. Wu, C. C. (2009). Power loss analysis of grid connection photovoltaic systems. IEEE, International Conference on Power Electronics and Drive Systems (PEDS), 326-331. doi:10.1109/PEDS.2009.5385738spa
dc.relation.referencesTEKTRONIX INC. (12 de 2020). How Double Pulse Test Works. Obtenido de https://www.tek.com/power-efficiency/double-pulse-testingspa
dc.relation.referencesTsunenobu Kimoto, J. C. (2014). FUNDAMENTALS OF SILICON CARBIDE TECHNOLOGY. Solaris South Tower, Singapore: John Wiley & Sons Singapore Pte. Ltd.spa
dc.relation.referencesVishay. (2020). IRFP350 PRODUCT INFORMATION. Obtenido de https://www.vishay.com/product?docid=91225&tab=documentsspa
dc.relation.referencesVISHAY INTERTECHNOLOGY. (26 de 07 de 2013). AC Film Capacitors in Connection with the Mains. Obtenido de https://www.vishay.com/docs/28153/anaccaps.pdfspa
dc.relation.referencesWilmar Martinez, P. G. (2014). Efficiency Optimization of a Single Phase Boost Converter for electric Vehicle Applications. IEEE(978-1-4799-4032-5), 2.3.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.otherMateriales semiconductores
dc.subject.proposalConvertidores DC-ACspa
dc.subject.proposalEficiencia en la conversión de Potenciaspa
dc.subject.proposalsemiconductores de amplia banda prohibida WBGspa
dc.subject.proposalNitruro de Galio (GaN)spa
dc.subject.proposalCarburo de Silicio (SiC)spa
dc.subject.proposalDC-AC Converterseng
dc.subject.proposalefficiency in power conversioneng
dc.subject.proposalwide band gap semiconductorseng
dc.subject.proposalSilicon Carbide (SiC)eng
dc.subject.proposalGallium Nitrate (GaN)eng
dc.subject.unescoSemiconductor
dc.subject.unescoSemiconductors
dc.titleComparación de la eficiencia de los semiconductores Carburo de Silicio (SiC) y Nitruro de Galio (GaN) para transistores de potencia MOSFET, a través del diseño e implementación de un conversor DC-ACspa
dc.title.translatedComparison of the efficiency of Silicon Carbide (SiC) and Gallium Nitride (GaN) semiconductors for power transistors MOSFET, through the design and implementation of a DC-AC convertereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80758602.2021.pdf
Tamaño:
9.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: