Análisis de imágenes en platos de comida típicos de Antioquía: un enfoque de visión por computadora para el conteo de carbohidratos en personas con diabetes mellitus.
| dc.contributor.advisor | Ospina Arango, Juan David | |
| dc.contributor.advisor | Bolaños Martínez, Freddy | |
| dc.contributor.advisor | Lema Pérez, Laura | |
| dc.contributor.author | Jaramillo Tamayo, Andrés Felipe | |
| dc.date.accessioned | 2025-10-07T21:05:02Z | |
| dc.date.available | 2025-10-07T21:05:02Z | |
| dc.date.issued | 2025-08-18 | |
| dc.description | Ilustraciones | |
| dc.description.abstract | Esta investigación tuvo como objetivo implementar un sistema computacional basado en visión por computador para cuantificar gramos de carbohidratos en platos típicos de Antioquia, con el fin de apoyar el control en personas con diabetes tipo 1. Se construyó un banco de datos compuesto por 1.328 imágenes anotadas manualmente, representando 41 tipos de carbohidratos. Se entrenaron y evaluaron tres modelos de segmentación semántica multiclase, destacando la aplicación de transfer learning de UperNet con backbone ConvNeXt, el cual alcanzó un mIoU de validación de 0.758 y una precisión del 95.3 %. Para la conversión de área segmentada a gramos, se integró la metodología Look Up Table (LUT), que relaciona el porcentaje de cobertura del alimento respecto al plato con su masa estimada, usando el ATLAS como referencia. Esta aproximación presentó errores absolutos promedio entre el 35 % y el 45 %, validados mediante pesajes gravimétricos en tres platos reales. El sistema demostró mayor precisión en clases con alta representación visual y evidencia un alto potencial de aplicabilidad en contextos clínicos y educativos. Se recomienda ampliar la base de datos, mejorar la representación por clase y automatizar el proceso de etiquetado para aumentar la escalabilidad del sistema. (Texto tomado de la fuente) | spa |
| dc.description.abstract | This research aimed to implement a computer vision-based system to quantify grams of carbohydrates in traditional dishes from Antioquia, with the goal of supporting control in individuals with type 1 diabetes. A dataset of 1,328 manually annotated images was constructed, representing 41 types of carbohydrates. Three multiclass semantic segmentation models were trained and evaluated, highlighting the application of transfer learning through UperNet with a ConvNeXt backbone, which achieved a validation mIoU of 0.758 and an accuracy of 95.3%. For the conversion of segmented area to grams, the Look Up Table (LUT) methodology was integrated, which relates the percentage of food coverage on the plate to its estimated mass, using the ATLAS as a reference. This approach yielded average absolute errors ranging between 35% and 45%, validated through gravimetric measurements on three real plates. The system demonstrated higher precision for classes with strong visual representation and shows high potential for clinical and educational applications. It is recommended to expand the dataset, improve class representation, and automate the annotation process to enhance system scalability. | eng |
| dc.description.curriculararea | Ingeniería de Sistemas e Informática | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Maestría en Ingeniería - Analítica | |
| dc.description.researcharea | Ingeniería biomédica, Ingeniería analítica, Ingeniería química, Salud | |
| dc.description.technicalinfo | https://github.com/andresjaramillotamayo/m-health-carbs-cuantification Github donde vive todo el modelo | spa |
| dc.format.extent | 1 recurso en líne (86 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89017 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Minas | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | |
| dc.relation.references | Alfonsi, J. E., Choi, E. E. Y ., Arshad, T., Sammott, S. A. S., Pais, V ., Nguyen, C., Maguire, B. R., Stinson, J. N., & Palmert, M. R. (2020). Carbohydrate counting app using image recognition for youth with Type 1 diabetes: Pilot randomized control trial. JMIR MHealth and UHealth, 8(10). https://doi.org/10.2196/22074 | |
| dc.relation.references | Anthimopoulos, M., Dehais, J., Shevchik, S., Ransford, B. H., Duke, D., Diem, P., & Mougiakakou, S. (2015). Computer vision-based carbohydrate estimation for type 1 patients with diabetes using smartphones. Journal of Diabetes Science and Technology, 9(3), 507–515. https://doi.org/10.1177/1932296815580159 | |
| dc.relation.references | Anthimopoulos, M., Dehais, J., Shevchik, S., Ransford, B. H., Duke, D., Diem, P., & Mougiakakou, S. (2015). Computer vision-based carbohydrate estimation for type 1 patients with diabetes using smartphones. Journal of Diabetes Science and Technology, 9(3), 507–515. https://doi.org/10.1177/1932296815580159 | |
| dc.relation.references | Anthimopoulos, M., Dehais, J., Shevchik, S., Ransford, B. H., Duke, D., Diem, P., & Mougiakakou, S. (2015). Computer vision-based carbohydrate estimation for type 1 patients with diabetes using smartphones. Journal of Diabetes Science and Technology, 9(3), 507–515. https://doi.org/10.1177/1932296815580159 | |
| dc.relation.references | Caggia, A. (2021, December 27). We Tried the SNAQ Diabetes App. Diabetes Daily. https://www.diabetesdaily.com/blog/we-tried-the-snaq-diabetes-app-695058/ | |
| dc.relation.references | Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851 | |
| dc.relation.references | Chen, L.-C., Zhu, Y ., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation (arXiv preprint arXiv:1807.10221). arXiv. https://arxiv.org/abs/1807.10221 | |
| dc.relation.references | Cortes, C., & Vapnik, V . (1995). Support-vector networks. Machine learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018 | |
| dc.relation.references | Depaoli, R., Fernández, L. A., & Díaz, D. (s.f.). Optimización de la ecualización del histograma en el procesamiento de imágenes digitales. Universidad Nacional de La Matanza. Recuperado de https://sedici.unlp.edu.ar/bitstream/handle/10915/21082/51.pdf?sequence=1 | |
| dc.relation.references | Elngar, A. A. (2021). New calculation of calorie content and determining nutritional level from day-to-day intake of food using Image Processing. https://ssrn.com/abstract=4226672 | |
| dc.relation.references | GeeksforGeeks. (n.d.). Difference Between RGB, CMYK, HSV , and YIQ Color Models. GeeksforGeeks. Recuperado de https://www.geeksforgeeks.org/difference-between-rgb-cmyk-hsv-and-yiq-color-models/ | |
| dc.relation.references | Grupo de Investigación Alimentación y Nutrición Humana (GIANH), Escuela de Nutrición y Dietética, Universidad de Antioquia. (2023). Lista de Intercambios (5.ª ed.). Universidad de Antioquia. | |
| dc.relation.references | Huang, J., Ding, H., McBride, S., Ireland, D., & Karunanithi, M. (2015). Use of Smartphones to Estimate Carbohydrates in Foods for Diabetes Management. Studies in Health Technology and Informatics, 214, 121–127. https://doi.org/10.3233/978-1-61499-558-6-121 | |
| dc.relation.references | Institute of Electrical and Electronics Engineers. (n.d.). 2018 22nd International Computer Science and Engineering Conference (ICSEC). | |
| dc.relation.references | Istepanian, R. S. H., & Al-Anzi, T. (2018). m-Health 2.0: New perspectives on mobile health, machine learning and big data analytics. Methods, 151, 34–40. https://doi.org/10.1016/j.ymeth.2018.05.015. | |
| dc.relation.references | Jiang, L., Qiu, B., Liu, X., Huang, C., & Lin, K. (2020). DeepFood: Food Image Analysis and Dietary Assessment via Deep Model. IEEE Access, 8, 47477–47489. https://doi.org/10.1109/ACCESS.2020.2973625 | |
| dc.relation.references | Khan, Z. F., & Alotaibi, S. R. (2020). Applications of Artificial Intelligence and Big Data Analytics in m-Health: A Healthcare System Perspective. In Journal of Healthcare Engineering (V ol. 2020). Hindawi Limited. https://doi.org/10.1155/2020/8894694 | |
| dc.relation.references | Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W‑Y ., Dollár, P., & Girshick, R. (2023). Segment Anything (arXiv preprint arXiv:2304.02643). arXiv. https://doi.org/10.48550/arXiv.2304.02643 | |
| dc.relation.references | LightDestory. (n.d.). upernetconvnext‑finetuned‑segments‑food‑oct‑14 [Repositorio de modelo de aprendizaje automático]. Hugging Face. https://huggingface.co/LightDestory/upernetconvnext-finetuned-segments-food-oct-14 | |
| dc.relation.references | Liu, Y . C., Onthoni, D. D., Mohapatra, S., Irianti, D., & Sahoo, P. K. (2022). Deep- Learning-Assisted Multi-Dish Food Recognition Application for Dietary Intake Reporting. Electronics (Switzerland), 11(10). https://doi.org/10.3390/electronics11101626 | |
| dc.relation.references | Liu, Z., Mao, H., Wu, C. Y ., Feichtenhofer, C., Darrell, T., & Xie, S. (2022). A ConvNet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),11976–11986. https://openaccess.thecvf.com/content/CVPR2022/html/Liu_A_ConvNet_for_the_2020s_CVPR_ 2022_paper.html | |
| dc.relation.references | Nosotros - Kutai. (2022, September 14). Kutai - https://kutai.co/nosotros/ | |
| dc.relation.references | MacQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281–297 | |
| dc.relation.references | Mamani Urrutia, V . A., Durán Galdo, R. F., & Salvatierra Ruiz, R. V . (2022). Atlas fotográfico de alimentos peruanos para evaluar el consumo alimentario de niños de 6 a 12 meses de edad: Una primera aproximación desde la investigación (1.ª ed. digital). Universidad Científica del Sur. https://fondoeditorial.cientifica.edu.pe/ | |
| dc.relation.references | Merchant, K., & Pande, Y . (2019). ConvFood: A CNN-Based Food Recognition Mobile Application for Obese and Diabetic Patients. Advances in Intelligent Systems and Computing, 882, 493–502. https://doi.org/10.1007/978-981-13-5953-8_41 | |
| dc.relation.references | Microsoft. (n.d.). beit-base-patch16-224 [Repositorio de modelo de aprendizaje automático]. Hugging Face. https://huggingface.co/microsoft/beit-base-patch16-224 | |
| dc.relation.references | Ministerio de Salud y Protección Social. (2019). En el Día Mundial de la Diabetes: MinSalud promueve prácticas de vida saludable. Minsalud.gov.co. https://www.minsalud.gov.co/Paginas/En-el-Dia-Mundial-de-la-Diabetes-MinSalud-promueve-pra ticas-de-vida-saludable.aspx. | |
| dc.relation.references | Minh V o, L., Wang, W., Liu, J., & Li, X. (2021). V olume estimation from single-view images using deep learning and computer vision techniques. International Conference on Computer Vision (ICCV). Recuperado de https://sites.google.com/view/cvpr-metafood-2024/overview?authuser=0 | |
| dc.relation.references | Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076 | |
| dc.relation.references | Perez, S. (2015, February 4). Under Armour Snatches Up Health And Fitness Trackers Endomondo And MyFitnessPal | TechCrunch. TechCrunch. https://techcrunch.com/2015/02/04/athletic-apparel-company-under-armour-snatches-up-health-an d-fitness-trackers-endomondo-and-myfitnesspal/ | |
| dc.relation.references | Rhyner, D., Loher, H., Dehais, J., Anthimopoulos, M., Shevchik, S., Botwey, R. H., Duke, D., Stettler, C., Diem, P., & Mougiakakou, S. (2016). Carbohydrate estimation by a mobile phone-based system versus self-estimations of individuals with type 1 diabetes mellitus: A comparative study. Journal of Medical Internet Research, 18(5). https://doi.org/10.2196/jmir.5567 | |
| dc.relation.references | Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019a). Global and regional diabetes prevalence estimates for 2019 and projections for2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157. https://doi.org/10.1016/j.diabres.2019.107843 | |
| dc.relation.references | Saavedra Campos, R. (2021). Aplicación de métodos de procesado digital de imagen para la detección de objetos en entornos industriales (Trabajo de fin de grado). Universidade da Coruña. Recuperado de https://ruc.udc.es/dspace/bitstream/handle/2183/31863/SaavedraCampos_Raul_TFG_2021.pdf?se quence=3 | |
| dc.relation.references | Site, A., Nurmi, J., & Lohan, E. S. (2021). Systematic review on machine-learning algorithms used in wearable-based eHealth data analysis. IEEE Access, 9, 112221–112235. https://doi.org/10.1109/ACCESS.2021.3103268 | |
| dc.relation.references | Wang, L., & Alexander, C. A. (2020). Big data analytics in medical engineering and healthcare: methods, advances and challenges. In Journal of Medical Engineering and Technology (V ol. 44, Issue 6, pp. 267––283). Taylor and Francis Ltd. https://doi.org/10.1080/03091902.2020.1769758 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas | |
| dc.subject.proposal | Segmentación semántica | spa |
| dc.subject.proposal | Visión por computador | spa |
| dc.subject.proposal | Inteligencia artificial | spa |
| dc.subject.proposal | M-health | spa |
| dc.subject.proposal | Aprendizaje automático | spa |
| dc.subject.proposal | Estimación de carbohidratos | spa |
| dc.subject.proposal | Diabetes tipo 1 | spa |
| dc.subject.proposal | Semantic segmentation | eng |
| dc.subject.proposal | Computer vision | eng |
| dc.subject.proposal | Artificial intelligence | eng |
| dc.subject.proposal | M-health | eng |
| dc.subject.proposal | Machine learning | eng |
| dc.subject.proposal | Carbohydrate estimation | eng |
| dc.subject.proposal | Type 1 diabetes | eng |
| dc.subject.wikidata | Segmentación | |
| dc.subject.wikidata | Inteligencia artificial | |
| dc.subject.wikidata | Aprendizaje automático | |
| dc.subject.wikidata | Carbohidratos | |
| dc.title | Análisis de imágenes en platos de comida típicos de Antioquía: un enfoque de visión por computadora para el conteo de carbohidratos en personas con diabetes mellitus. | spa |
| dc.title.translated | Image analysis of typical Antioquia dishes: a computer vision approach for carbohydrate counting in people with diabetes mellitus. | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TdeG_MA.ing.Analitica_AndresJaramillo_m_health_1037663920.pdf
- Tamaño:
- 15.82 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

