A comparison of exponential smoothing and neural networks in time series prediction

dc.contributor.authorVelásquez Henao, Juan Davidspa
dc.contributor.authorZambrano Pérez, Cristian Olmedospa
dc.contributor.authorFranco Cardona, Carlos Jaimespa
dc.date.accessioned2019-07-03T17:23:45Zspa
dc.date.available2019-07-03T17:23:45Zspa
dc.date.issued2013spa
dc.description.abstractIn this article, we compare the accuracy of the forecasts for the exponential smoothing (ES) approach and the radial basis function neural networks (RBFNN) when three nonlinear time series with trend and seasonal cycle are forecasted. In addition, we consider the recommendations of preprocessing by eliminating the trend and seasonal cycle using simple and seasonal differentiation. Finally, we use forecast combining for determining if there is complementary information between the forecasts of the individual models. Our numerical evidence supports the following conclusions: ES models have a better fi t but lower predictive power than the RBFNN; detrending and deseasonality allows the RBFNN to fi t and forecast with more accuracy than the RBFNN trained with the original dataset; there is no evidence of information complementarity in the forecasts such that the methodology of forecasts combination is not able to predict with more accuracy than the RBFNN and ES methodologies.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/38633/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/74156
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia Sede Medellínspa
dc.relationhttp://revistas.unal.edu.co/index.php/dyna/article/view/41564spa
dc.relation.ispartofUniversidad Nacional de Colombia Revistas electrónicas UN Dynaspa
dc.relation.ispartofDynaspa
dc.relation.ispartofseriesDYNA; Vol. 80, núm. 182 (2013); 66-73 Dyna; Vol. 80, núm. 182 (2013); 66-73 2346-2183 0012-7353
dc.relation.referencesVelásquez Henao, Juan David and Zambrano Pérez, Cristian Olmedo and Franco Cardona, Carlos Jaime (2013) A comparison of exponential smoothing and neural networks in time series prediction. DYNA; Vol. 80, núm. 182 (2013); 66-73 Dyna; Vol. 80, núm. 182 (2013); 66-73 2346-2183 0012-7353 .spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalForecasts combinationspa
dc.subject.proposalnonlinear modelsspa
dc.subject.proposalartifi cial neural networksspa
dc.subject.proposalnonlinear time seriesspa
dc.titleA comparison of exponential smoothing and neural networks in time series predictionspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
41564-188428-1-PB.pdf
Tamaño:
538.63 KB
Formato:
Adobe Portable Document Format

Colecciones