Producción de oligosacáridos de manosa (MOS) a partir de semillas de naidí usando enzima comercial inmovilizada

dc.contributor.advisorOrrego Alzate, Carlos Eduardo
dc.contributor.authorMurillo Franco, Sarha Lucia
dc.contributor.cvlacSarha Lucia Murillo Franco [0001726765]spa
dc.contributor.googlescholarMurillo Franco, Sarha Lucia [ZuyU6S8AAAAJ]spa
dc.contributor.orcidSarha Lucia Murillo Franco [0000-0002-1642-8779]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Sarha-Lucia-Murillo-Francospa
dc.contributor.researchgroupGAF-Grupo de Alimetos Frutalesspa
dc.contributor.scopusMurillo-Franco, Sarha Lucia [58074141000]spa
dc.date.accessioned2024-01-26T17:47:20Z
dc.date.available2024-01-26T17:47:20Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractEn este estudio, se constató a través de análisis como FTIR, XRD y otros métodos fisicoquímicos que las semillas de açaí o naidí (Euterpe oleracea) -SN- presentan un alto contenido de hemicelulosa y manano. Para producir manano-oligosacáridos (MOS) a partir de estas semillas trituradas, se empleó un coctel enzimático con mananasa como actividad principal inmovilizada en una matriz de biopolímero compuesta por aceite de pino epoxidado y fibra de cápsula de achiote, dando como resultado un material enriquecido con MOS. La enzima inmovilizada fue preparada y caracterizada a través de técnicas como FTIR y SEM, alcanzando una eficiencia de inmovilización que superó el 75% y una notable estabilidad operativa de al menos 10 ciclos. La idoneidad de las semillas de naidí como materia prima para la generación de MOS se confirmó mediante pruebas de hidrólisis enzimática, tanto en fases homogéneas como heterogéneas. Estas pruebas tenían como objetivo identificar las condiciones óptimas de pH y temperatura para la producción de MOS, minimizando la formación de manosa. En la fase homogénea, se obtuvieron resultados favorables a 37°C, 36 U/g, un tiempo de reacción menor a 3 horas y un pH de 8.5, mientras que en la fase heterogénea se lograron a 59°C, 17.5 U/g, con un tiempo de reacción de 2.8 horas y un pH de 7.9. Se diseñaron configuraciones de procesos específicas para producir un pienso utilizando semillas hidrolizadas enriquecidas con MOS. Estas configuraciones se basaron en datos experimentales y fueron evaluadas con herramientas como SuperPro Designer V9.5 para el análisis tecnoeconómico y SimaPro para la evaluación ambiental. El análisis preliminar comparativo concluyó que el sistema biopolímero-mananasa es un eficiente biocatalizador para transformar de manera sostenible el SN de frutos cultivados en Chocó en un material rico en MOS, reduciendo así los impactos ambientales asociados a la etapa de hidrólisis y mostrando viabilidad económica (Texto tomado de la fuente)spa
dc.description.abstractIn this study, it was confirmed through analyses such as FTIR, XRD, and other physicochemical methods that açaí or naidí (Euterpe oleracea) seeds - SN - exhibit a high content of hemicellulose and mannan. To produce mannan-oligosaccharides (MOS) from these crushed seeds, an enzymatic cocktail with mannanase as the principal immobilized activity was employed in a biopolymer matrix composed of epoxidized pine oil and annatto capsule fiber, resulting in a material enriched with MOS. The immobilized enzyme was prepared and characterized using techniques like FT-IR and SEM, achieving an immobilization efficiency exceeding 75% and notable operational stability for at least 10 cycles. The suitability of naidí seeds as a raw material for MOS generation was confirmed through enzymatic hydrolysis tests, both in homogeneous and heterogeneous phases. These tests aimed to identify the optimal pH and temperature conditions for MOS production, minimizing the formation of mannose. In the homogeneous phase, favorable results were obtained at 37°C, 36 U/g, a reaction time of fewer than 3 hours, and a pH of 8.5, while in the heterogeneous phase, these conditions were achieved at 59°C, 17.5 U/g, with a reaction time of 2.8 hours and a pH of 7.9. Specific process configurations were designed to produce feed using hydrolyzed seeds enriched with MOS. These configurations were based on experimental data and evaluated using tools like SuperPro Designer V9.5 for techno-economic analysis and SimaPro for environmental assessment. The preliminary comparative analysis concluded that the biopolymer-mannanase system is an efficient biocatalyst for sustainably converting SN from fruits grown in Chocó into a material rich in MOS, thereby reducing the environmental impacts associated with the hydrolysis stage and demonstrating economic viability.eng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaValorización de residuos provenientes de frutalesspa
dc.format.extentxv, 123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85465
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] K. K. de L. Yamaguchi, L. F. R. Pereira, C. V. Lamarão, E. S. Lima, and V. F. da Veiga-Junior, “Amazon acai: Chemistry and biological activities: A review,” Food Chemistry, vol. 179, pp. 137–151, Jul. 2015, doi: 10.1016/j.foodchem.2015.01.055.spa
dc.relation.references[2] M. K. Sato, H. V. de Lima, A. N. Costa, S. Rodrigues, A. J. S. Pedroso, and C. M. B. de Freitas Maia, “Biochar from Acai agroindustry waste: Study of pyrolysis conditions,” Waste Management, vol. 96, pp. 158–167, Aug. 2019, doi: 10.1016/j.wasman.2019.07.022.spa
dc.relation.references[3] F. W. Maciel-Silva, S. I. Mussatto, and T. Forster-Carneiro, “Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues,” Journal of Cleaner Production, vol. 228, pp. 1131–1142, Aug. 2019, doi: 10.1016/j.jclepro.2019.04.362.spa
dc.relation.references[4] A. F. Monteiro, I. S. Miguez, J. P. R. B. Silva, and A. S. da Silva, “High concentration and yield production of mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis,” Sci Rep, vol. 9, no. 1, p. 10939, Jul. 2019, doi: 10.1038/s41598-019-47401-3.spa
dc.relation.references[5] A. S. Anderson, L. Mkabayi, S. Malgas, N. Kango, and B. I. Pletschke, “Covalent Immobilisation of an Aspergillus niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal,” Agronomy, vol. 12, no. 12, p. 2993, Nov. 2022, doi: 10.3390/agronomy12122993.spa
dc.relation.references[6] U. K. Jana, R. K. Suryawanshi, B. P. Prajapati, and N. Kango, “Prebiotic mannooligosaccharides: Synthesis, characterization and bioactive properties,” Food Chemistry, vol. 342, p. 128328, Apr. 2021, doi: 10.1016/j.foodchem.2020.128328.spa
dc.relation.references[7] N. Kango, U. K. Jana, R. Choukade, and S. Nath, “Advances in prebiotic mannooligosaccharides,” Current Opinion in Food Science, vol. 47, p. 100883, Oct. 2022, doi: 10.1016/j.cofs.2022.100883.spa
dc.relation.references[8] M. Blibech, F. Chaari, F. Bhiri, I. Dammak, R. E. Ghorbel, and S. E. Chaabouni, “Production of manno-oligosaccharides from locust bean gum using immobilized Penicillium occitanis mannanase,” Journal of Molecular Catalysis B: Enzymatic, p. S1381117711002232, Aug. 2011, doi: 10.1016/j.molcatb.2011.08.007.spa
dc.relation.references[9] FONTAGRO, “Productividad y Competitividad Frutícola Andina.” Accessed: Nov. 02, 2023. [Online]. Available: https://www.fontagro.org/new/proyectos/productividad-y-competitividad-fruticola-andina/esspa
dc.relation.references[10] Centro de Investigación de Agricultura y Biotecnología- CIAB. Dosquebradas. Risaralda, Colombia, S. P. Montenegro-Gómez, M. Rosales-Escarria, and Universidad del Pácífico. Buenaventura, Colombia, “Fruto de naidi ( Euterpe oleracea ) y su perspectiva en la seguridad alimentaria colombiana,” ENTRAMADO, vol. 11, no. 2, pp. 200–207, 2015, doi: 10.18041/entramado.2015v11n2.22238.spa
dc.relation.references[11] Consultores en Estrategia y and Desarrollo S.A.S, “PLAN DE NEGOCIOS AÇAÍ (Euterpe oleracea,” Bogotá (Colombia, Reporte de Consultoría Contrato No AID-514-0-15-0019, Oct. 2015. Accessed: Mar. 28, 2023. [Online]. Available: https://pdf.usaid.gov/pdf_docs/PA00M957.pdfspa
dc.relation.references[12] J. Huamán del Castillo and E. Sánchez Díaz, “Plan de negocios para el acopio e industrialización en pulpa congelada de huasaí en la región Loreto al mercado de Estados Unidos de América,” 2019, Accessed: Mar. 28, 2023. [Online]. Available: https://repositorio.esan.edu.pe///handle/20.500.12640/1794spa
dc.relation.references[13] P. S. Melo, M. M. Selani, R. H. Gonçalves, J. de O. Paulino, A. P. Massarioli, and S. M. de Alencar, “Açaí seeds: An unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds,” Industrial Crops and Products, vol. 161, p. 113204, Mar. 2021, doi: 10.1016/j.indcrop.2020.113204.spa
dc.relation.references[14] N. M. Delzenne, “Oligosaccharides: state of the art,” Proc. Nutr. Soc., vol. 62, no. 1, pp. 177–182, Feb. 2003, doi: 10.1079/PNS2002225.spa
dc.relation.references[15] V. Narisetty et al., “Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective,” Bioresource Technology, vol. 346, p. 126590, Feb. 2022, doi: 10.1016/j.biortech.2021.126590.spa
dc.relation.references[16] D. O. Otieno and B. K. Ahring, “A thermochemical pretreatment process to produce xylooligosaccharides (XOS), arabinooligosaccharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses,” Bioresource Technology, vol. 112, pp. 285–292, May 2012, doi: 10.1016/j.biortech.2012.01.162.spa
dc.relation.references[17] “A Study of Saccharomyces cerevisiae Cell Wall Glucans - Kwiatkowski - 2009 - Journal of the Institute of Brewing - Wiley Online Library.” Accessed: Mar. 29, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/j.2050-0416.2009.tb00361.xspa
dc.relation.references[18] M. Faseleh Jahromi, J. B. Liang, N. Abdullah, Y. M. Goh, R. Ebrahimi, and P. Shokryazdan, “Extraction and Characterization of Oligosaccharides from Palm Kernel Cake as Prebiotic,” BioResources, vol. 11, no. 1, pp. 674–695, Nov. 2015, doi: 10.15376/biores.11.1.674-695.spa
dc.relation.references[19] M. K. D. Rambo, F. L. Schmidt, and M. M. C. Ferreira, “Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities,” Talanta, vol. 144, pp. 696–703, Nov. 2015, doi: 10.1016/j.talanta.2015.06.045.spa
dc.relation.references[20] B. Sundu, U. Hatta, and A. S. Chaudhry, “Potential use of beta-mannan from copra meal as a feed additive for broilers,” World’s Poultry Science Journal, vol. 68, no. 4, pp. 707–716, Dec. 2012, doi: 10.1017/S0043933912000839.spa
dc.relation.references[21] T. Jooste, M. P. García-Aparicio, M. Brienzo, W. H. van Zyl, and J. F. Görgens, “Enzymatic Hydrolysis of Spent Coffee Ground,” Appl Biochem Biotechnol, vol. 169, no. 8, pp. 2248–2262, Apr. 2013, doi: 10.1007/s12010-013-0134-1.spa
dc.relation.references[22] M. Ståhl, K. Nieminen, and H. Sixta, “Hydrothermolysis of pine wood,” Biomass and Bioenergy, vol. 109, pp. 100–113, Feb. 2018, doi: 10.1016/j.biombioe.2017.12.006.spa
dc.relation.references[23] A. K. Chandel, S. S. da Silva, W. Carvalho, and O. V. Singh, “Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products,” J. Chem. Technol. Biotechnol., vol. 87, no. 1, pp. 11–20, Jan. 2012, doi: 10.1002/jctb.2742.spa
dc.relation.references[24] S. Malgas, J. S. van Dyk, and B. I. Pletschke, “A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase,” World J Microbiol Biotechnol, vol. 31, no. 8, pp. 1167–1175, Aug. 2015, doi: 10.1007/s11274-015-1878-2.spa
dc.relation.references[25] M. Faustino, J. Durão, C. F. Pereira, M. E. Pintado, and A. P. Carvalho, “Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae – A sustainable source of functional ingredients,” Carbohydrate Polymers, vol. 272, p. 118467, Nov. 2021, doi: 10.1016/j.carbpol.2021.118467.spa
dc.relation.references[26] C. Wongsiridetchai et al., “Alkaline pretreatment of spent coffee grounds for oligosaccharides production by mannanase from Bacillus sp. GA2(1),” Agriculture and Natural Resources, vol. 52, no. 3, pp. 222–227, Jun. 2018, doi: 10.1016/j.anres.2018.09.012.spa
dc.relation.references[27] B. Bello et al., “Evaluation of the effect of soluble polysaccharides of palm kernel cake as a potential prebiotic on the growth of probiotics,” 3 Biotech, vol. 8, no. 8, p. 346, Aug. 2018, doi: 10.1007/s13205-018-1362-4.spa
dc.relation.references[28] M. E. Gibril et al., “Physicochemical characterization and future beneficiation routes of wild fruit waste (Hyphaene Thebaica seed) as a source to extract mannan,” Journal of Cleaner Production, vol. 267, p. 121949, Sep. 2020, doi: 10.1016/j.jclepro.2020.121949.spa
dc.relation.references[29] Z. Li, M. Xiao, L. Lu, and Y. Li, “Production of non-monosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells,” Process Biochemistry, vol. 43, no. 8, pp. 896–899, Aug. 2008, doi: 10.1016/j.procbio.2008.04.016.spa
dc.relation.references[30] M. Faseleh Jahromi, J. B. Liang, N. Abdullah, Y. M. Goh, R. Ebrahimi, and P. Shokryazdan, “Extraction and Characterization of Oligosaccharides from Palm Kernel Cake as Prebiotic,” BioResources, vol. 11, no. 1, pp. 674–695, Nov. 2015, doi: 10.15376/biores.11.1.674-695.spa
dc.relation.references[31] W. Xu et al., “Production of manno-oligosaccharide from Gleditsia microphylla galactomannan using acetic acid and ferrous chloride,” Food Chemistry, vol. 346, p. 128844, Jun. 2021, doi: 10.1016/j.foodchem.2020.128844.spa
dc.relation.references[32] R. J. A. Chato, C. C. R. Cuevas, J. S. N. Tangpuz, L. K. Cabatingan, A. W. Go, and Y.-H. Ju, “Dilute acid hydrolysis as a method of producing sugar-rich hydrolysates and lipid-dense cake residues from copra cake,” Journal of Environmental Chemical Engineering, vol. 6, no. 5, pp. 5693–5705, Oct. 2018, doi: 10.1016/j.jece.2018.08.072.spa
dc.relation.references[34] Y. Li, P. Yi, J. Liu, Q. Yan, and Z. Jiang, “High-level expression of an engineered β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake,” Bioresource Technology, vol. 256, pp. 30–37, May 2018, doi: 10.1016/j.biortech.2018.01.138.spa
dc.relation.references[35] Q. A. Nguyen, E. J. Cho, D.-S. Lee, and H.-J. Bae, “Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds,” Bioresource Technology, vol. 272, pp. 209–216, Jan. 2019, doi: 10.1016/j.biortech.2018.10.018.spa
dc.relation.references[36] V. Rigual, T. M. Santos, J. C. Domínguez, M. V. Alonso, M. Oliet, and F. Rodriguez, “Evaluation of hardwood and softwood fractionation using autohydrolysis and ionic liquid microwave pretreatment,” Biomass and Bioenergy, vol. 117, pp. 190–197, Oct. 2018, doi: 10.1016/j.biombioe.2018.07.014.spa
dc.relation.references[37] C. Zhou, Y. Xue, and Y. Ma, “Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10,” Microb Cell Fact, vol. 17, no. 1, p. 124, Dec. 2018, doi: 10.1186/s12934-018-0973-0.spa
dc.relation.references[38] Z. Liu et al., “High-level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in mannooligosaccharide preparation,” Bioresource Technology, vol. 295, p. 122257, Jan. 2020, doi: 10.1016/j.biortech.2019.122257.spa
dc.relation.references[39] R. Kumar Suryawanshi and N. Kango, “Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential,” Food Chemistry, vol. 334, p. 127428, Jan. 2021, doi: 10.1016/j.foodchem.2020.127428.spa
dc.relation.references[40] A. Purnawan, Y. Yopi, and T. T. Irawadi, “Production of Manooligomannan from Palm Kernel Cake by Mannanase Produced from Streptomyces Cyaenus,” J Bio Bio Edu, vol. 9, no. 1, p. 73, Mar. 2017, doi: 10.15294/biosaintifika.v9i1.9201.spa
dc.relation.references[41] R. Zhang et al., “Enzymatic preparation of manno-oligosaccharides from locust bean gum and palm kernel cake, and investigations into its prebiotic activity,” Electronic Journal of Biotechnology, vol. 49, pp. 64–71, Jan. 2021, doi: 10.1016/j.ejbt.2020.11.001.spa
dc.relation.references[42] W. Xu, M. Han, W. Zhang, M. Tang, F. Zhang, and J. Jiang, “Efficient and green production of manno-oligosaccharides from Gleditsia microphylla galactomannans using CO2 and solid acid in subcritical water,” LWT, vol. 156, p. 113019, Feb. 2022, doi: 10.1016/j.lwt.2021.113019.spa
dc.relation.references[43] V. Singh, R. Sethi, A. Tewari, V. Srivastava, and R. Sanghi, “Hydrolysis of plant seed gums by microwave irradiation,” Carbohydrate Polymers, vol. 54, no. 4, pp. 523–525, Dec. 2003, doi: 10.1016/j.carbpol.2003.05.003.spa
dc.relation.references[44] P. Khuwijitjaru, A. Pokpong, K. Klinchongkon, and S. Adachi, “Production of oligosaccharides from coconut meal by subcritical water treatment,” Int J Food Sci Technol, vol. 49, no. 8, pp. 1946–1952, Aug. 2014, doi: 10.1111/ijfs.12524.spa
dc.relation.references[45] C. P. Passos, A. S. P. Moreira, M. R. M. Domingues, D. V. Evtuguin, and M. A. Coimbra, “Sequential microwave superheated water extraction of mannans from spent coffee grounds,” Carbohydrate Polymers, vol. 103, pp. 333–338, Mar. 2014, doi: 10.1016/j.carbpol.2013.12.053.spa
dc.relation.references[46] P. Prawitwong, S. Takigami, and G. O. Phillips, “Effects of γ-irradiation on molar mass and properties of Konjac mannan,” Food Hydrocolloids, vol. 21, no. 8, pp. 1362–1367, Dec. 2007, doi: 10.1016/j.foodhyd.2006.10.015.spa
dc.relation.references[47] B. Srinivasan, “A guide to the Michaelis–Menten equation: steady state and beyond,” The FEBS Journal, vol. 289, no. 20, pp. 6086–6098, 2022, doi: 10.1111/febs.16124.spa
dc.relation.references[48] “Information on EC 3.2.1.78 - mannan endo-1,4-beta-mannosidase - BRENDA Enzyme Database.” Accessed: Dec. 02, 2023. [Online]. Available: https://www.brenda-enzymes.org/enzyme.php?ecno=3.2.1.78#KM%20VALUE%20[mM]spa
dc.relation.references[49] W. H. van Zyl, S. H. Rose, K. Trollope, and J. F. Görgens, “Fungal β-mannanases: Mannan hydrolysis, heterologous production and biotechnological applications,” Process Biochemistry, vol. 45, no. 8, pp. 1203–1213, Aug. 2010, doi: 10.1016/j.procbio.2010.05.011.spa
dc.relation.references[50] C. Rocha, M. P. Gonçalves, and J. A. Teixeira, “Immobilization of trypsin on spent grains for whey protein hydrolysis,” Process Biochemistry, vol. 46, no. 2, pp. 505–511, Feb. 2011, doi: 10.1016/j.procbio.2010.10.001.spa
dc.relation.references[51] S. Datta, L. R. Christena, and Y. R. S. Rajaram, “Enzyme immobilization: an overview on techniques and support materials,” 3 Biotech, vol. 3, no. 1, pp. 1–9, Feb. 2013, doi: 10.1007/s13205-012-0071-7.spa
dc.relation.references[52] M. Asgher, M. Shahid, S. Kamal, and H. M. N. Iqbal, “Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology,” Journal of Molecular Catalysis B: Enzymatic, vol. 101, pp. 56–66, Mar. 2014, doi: 10.1016/j.molcatb.2013.12.016.spa
dc.relation.references[53] A. A. Homaei, R. Sariri, F. Vianello, and R. Stevanato, “Enzyme immobilization: an update,” J Chem Biol, vol. 6, no. 4, pp. 185–205, Oct. 2013, doi: 10.1007/s12154-013-0102-9.spa
dc.relation.references[54] Y. A. Rodríguez-Restrepo and C. E. Orrego, “Immobilization of enzymes and cells on lignocellulosic materials,” Environ Chem Lett, vol. 18, no. 3, pp. 787–806, May 2020, doi: 10.1007/s10311-020-00988-w.spa
dc.relation.references[55] D. C. Montgomery, Diseño y análisis de experimentos. Limusa Wiley, 2005.spa
dc.relation.references[56] P. M. Doran, “Chapter 1 - Bioprocess Development: An Interdisciplinary Challenge,” in Bioprocess Engineering Principles (Second Edition), P. M. Doran, Ed., London: Academic Press, 2013, pp. 3–11. doi: 10.1016/B978-0-12-220851-5.00001-0.spa
dc.relation.references[57] J. C. Solarte-Toro and C. A. Cardona Alzate, “Sustainability of Biorefineries: Challenges and Perspectives,” Energies, vol. 16, no. 9, Art. no. 9, Jan. 2023, doi: 10.3390/en16093786.spa
dc.relation.references[58] M. Palmeros Parada et al., “OSID : opening the conceptual design of biobased processes to a context‐sensitive sustainability analysis,” Biofuels, Bioprod. Bioref., vol. 15, no. 4, pp. 961–972, Jul. 2021, doi: 10.1002/bbb.2216.spa
dc.relation.references[59] S. I. Mussatto, J. Moncada, I. C. Roberto, and C. A. Cardona, “Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case,” Bioresource Technology, vol. 148, pp. 302–310, Nov. 2013, doi: 10.1016/j.biortech.2013.08.046.spa
dc.relation.references[60] Y. Liu et al., “Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review,” International Journal of Biological Macromolecules, vol. 173, pp. 445–456, Mar. 2021, doi: 10.1016/j.ijbiomac.2021.01.125.spa
dc.relation.references[61] Y. A. ALVAREZ SIERRA, “Protocolo de Uso y Aprovechamiento del Asai en la Actividad Artesanal,” p. 33, Mar. 2015.spa
dc.relation.references[62] A. de M. Barbosa, V. S. M. Rebelo, L. G. Martorano, and V. M. Giacon, “Caracterização de partículas de açaí visando seu potencial uso na construção civil,” Matéria (Rio J.), vol. 24, no. 3, p. e12435, 2019, doi: 10.1590/s1517-707620190003.0750.spa
dc.relation.references[63] L. A. de Sousa Ribeiro, G. P. Thim, M. O. Alvarez-Mendez, A. dos Reis Coutinho, N. P. de Moraes, and L. A. Rodrigues, “Preparation, characterization, and application of low-cost açaí seed-based activated carbon for phenol adsorption,” Int J Environ Res, vol. 12, no. 6, pp. 755–764, Dec. 2018, doi: 10.1007/s41742-018-0128-5.spa
dc.relation.references[64] G. R. Martins et al., “Chemical characterization, antioxidant and antimicrobial activities of açaí seed (Euterpe oleracea Mart.) extracts containing A- and B-type procyanidins,” LWT, vol. 132, p. 109830, Oct. 2020, doi: 10.1016/j.lwt.2020.109830.spa
dc.relation.references[65] G. R. Martins et al., “Açaí (Euterpe oleracea Mart.) Seed Extracts from Different Varieties: A Source of Proanthocyanidins and Eco-Friendly Corrosion Inhibition Activity,” Molecules, vol. 26, no. 11, p. 3433, Jun. 2021, doi: 10.3390/molecules26113433.spa
dc.relation.references[66] A. C. Lima, D. Silva, V. Silva, M. Godoy, M. Cammarota, and M. Gutarra, “β-Mannanase production by Penicillium citrinum through solid-state fermentation using açaí residual biomass (Euterpe oleracea),” Journal of Chemical Technology & Biotechnology, vol. 96, no. 10, pp. 2744–2754, 2021, doi: 10.1002/jctb.6818.spa
dc.relation.references[67] J. H. A. Rocha et al., “Circular Bioeconomy in the Amazon Rainforest: Evaluation of Açaí Seed Ash as a Regional Solution for Partial Cement Replacement,” Sustainability, vol. 14, no. 21, p. 14436, Nov. 2022, doi: 10.3390/su142114436.spa
dc.relation.references[68] F. T. A. Jorge, A. S. da Silva, and G. V. Brigagão, “Açaí waste valorization via mannose and polyphenols production: techno-economic and environmental assessment,” Biomass Conv. Bioref., Apr. 2022, doi: 10.1007/s13399-022-02681-0.spa
dc.relation.references[69] N. Salgado-Aristizabal, T. Agudelo-Patiño, S. Ospina-Corral, I. Álvarez-Lanzarote, and C. E. Orrego, “Environmental Life Cycle Analysis of Açaí (Euterpe oleracea) Powders Obtained via Two Drying Methods,” Processes, vol. 11, no. 8, p. 2290, Jul. 2023, doi: 10.3390/pr11082290.spa
dc.relation.references[70] Ariandi, Yopi, and A. Meryandini, “Enzymatic Hydrolysis of Copra Meal by Mannanase from Streptomyces sp. BF3.1 for The Production of Mannooligosaccharides,” HAYATI Journal of Biosciences, vol. 22, no. 2, pp. 79–86, Apr. 2015, doi: 10.4308/hjb.22.2.79.spa
dc.relation.references[71] J. Arnling Bååth, A. Martínez-Abad, J. Berglund, J. Larsbrink, F. Vilaplana, and L. Olsson, “Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation,” Biotechnol Biofuels, vol. 11, no. 1, p. 114, Dec. 2018, doi: 10.1186/s13068-018-1115-y.spa
dc.relation.references[72] P. S. Chauhan, P. Sharma, N. Puri, and N. Gupta, “A process for reduction in viscosity of coffee extract by enzymatic hydrolysis of mannan,” Bioprocess Biosyst Eng, vol. 37, no. 7, pp. 1459–1467, Jul. 2014, doi: 10.1007/s00449-013-1118-9.spa
dc.relation.references[73] K. Suzuki et al., “Purification, Cloning, Functional Expression, Structure, and Characterization of a Thermostable β-Mannanase from Talaromyces trachyspermus B168 and Its Efficiency in Production of Mannooligosaccharides from Coffee Wastes,” Journal of Applied Glycoscience, vol. 65, pp. 13–21, May 2018, doi: 10.5458/jag.jag.JAG-2017_018.spa
dc.relation.references[74] T. Jooste, M. P. García-Aparicio, M. Brienzo, W. H. van Zyl, and J. F. Görgens, “Enzymatic Hydrolysis of Spent Coffee Ground,” Appl Biochem Biotechnol, vol. 169, no. 8, pp. 2248–2262, Apr. 2013, doi: 10.1007/s12010-013-0134-1.spa
dc.relation.references[75] A. Sachslehner, G. Foidl, N. Foidl, G. Gübitz, and D. Haltrich, “Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii,” Journal of Biotechnology, vol. 80, no. 2, pp. 127–134, Jun. 2000, doi: 10.1016/S0168-1656(00)00253-4.spa
dc.relation.references[76] C. R. F. Terrasan, W. G. de Morais Junior, and F. J. Contesini, “Enzyme Immobilization for Oligosaccharide Production,” in Encyclopedia of Food Chemistry, Elsevier, 2019, pp. 415–423. doi: 10.1016/B978-0-08-100596-5.22444-X.spa
dc.relation.references[77] S. Dhiman, B. Srivastava, G. Singh, M. Khatri, and S. K. Arya, “Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin: An easy and cost effective approach for the improvement of enzyme properties,” International Journal of Biological Macromolecules, vol. 156, pp. 1347–1358, Aug. 2020, doi: 10.1016/j.ijbiomac.2019.11.175.spa
dc.relation.references[78] X. Chen, Z. Tian, H. Zhou, G. Zhou, and H. Cheng, “Enhanced Enzymatic Performance of β-Mannanase Immobilized on Calcium Alginate Beads for the Generation of Mannan Oligosaccharides,” Foods, vol. 12, no. 16, p. 3089, Aug. 2023, doi: 10.3390/foods12163089.spa
dc.relation.references[79] A. Fernández-Ríos, J. Laso, M. Margallo, and R. Aldaco, “The Environmental Impact of ‘Superfoods’: A Space for Debate and Joint Reflection,” in The 2nd International Electronic Conference on Foods - “Future Foods and Food Technologies for a Sustainable World,” MDPI, Oct. 2022, p. 123. doi: 10.3390/Foods2021-11022.spa
dc.relation.references[80] “5 problemas ambientales en Brasil 2022 - ¡Descúbrelos aquí!,” ecologiaverde.com. Accessed: Nov. 05, 2023. [Online]. Available: https://www.ecologiaverde.com/problemas-ambientales-en-brasil-4057.htmlspa
dc.relation.references[81] A. Sluiter, “Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005,” Technical Report, 2008.spa
dc.relation.references[82] B. Rivas, A. Torrado, P. Torre, A. Converti, and J. M. Domínguez, “Submerged Citric Acid Fermentation on Orange Peel Autohydrolysate,” J. Agric. Food Chem., vol. 56, no. 7, pp. 2380–2387, Apr. 2008, doi: 10.1021/jf073388r.spa
dc.relation.references[83] S. L. Murillo-Franco, J. D. Galvis-Nieto, and C. E. Orrego, “Encapsulation of Euterpe oleracea pulp by vacuum drying: Powder characterization and antioxidant stability,” Journal of Food Engineering, vol. 345, p. 111416, May 2023, doi: 10.1016/j.jfoodeng.2023.111416.spa
dc.relation.references[84] L. F. Ballesteros, M. A. Cerqueira, J. A. Teixeira, and S. I. Mussatto, “Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment,” Carbohydrate Polymers, vol. 127, pp. 347–354, Aug. 2015, doi: 10.1016/j.carbpol.2015.03.047.spa
dc.relation.references[85] “ASTM D1104 : Method of Test for Holocellulose in Wood.” Accessed: Jun. 02, 2023. [Online]. Available: https://global.ihs.com/doc_detail.cfm?document_name=ASTM%20D1104&item_s_key=00015411spa
dc.relation.references[86] B. Hames, R. Ruiz, C. Scarlata, A. Sluiter, J. Sluiter, and D. Templeton, “Preparation of Samples for Compositional Analysis: Laboratory Analytical Procedure (LAP); Issue Date 08/08/2008,” Technical Report, 2008.spa
dc.relation.references[87] “Acid-insoluble lignin in wood and pulp, Test Method T 222 om-21.” Accessed: Jun. 02, 2023. [Online]. Available: https://imisrise.tappi.org/TAPPI/Products/01/T/0104T222.aspxspa
dc.relation.references[88] S. S. Nielsen, Food Analysis. Springer, 2017.spa
dc.relation.references[89] A. Sluiter, “Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP); Issue Date: 7/17/2005,” Technical Report, 2008.spa
dc.relation.references[90] A. C. P. de Lima et al., “Physicochemical characterization of residual biomass (seed and fiber) from açaí (Euterpe oleracea) processing and assessment of the potential for energy production and bioproducts,” Biomass Conv. Bioref., vol. 11, no. 3, pp. 925–935, Jun. 2021, doi: 10.1007/s13399-019-00551-w.spa
dc.relation.references[91] R. T. Buratto, M. J. Cocero, and Á. Martín, “Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction,” Chemical Engineering and Processing - Process Intensification, vol. 160, p. 108269, Mar. 2021, doi: 10.1016/j.cep.2020.108269.spa
dc.relation.references[92] Johnatt Oliveira, Luiza Martins, Andrea Komesu, and Rubens Maciel Filho, “Evaluation of alkaline delignification (naoh) of acai seeds (eutherpe oleracea) treated with h2so4 dilute and effect on enzymatic hydrolysis,” Chemical Engineering Transactions, vol. 43, pp. 499–504, 2015, doi: 10.3303/CET1543084.spa
dc.relation.references[93] W. Wycoff et al., “Chemical and nutritional analysis of seeds from purple and white açaí ( Euterpe oleracea Mart.),” Journal of Food Composition and Analysis, vol. 41, pp. 181–187, Aug. 2015, doi: 10.1016/j.jfca.2015.01.021.spa
dc.relation.references[94] S. de S. Barros et al., “Sementes de açaí (Euterpe precatoria Mart.) como uma nova fonte alternativa de celulose: Extração e caracterização,” Research, Society and Development, vol. 10, no. 7, Art. no. 7, Jun. 2021, doi: 10.33448/rsd-v10i7.16661.spa
dc.relation.references[95] C. E. Gómez Carvajal, “Determinacion de la capacidad antioxidante y fenoles totales del endocarpio del fruto de acai (euterpe oleracea),” Universidad de Bogotá Jorge Tadeo Lozano, p. 15, 2019, doi: 10/7832.spa
dc.relation.references[96] E. R. Soares et al., “Up-regulation of Nrf2-antioxidant signaling by Açaí (Euterpe oleracea Mart.) extract prevents oxidative stress in human endothelial cells,” Journal of Functional Foods, vol. 37, pp. 107–115, Oct. 2017, doi: 10.1016/j.jff.2017.07.035.spa
dc.relation.references[97] P. S. Melo, L. de O. R. Arrivetti, S. M. de Alencar, and L. H. Skibsted, “Antioxidative and prooxidative effects in food lipids and synergism with α-tocopherol of açaí seed extracts and grape rachis extracts,” Food Chemistry, vol. 213, pp. 440–449, Dec. 2016, doi: 10.1016/j.foodchem.2016.06.101.spa
dc.relation.references[98] R. H. Atalla and D. L. VanderHart, “Native Cellulose: A Composite of Two Distinct Crystalline Forms,” Science, vol. 223, no. 4633, pp. 283–285, Jan. 1984, doi: 10.1126/science.223.4633.283.spa
dc.relation.references[99] A. D. French and M. Santiago Cintrón, “Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index,” Cellulose, vol. 20, no. 1, pp. 583–588, Feb. 2013, doi: 10.1007/s10570-012-9833-y.spa
dc.relation.references[100] P. B. Filson, B. E. Dawson-Andoh, and D. Schwegler-Berry, “Enzymatic-mediated production of cellulose nanocrystals from recycled pulp,” Green Chem., vol. 11, no. 11, p. 1808, 2009, doi: 10.1039/b915746h.spa
dc.relation.references[101] S. Scudino, P. Donnadieu, K. B. Surreddi, K. Nikolowski, M. Stoica, and J. Eckert, “Microstructure and mechanical properties of Laves phase-reinforced Fe–Zr–Cr alloys,” Intermetallics, vol. 17, no. 7, pp. 532–539, Jul. 2009, doi: 10.1016/j.intermet.2009.01.007.spa
dc.relation.references[102] H. Bian, Y. Yang, and P. Tu, “Crystalline Structure Analysis of All-cellulose Nanocomposites Films Based on Corn and Wheat Straw,” In Review, preprint, May 2021. doi: 10.21203/rs.3.rs-511111/v1.spa
dc.relation.references[103] F. Grimaud et al., “In Vitro Synthesis and Crystallization of β-1,4-Mannan,” Biomacromolecules, vol. 20, no. 2, pp. 846–853, Feb. 2019, doi: 10.1021/acs.biomac.8b01457.spa
dc.relation.references[104] S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, “Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance,” Biotechnol Biofuels, vol. 3, no. 1, p. 10, Dec. 2010, doi: 10.1186/1754-6834-3-10.spa
dc.relation.references[105] A. Avanthi and R. Banerjee, “A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production,” Industrial Crops and Products, vol. 92, pp. 174–185, Dec. 2016, doi: 10.1016/j.indcrop.2016.08.009.spa
dc.relation.references[106] R. R. N. Mvondo, P. Meukam, J. Jeong, D. D. S. Meneses, and E. G. Nkeng, “Influence of water content on the mechanical and chemical properties of tropical wood species,” Results in Physics, vol. 7, pp. 2096–2103, Jan. 2017, doi: 10.1016/j.rinp.2017.06.025.spa
dc.relation.references[107] M. A. Cerqueira et al., “Structural and thermal characterization of galactomannans from non-conventional sources,” Carbohydrate Polymers, vol. 83, no. 1, pp. 179–185, Jan. 2011, doi: 10.1016/j.carbpol.2010.07.036.spa
dc.relation.references[108] P. K. Srivastava, D. Panwar, K. V. H. Prashanth, and M. Kapoor, “Structural Characterization and in Vitro Fermentation of β-Mannooligosaccharides Produced from Locust Bean Gum by GH-26 endo -β-1,4-Mannanase (ManB-1601),” J. Agric. Food Chem., vol. 65, no. 13, pp. 2827–2838, Apr. 2017, doi: 10.1021/acs.jafc.7b00123.spa
dc.relation.references[109] U. K. Jana and N. Kango, “Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans,” International Journal of Biological Macromolecules, vol. 149, pp. 931–940, Apr. 2020, doi: 10.1016/j.ijbiomac.2020.01.304.spa
dc.relation.references[110] H.-L. Jian, L.-W. Zhu, W.-M. Zhang, D.-F. Sun, and J.-X. Jiang, “Enzymatic production and characterization of manno-oligosaccharides from Gleditsia sinensis galactomannan gum,” International Journal of Biological Macromolecules, vol. 55, pp. 282–288, Apr. 2013, doi: 10.1016/j.ijbiomac.2013.01.025.spa
dc.relation.references[111] J. Chen, D. Liu, B. Shi, H. Wang, Y. Cheng, and W. Zhang, “Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology,” Carbohydrate Polymers, vol. 93, no. 1, pp. 81–88, Mar. 2013, doi: 10.1016/j.carbpol.2012.05.037.spa
dc.relation.references[112] K. Intaratrakul, S. Nitisinprasert, T.-H. Nguyen, D. Haltrich, and S. Keawsompong, “Manno-oligosaccharides from copra meal: Optimization of its enzymatic production and evaluation its potential as prebiotic,” Bioactive Carbohydrates and Dietary Fibre, vol. 27, p. 100292, May 2022, doi: 10.1016/j.bcdf.2021.100292.spa
dc.relation.references[113] D. A. Gonçalves, A. González, D. Roupar, J. A. Teixeira, and C. Nobre, “How prebiotics have been produced from agro-industrial waste: An overview of the enzymatic technologies applied and the models used to validate their health claims,” Trends in Food Science & Technology, vol. 135, pp. 74–92, May 2023, doi: 10.1016/j.tifs.2023.03.016.spa
dc.relation.references[114] S. Malgas, J. S. van Dyk, S. Abboo, and B. I. Pletschke, “The inhibitory effects of various substrate pre-treatment by-products and wash liquors on mannanolytic enzymes,” Journal of Molecular Catalysis B: Enzymatic, vol. 123, pp. 132–140, Jan. 2016, doi: 10.1016/j.molcatb.2015.11.014.spa
dc.relation.references[115] F. A. de Moura, F. T. Macagnan, and L. P. da Silva, “Oligosaccharide production by hydrolysis of polysaccharides: a review,” Int J Food Sci Technol, vol. 50, no. 2, pp. 275–281, Feb. 2015, doi: 10.1111/ijfs.12681.spa
dc.relation.references[116] J. Rungruangsaphakun and S. Keawsompong, “Optimization of hydrolysis conditions for the mannooligosaccharides copra meal hydrolysate production,” 3 Biotech, vol. 8, no. 3, p. 169, Mar. 2018, doi: 10.1007/s13205-018-1178-2.spa
dc.relation.references[117] S. A. Pradeep, L. J. Rodríguez, A. B. Kousaalya, S. Farahani, C. E. Orrego, and S. Pilla, “Effect of silane-treated pine wood fiber (PWF) on thermal and mechanical properties of partially biobased composite foams,” Composites Part C: Open Access, vol. 8, p. 100278, Jul. 2022, doi: 10.1016/j.jcomc.2022.100278.spa
dc.relation.references[118] S. K. C. Chang and Y. Zhang, “Protein Analysis,” in Food Analysis, S. S. Nielsen, Ed., in Food Science Text Series. , Cham: Springer International Publishing, 2017, pp. 315–331. doi: 10.1007/978-3-319-45776-5_18.spa
dc.relation.references[119] I. P. Wood, A. Elliston, P. Ryden, I. Bancroft, I. N. Roberts, and K. W. Waldron, “Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay,” Biomass and Bioenergy, vol. 44, pp. 117–121, Sep. 2012, doi: 10.1016/j.biombioe.2012.05.003.spa
dc.relation.references[120] F. Dong et al., “Immobilization of a Novel ESTBAS Esterase from Bacillus altitudinis onto an Epoxy Resin: Characterization and Regioselective Synthesis of Chloramphenicol Palmitate,” Catalysts, vol. 9, no. 7, p. 620, Jul. 2019, doi: 10.3390/catal9070620.spa
dc.relation.references[121] Z. Feng et al., “Salt crystallization-assisted degradation of epoxy resin surface in simulated marine environments,” Progress in Organic Coatings, vol. 149, p. 105932, Dec. 2020, doi: 10.1016/j.porgcoat.2020.105932.spa
dc.relation.references[122] T. Theophile, Infrared Spectroscopy: Materials Science, Engineering and Technology. BoD – Books on Demand, 2012.spa
dc.relation.references[123] H. Liu, C. Hao, Y. Zhang, H. Yang, and R. Sun, “The interaction of graphene oxide-silver nanoparticles with trypsin: Insights from adsorption behaviors, conformational structure and enzymatic activity investigations,” Colloids and Surfaces B: Biointerfaces, vol. 202, p. 111688, Jun. 2021, doi: 10.1016/j.colsurfb.2021.111688.spa
dc.relation.references[124] M. R. Karim and F. Hashinaga, “Preparation and properties of immobilized pummelo limonoid glucosyltransferase,” Process Biochemistry, vol. 38, no. 5, pp. 809–814, Dec. 2002, doi: 10.1016/S0032-9592(02)00233-9.spa
dc.relation.references[125] N. Miletić, A. Nastasović, and K. Loos, “Immobilization of biocatalysts for enzymatic polymerizations: Possibilities, advantages, applications,” Bioresource Technology, vol. 115, pp. 126–135, Jul. 2012, doi: 10.1016/j.biortech.2011.11.054.spa
dc.relation.references[126] W. Sichina J., “Characterization of Polymers by TMA,” 2000. Accessed: Oct. 10, 2023. [Online]. Available: https://thermalsupport.com/wp-content/uploads/2018/05/PETech-28.pdfspa
dc.relation.references[127] N. S. Punekar, ENZYMES: Catalysis, Kinetics and Mechanisms. Singapore: Springer, 2018. doi: 10.1007/978-981-13-0785-0.spa
dc.relation.references[128] A. Dawood and K. Ma, “Applications of Microbial β-Mannanases,” Front. Bioeng. Biotechnol., vol. 8, p. 598630, Dec. 2020, doi: 10.3389/fbioe.2020.598630.spa
dc.relation.references[129] M. de L. T. M. Polizeli and M. Rai, Eds., Fungal Enzymes, 0 ed. CRC Press, 2016. doi: 10.1201/b15247.spa
dc.relation.references[130] X. Tang, X. Zhu, Y. Yang, Z. Qi, Y. Mu, and Z. Huang, “Research Article Product Composition Analysis and Process Research of Oligosaccharides Produced from Enzymatic Hydrolysis of High-Concentration Konjac Flour,” ACS Omega, vol. 5, no. 5, pp. 2480–2487, Feb. 2020, doi: 10.1021/acsomega.9b04218.spa
dc.relation.references[131] K. Hodd, “Epoxy Resins,” in Comprehensive Polymer Science and Supplements, Elsevier, 1989, pp. 667–699. doi: 10.1016/B978-0-08-096701-1.00178-6.spa
dc.relation.references[132] M. Abdel Gayed et al., “A Review of some prebiotics and probiotics supplementation effects on farmed fishes: with special reference to Mannan oligosaccharides (MOS),” Benha Veterinary Medical Journal, vol. 40, no. 1, pp. 141–145, Mar. 2021, doi: 10.21608/bvmj.2021.62545.1342.spa
dc.relation.references[133] Gobernación del Chocó, “PLAN DEPARTAMENTAL DE EXTENSIÓN AGROPECUARIA PDEA – CHOCÓ 2020-2023.” 2020. [Online]. Available: https://www.adr.gov.co/wp-content/uploads/2021/11/PDEA-CHOCO-2020-2023-Versio%CC%81n-Final-03-12-2020.pdfspa
dc.relation.references[134] J. C. Solarte-Toro, “Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case,” Trabajo de grado - Doctorado, Universidad Nacional de Colombia, 2022. Accessed: Nov. 04, 2023. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/83551spa
dc.relation.references[135] M. S. Peters, K. D. Timmerhaus, and R. E. West, Plant Design and Economics for Chemical Engineers. McGraw-Hill Education, 2003.spa
dc.relation.references[136] “Inicio | Banco de la República.” Accessed: Nov. 04, 2023. [Online]. Available: https://www.banrep.gov.co/esspa
dc.relation.references[137] L. R. Dysert, “Sharpen your cost estimating skills,” Cost Engineering (Morgantown, West Virginia), vol. 45, pp. 22–30, Jan. 2003.spa
dc.relation.references[138] Laina Konstantina M., Eleni Panagiota N., Talfanidi Dioni, Boukouvalas Christos, Panagiotou Nickolaos, and Krokida Magdalini, “Life Cycle Assessment of Functional Animal Feeds Enriched with Natural Bioactive Compounds Derived from Medicinal Plants and Herbs,” Chemical Engineering Transactions, vol. 93, pp. 97–102, Jul. 2022, doi: 10.3303/CET2293017.spa
dc.relation.references[139] S. Wang, L. Cheng, and X. Liu, “Comparative study on the carbon footprints of extruded and pelleted feed and their potential for carbon reduction: A case study of grass carp feed,” Journal of Cleaner Production, vol. 381, p. 135192, Dec. 2022, doi: 10.1016/j.jclepro.2022.135192.spa
dc.relation.references[140] S. Gonzalez-Garcia, B. Gullón, and M. T. Moreira, “Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides,” Journal of Cleaner Production, vol. 172, pp. 4066–4073, Jan. 2018, doi: 10.1016/j.jclepro.2017.02.164.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembManano-oligosacáridos (MOS)spa
dc.subject.proposalMananoligosacáridosspa
dc.subject.proposalEuterpe oleraceaspa
dc.subject.proposalInmovilización enzimáticaspa
dc.subject.proposalValorización de residuosspa
dc.subject.proposalSemillas de naidíspa
dc.subject.proposalEnzymatic immobilizationeng
dc.subject.proposalMannan oligosaccharideseng
dc.subject.proposalWaste valorizationeng
dc.subject.proposalNaidí seedseng
dc.subject.unescoEnzimas inmovilizadasspa
dc.titleProducción de oligosacáridos de manosa (MOS) a partir de semillas de naidí usando enzima comercial inmovilizadaspa
dc.title.translatedProduction of mannan oligosaccharides (MOS) from naidí seeds using immobilized commercial enzymeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinciencias Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1059815038.2023.pdf
Tamaño:
5.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: