Producción de oligosacáridos de manosa (MOS) a partir de semillas de naidí usando enzima comercial inmovilizada
| dc.contributor.advisor | Orrego Alzate, Carlos Eduardo | |
| dc.contributor.author | Murillo Franco, Sarha Lucia | |
| dc.contributor.cvlac | Sarha Lucia Murillo Franco [0001726765] | spa |
| dc.contributor.googlescholar | Murillo Franco, Sarha Lucia [ZuyU6S8AAAAJ] | spa |
| dc.contributor.orcid | Sarha Lucia Murillo Franco [0000-0002-1642-8779] | spa |
| dc.contributor.researchgate | https://www.researchgate.net/profile/Sarha-Lucia-Murillo-Franco | spa |
| dc.contributor.researchgroup | GAF-Grupo de Alimetos Frutales | spa |
| dc.contributor.scopus | Murillo-Franco, Sarha Lucia [58074141000] | spa |
| dc.date.accessioned | 2024-01-26T17:47:20Z | |
| dc.date.available | 2024-01-26T17:47:20Z | |
| dc.date.issued | 2023 | |
| dc.description | graficas, tablas | spa |
| dc.description.abstract | En este estudio, se constató a través de análisis como FTIR, XRD y otros métodos fisicoquímicos que las semillas de açaí o naidí (Euterpe oleracea) -SN- presentan un alto contenido de hemicelulosa y manano. Para producir manano-oligosacáridos (MOS) a partir de estas semillas trituradas, se empleó un coctel enzimático con mananasa como actividad principal inmovilizada en una matriz de biopolímero compuesta por aceite de pino epoxidado y fibra de cápsula de achiote, dando como resultado un material enriquecido con MOS. La enzima inmovilizada fue preparada y caracterizada a través de técnicas como FTIR y SEM, alcanzando una eficiencia de inmovilización que superó el 75% y una notable estabilidad operativa de al menos 10 ciclos. La idoneidad de las semillas de naidí como materia prima para la generación de MOS se confirmó mediante pruebas de hidrólisis enzimática, tanto en fases homogéneas como heterogéneas. Estas pruebas tenían como objetivo identificar las condiciones óptimas de pH y temperatura para la producción de MOS, minimizando la formación de manosa. En la fase homogénea, se obtuvieron resultados favorables a 37°C, 36 U/g, un tiempo de reacción menor a 3 horas y un pH de 8.5, mientras que en la fase heterogénea se lograron a 59°C, 17.5 U/g, con un tiempo de reacción de 2.8 horas y un pH de 7.9. Se diseñaron configuraciones de procesos específicas para producir un pienso utilizando semillas hidrolizadas enriquecidas con MOS. Estas configuraciones se basaron en datos experimentales y fueron evaluadas con herramientas como SuperPro Designer V9.5 para el análisis tecnoeconómico y SimaPro para la evaluación ambiental. El análisis preliminar comparativo concluyó que el sistema biopolímero-mananasa es un eficiente biocatalizador para transformar de manera sostenible el SN de frutos cultivados en Chocó en un material rico en MOS, reduciendo así los impactos ambientales asociados a la etapa de hidrólisis y mostrando viabilidad económica (Texto tomado de la fuente) | spa |
| dc.description.abstract | In this study, it was confirmed through analyses such as FTIR, XRD, and other physicochemical methods that açaí or naidí (Euterpe oleracea) seeds - SN - exhibit a high content of hemicellulose and mannan. To produce mannan-oligosaccharides (MOS) from these crushed seeds, an enzymatic cocktail with mannanase as the principal immobilized activity was employed in a biopolymer matrix composed of epoxidized pine oil and annatto capsule fiber, resulting in a material enriched with MOS. The immobilized enzyme was prepared and characterized using techniques like FT-IR and SEM, achieving an immobilization efficiency exceeding 75% and notable operational stability for at least 10 cycles. The suitability of naidí seeds as a raw material for MOS generation was confirmed through enzymatic hydrolysis tests, both in homogeneous and heterogeneous phases. These tests aimed to identify the optimal pH and temperature conditions for MOS production, minimizing the formation of mannose. In the homogeneous phase, favorable results were obtained at 37°C, 36 U/g, a reaction time of fewer than 3 hours, and a pH of 8.5, while in the heterogeneous phase, these conditions were achieved at 59°C, 17.5 U/g, with a reaction time of 2.8 hours and a pH of 7.9. Specific process configurations were designed to produce feed using hydrolyzed seeds enriched with MOS. These configurations were based on experimental data and evaluated using tools like SuperPro Designer V9.5 for techno-economic analysis and SimaPro for environmental assessment. The preliminary comparative analysis concluded that the biopolymer-mannanase system is an efficient biocatalyst for sustainably converting SN from fruits grown in Chocó into a material rich in MOS, thereby reducing the environmental impacts associated with the hydrolysis stage and demonstrating economic viability. | eng |
| dc.description.curriculararea | Química Y Procesos.Sede Manizales | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
| dc.description.researcharea | Valorización de residuos provenientes de frutales | spa |
| dc.format.extent | xv, 123 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85465 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
| dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
| dc.publisher.place | Manizales, Colombia | spa |
| dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química | spa |
| dc.relation.references | [1] K. K. de L. Yamaguchi, L. F. R. Pereira, C. V. Lamarão, E. S. Lima, and V. F. da Veiga-Junior, “Amazon acai: Chemistry and biological activities: A review,” Food Chemistry, vol. 179, pp. 137–151, Jul. 2015, doi: 10.1016/j.foodchem.2015.01.055. | spa |
| dc.relation.references | [2] M. K. Sato, H. V. de Lima, A. N. Costa, S. Rodrigues, A. J. S. Pedroso, and C. M. B. de Freitas Maia, “Biochar from Acai agroindustry waste: Study of pyrolysis conditions,” Waste Management, vol. 96, pp. 158–167, Aug. 2019, doi: 10.1016/j.wasman.2019.07.022. | spa |
| dc.relation.references | [3] F. W. Maciel-Silva, S. I. Mussatto, and T. Forster-Carneiro, “Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues,” Journal of Cleaner Production, vol. 228, pp. 1131–1142, Aug. 2019, doi: 10.1016/j.jclepro.2019.04.362. | spa |
| dc.relation.references | [4] A. F. Monteiro, I. S. Miguez, J. P. R. B. Silva, and A. S. da Silva, “High concentration and yield production of mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis,” Sci Rep, vol. 9, no. 1, p. 10939, Jul. 2019, doi: 10.1038/s41598-019-47401-3. | spa |
| dc.relation.references | [5] A. S. Anderson, L. Mkabayi, S. Malgas, N. Kango, and B. I. Pletschke, “Covalent Immobilisation of an Aspergillus niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal,” Agronomy, vol. 12, no. 12, p. 2993, Nov. 2022, doi: 10.3390/agronomy12122993. | spa |
| dc.relation.references | [6] U. K. Jana, R. K. Suryawanshi, B. P. Prajapati, and N. Kango, “Prebiotic mannooligosaccharides: Synthesis, characterization and bioactive properties,” Food Chemistry, vol. 342, p. 128328, Apr. 2021, doi: 10.1016/j.foodchem.2020.128328. | spa |
| dc.relation.references | [7] N. Kango, U. K. Jana, R. Choukade, and S. Nath, “Advances in prebiotic mannooligosaccharides,” Current Opinion in Food Science, vol. 47, p. 100883, Oct. 2022, doi: 10.1016/j.cofs.2022.100883. | spa |
| dc.relation.references | [8] M. Blibech, F. Chaari, F. Bhiri, I. Dammak, R. E. Ghorbel, and S. E. Chaabouni, “Production of manno-oligosaccharides from locust bean gum using immobilized Penicillium occitanis mannanase,” Journal of Molecular Catalysis B: Enzymatic, p. S1381117711002232, Aug. 2011, doi: 10.1016/j.molcatb.2011.08.007. | spa |
| dc.relation.references | [9] FONTAGRO, “Productividad y Competitividad Frutícola Andina.” Accessed: Nov. 02, 2023. [Online]. Available: https://www.fontagro.org/new/proyectos/productividad-y-competitividad-fruticola-andina/es | spa |
| dc.relation.references | [10] Centro de Investigación de Agricultura y Biotecnología- CIAB. Dosquebradas. Risaralda, Colombia, S. P. Montenegro-Gómez, M. Rosales-Escarria, and Universidad del Pácífico. Buenaventura, Colombia, “Fruto de naidi ( Euterpe oleracea ) y su perspectiva en la seguridad alimentaria colombiana,” ENTRAMADO, vol. 11, no. 2, pp. 200–207, 2015, doi: 10.18041/entramado.2015v11n2.22238. | spa |
| dc.relation.references | [11] Consultores en Estrategia y and Desarrollo S.A.S, “PLAN DE NEGOCIOS AÇAÍ (Euterpe oleracea,” Bogotá (Colombia, Reporte de Consultoría Contrato No AID-514-0-15-0019, Oct. 2015. Accessed: Mar. 28, 2023. [Online]. Available: https://pdf.usaid.gov/pdf_docs/PA00M957.pdf | spa |
| dc.relation.references | [12] J. Huamán del Castillo and E. Sánchez Díaz, “Plan de negocios para el acopio e industrialización en pulpa congelada de huasaí en la región Loreto al mercado de Estados Unidos de América,” 2019, Accessed: Mar. 28, 2023. [Online]. Available: https://repositorio.esan.edu.pe///handle/20.500.12640/1794 | spa |
| dc.relation.references | [13] P. S. Melo, M. M. Selani, R. H. Gonçalves, J. de O. Paulino, A. P. Massarioli, and S. M. de Alencar, “Açaí seeds: An unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds,” Industrial Crops and Products, vol. 161, p. 113204, Mar. 2021, doi: 10.1016/j.indcrop.2020.113204. | spa |
| dc.relation.references | [14] N. M. Delzenne, “Oligosaccharides: state of the art,” Proc. Nutr. Soc., vol. 62, no. 1, pp. 177–182, Feb. 2003, doi: 10.1079/PNS2002225. | spa |
| dc.relation.references | [15] V. Narisetty et al., “Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective,” Bioresource Technology, vol. 346, p. 126590, Feb. 2022, doi: 10.1016/j.biortech.2021.126590. | spa |
| dc.relation.references | [16] D. O. Otieno and B. K. Ahring, “A thermochemical pretreatment process to produce xylooligosaccharides (XOS), arabinooligosaccharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses,” Bioresource Technology, vol. 112, pp. 285–292, May 2012, doi: 10.1016/j.biortech.2012.01.162. | spa |
| dc.relation.references | [17] “A Study of Saccharomyces cerevisiae Cell Wall Glucans - Kwiatkowski - 2009 - Journal of the Institute of Brewing - Wiley Online Library.” Accessed: Mar. 29, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/j.2050-0416.2009.tb00361.x | spa |
| dc.relation.references | [18] M. Faseleh Jahromi, J. B. Liang, N. Abdullah, Y. M. Goh, R. Ebrahimi, and P. Shokryazdan, “Extraction and Characterization of Oligosaccharides from Palm Kernel Cake as Prebiotic,” BioResources, vol. 11, no. 1, pp. 674–695, Nov. 2015, doi: 10.15376/biores.11.1.674-695. | spa |
| dc.relation.references | [19] M. K. D. Rambo, F. L. Schmidt, and M. M. C. Ferreira, “Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities,” Talanta, vol. 144, pp. 696–703, Nov. 2015, doi: 10.1016/j.talanta.2015.06.045. | spa |
| dc.relation.references | [20] B. Sundu, U. Hatta, and A. S. Chaudhry, “Potential use of beta-mannan from copra meal as a feed additive for broilers,” World’s Poultry Science Journal, vol. 68, no. 4, pp. 707–716, Dec. 2012, doi: 10.1017/S0043933912000839. | spa |
| dc.relation.references | [21] T. Jooste, M. P. García-Aparicio, M. Brienzo, W. H. van Zyl, and J. F. Görgens, “Enzymatic Hydrolysis of Spent Coffee Ground,” Appl Biochem Biotechnol, vol. 169, no. 8, pp. 2248–2262, Apr. 2013, doi: 10.1007/s12010-013-0134-1. | spa |
| dc.relation.references | [22] M. Ståhl, K. Nieminen, and H. Sixta, “Hydrothermolysis of pine wood,” Biomass and Bioenergy, vol. 109, pp. 100–113, Feb. 2018, doi: 10.1016/j.biombioe.2017.12.006. | spa |
| dc.relation.references | [23] A. K. Chandel, S. S. da Silva, W. Carvalho, and O. V. Singh, “Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products,” J. Chem. Technol. Biotechnol., vol. 87, no. 1, pp. 11–20, Jan. 2012, doi: 10.1002/jctb.2742. | spa |
| dc.relation.references | [24] S. Malgas, J. S. van Dyk, and B. I. Pletschke, “A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase,” World J Microbiol Biotechnol, vol. 31, no. 8, pp. 1167–1175, Aug. 2015, doi: 10.1007/s11274-015-1878-2. | spa |
| dc.relation.references | [25] M. Faustino, J. Durão, C. F. Pereira, M. E. Pintado, and A. P. Carvalho, “Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae – A sustainable source of functional ingredients,” Carbohydrate Polymers, vol. 272, p. 118467, Nov. 2021, doi: 10.1016/j.carbpol.2021.118467. | spa |
| dc.relation.references | [26] C. Wongsiridetchai et al., “Alkaline pretreatment of spent coffee grounds for oligosaccharides production by mannanase from Bacillus sp. GA2(1),” Agriculture and Natural Resources, vol. 52, no. 3, pp. 222–227, Jun. 2018, doi: 10.1016/j.anres.2018.09.012. | spa |
| dc.relation.references | [27] B. Bello et al., “Evaluation of the effect of soluble polysaccharides of palm kernel cake as a potential prebiotic on the growth of probiotics,” 3 Biotech, vol. 8, no. 8, p. 346, Aug. 2018, doi: 10.1007/s13205-018-1362-4. | spa |
| dc.relation.references | [28] M. E. Gibril et al., “Physicochemical characterization and future beneficiation routes of wild fruit waste (Hyphaene Thebaica seed) as a source to extract mannan,” Journal of Cleaner Production, vol. 267, p. 121949, Sep. 2020, doi: 10.1016/j.jclepro.2020.121949. | spa |
| dc.relation.references | [29] Z. Li, M. Xiao, L. Lu, and Y. Li, “Production of non-monosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells,” Process Biochemistry, vol. 43, no. 8, pp. 896–899, Aug. 2008, doi: 10.1016/j.procbio.2008.04.016. | spa |
| dc.relation.references | [30] M. Faseleh Jahromi, J. B. Liang, N. Abdullah, Y. M. Goh, R. Ebrahimi, and P. Shokryazdan, “Extraction and Characterization of Oligosaccharides from Palm Kernel Cake as Prebiotic,” BioResources, vol. 11, no. 1, pp. 674–695, Nov. 2015, doi: 10.15376/biores.11.1.674-695. | spa |
| dc.relation.references | [31] W. Xu et al., “Production of manno-oligosaccharide from Gleditsia microphylla galactomannan using acetic acid and ferrous chloride,” Food Chemistry, vol. 346, p. 128844, Jun. 2021, doi: 10.1016/j.foodchem.2020.128844. | spa |
| dc.relation.references | [32] R. J. A. Chato, C. C. R. Cuevas, J. S. N. Tangpuz, L. K. Cabatingan, A. W. Go, and Y.-H. Ju, “Dilute acid hydrolysis as a method of producing sugar-rich hydrolysates and lipid-dense cake residues from copra cake,” Journal of Environmental Chemical Engineering, vol. 6, no. 5, pp. 5693–5705, Oct. 2018, doi: 10.1016/j.jece.2018.08.072. | spa |
| dc.relation.references | [34] Y. Li, P. Yi, J. Liu, Q. Yan, and Z. Jiang, “High-level expression of an engineered β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake,” Bioresource Technology, vol. 256, pp. 30–37, May 2018, doi: 10.1016/j.biortech.2018.01.138. | spa |
| dc.relation.references | [35] Q. A. Nguyen, E. J. Cho, D.-S. Lee, and H.-J. Bae, “Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds,” Bioresource Technology, vol. 272, pp. 209–216, Jan. 2019, doi: 10.1016/j.biortech.2018.10.018. | spa |
| dc.relation.references | [36] V. Rigual, T. M. Santos, J. C. Domínguez, M. V. Alonso, M. Oliet, and F. Rodriguez, “Evaluation of hardwood and softwood fractionation using autohydrolysis and ionic liquid microwave pretreatment,” Biomass and Bioenergy, vol. 117, pp. 190–197, Oct. 2018, doi: 10.1016/j.biombioe.2018.07.014. | spa |
| dc.relation.references | [37] C. Zhou, Y. Xue, and Y. Ma, “Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10,” Microb Cell Fact, vol. 17, no. 1, p. 124, Dec. 2018, doi: 10.1186/s12934-018-0973-0. | spa |
| dc.relation.references | [38] Z. Liu et al., “High-level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in mannooligosaccharide preparation,” Bioresource Technology, vol. 295, p. 122257, Jan. 2020, doi: 10.1016/j.biortech.2019.122257. | spa |
| dc.relation.references | [39] R. Kumar Suryawanshi and N. Kango, “Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential,” Food Chemistry, vol. 334, p. 127428, Jan. 2021, doi: 10.1016/j.foodchem.2020.127428. | spa |
| dc.relation.references | [40] A. Purnawan, Y. Yopi, and T. T. Irawadi, “Production of Manooligomannan from Palm Kernel Cake by Mannanase Produced from Streptomyces Cyaenus,” J Bio Bio Edu, vol. 9, no. 1, p. 73, Mar. 2017, doi: 10.15294/biosaintifika.v9i1.9201. | spa |
| dc.relation.references | [41] R. Zhang et al., “Enzymatic preparation of manno-oligosaccharides from locust bean gum and palm kernel cake, and investigations into its prebiotic activity,” Electronic Journal of Biotechnology, vol. 49, pp. 64–71, Jan. 2021, doi: 10.1016/j.ejbt.2020.11.001. | spa |
| dc.relation.references | [42] W. Xu, M. Han, W. Zhang, M. Tang, F. Zhang, and J. Jiang, “Efficient and green production of manno-oligosaccharides from Gleditsia microphylla galactomannans using CO2 and solid acid in subcritical water,” LWT, vol. 156, p. 113019, Feb. 2022, doi: 10.1016/j.lwt.2021.113019. | spa |
| dc.relation.references | [43] V. Singh, R. Sethi, A. Tewari, V. Srivastava, and R. Sanghi, “Hydrolysis of plant seed gums by microwave irradiation,” Carbohydrate Polymers, vol. 54, no. 4, pp. 523–525, Dec. 2003, doi: 10.1016/j.carbpol.2003.05.003. | spa |
| dc.relation.references | [44] P. Khuwijitjaru, A. Pokpong, K. Klinchongkon, and S. Adachi, “Production of oligosaccharides from coconut meal by subcritical water treatment,” Int J Food Sci Technol, vol. 49, no. 8, pp. 1946–1952, Aug. 2014, doi: 10.1111/ijfs.12524. | spa |
| dc.relation.references | [45] C. P. Passos, A. S. P. Moreira, M. R. M. Domingues, D. V. Evtuguin, and M. A. Coimbra, “Sequential microwave superheated water extraction of mannans from spent coffee grounds,” Carbohydrate Polymers, vol. 103, pp. 333–338, Mar. 2014, doi: 10.1016/j.carbpol.2013.12.053. | spa |
| dc.relation.references | [46] P. Prawitwong, S. Takigami, and G. O. Phillips, “Effects of γ-irradiation on molar mass and properties of Konjac mannan,” Food Hydrocolloids, vol. 21, no. 8, pp. 1362–1367, Dec. 2007, doi: 10.1016/j.foodhyd.2006.10.015. | spa |
| dc.relation.references | [47] B. Srinivasan, “A guide to the Michaelis–Menten equation: steady state and beyond,” The FEBS Journal, vol. 289, no. 20, pp. 6086–6098, 2022, doi: 10.1111/febs.16124. | spa |
| dc.relation.references | [48] “Information on EC 3.2.1.78 - mannan endo-1,4-beta-mannosidase - BRENDA Enzyme Database.” Accessed: Dec. 02, 2023. [Online]. Available: https://www.brenda-enzymes.org/enzyme.php?ecno=3.2.1.78#KM%20VALUE%20[mM] | spa |
| dc.relation.references | [49] W. H. van Zyl, S. H. Rose, K. Trollope, and J. F. Görgens, “Fungal β-mannanases: Mannan hydrolysis, heterologous production and biotechnological applications,” Process Biochemistry, vol. 45, no. 8, pp. 1203–1213, Aug. 2010, doi: 10.1016/j.procbio.2010.05.011. | spa |
| dc.relation.references | [50] C. Rocha, M. P. Gonçalves, and J. A. Teixeira, “Immobilization of trypsin on spent grains for whey protein hydrolysis,” Process Biochemistry, vol. 46, no. 2, pp. 505–511, Feb. 2011, doi: 10.1016/j.procbio.2010.10.001. | spa |
| dc.relation.references | [51] S. Datta, L. R. Christena, and Y. R. S. Rajaram, “Enzyme immobilization: an overview on techniques and support materials,” 3 Biotech, vol. 3, no. 1, pp. 1–9, Feb. 2013, doi: 10.1007/s13205-012-0071-7. | spa |
| dc.relation.references | [52] M. Asgher, M. Shahid, S. Kamal, and H. M. N. Iqbal, “Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology,” Journal of Molecular Catalysis B: Enzymatic, vol. 101, pp. 56–66, Mar. 2014, doi: 10.1016/j.molcatb.2013.12.016. | spa |
| dc.relation.references | [53] A. A. Homaei, R. Sariri, F. Vianello, and R. Stevanato, “Enzyme immobilization: an update,” J Chem Biol, vol. 6, no. 4, pp. 185–205, Oct. 2013, doi: 10.1007/s12154-013-0102-9. | spa |
| dc.relation.references | [54] Y. A. Rodríguez-Restrepo and C. E. Orrego, “Immobilization of enzymes and cells on lignocellulosic materials,” Environ Chem Lett, vol. 18, no. 3, pp. 787–806, May 2020, doi: 10.1007/s10311-020-00988-w. | spa |
| dc.relation.references | [55] D. C. Montgomery, Diseño y análisis de experimentos. Limusa Wiley, 2005. | spa |
| dc.relation.references | [56] P. M. Doran, “Chapter 1 - Bioprocess Development: An Interdisciplinary Challenge,” in Bioprocess Engineering Principles (Second Edition), P. M. Doran, Ed., London: Academic Press, 2013, pp. 3–11. doi: 10.1016/B978-0-12-220851-5.00001-0. | spa |
| dc.relation.references | [57] J. C. Solarte-Toro and C. A. Cardona Alzate, “Sustainability of Biorefineries: Challenges and Perspectives,” Energies, vol. 16, no. 9, Art. no. 9, Jan. 2023, doi: 10.3390/en16093786. | spa |
| dc.relation.references | [58] M. Palmeros Parada et al., “OSID : opening the conceptual design of biobased processes to a context‐sensitive sustainability analysis,” Biofuels, Bioprod. Bioref., vol. 15, no. 4, pp. 961–972, Jul. 2021, doi: 10.1002/bbb.2216. | spa |
| dc.relation.references | [59] S. I. Mussatto, J. Moncada, I. C. Roberto, and C. A. Cardona, “Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case,” Bioresource Technology, vol. 148, pp. 302–310, Nov. 2013, doi: 10.1016/j.biortech.2013.08.046. | spa |
| dc.relation.references | [60] Y. Liu et al., “Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review,” International Journal of Biological Macromolecules, vol. 173, pp. 445–456, Mar. 2021, doi: 10.1016/j.ijbiomac.2021.01.125. | spa |
| dc.relation.references | [61] Y. A. ALVAREZ SIERRA, “Protocolo de Uso y Aprovechamiento del Asai en la Actividad Artesanal,” p. 33, Mar. 2015. | spa |
| dc.relation.references | [62] A. de M. Barbosa, V. S. M. Rebelo, L. G. Martorano, and V. M. Giacon, “Caracterização de partículas de açaí visando seu potencial uso na construção civil,” Matéria (Rio J.), vol. 24, no. 3, p. e12435, 2019, doi: 10.1590/s1517-707620190003.0750. | spa |
| dc.relation.references | [63] L. A. de Sousa Ribeiro, G. P. Thim, M. O. Alvarez-Mendez, A. dos Reis Coutinho, N. P. de Moraes, and L. A. Rodrigues, “Preparation, characterization, and application of low-cost açaí seed-based activated carbon for phenol adsorption,” Int J Environ Res, vol. 12, no. 6, pp. 755–764, Dec. 2018, doi: 10.1007/s41742-018-0128-5. | spa |
| dc.relation.references | [64] G. R. Martins et al., “Chemical characterization, antioxidant and antimicrobial activities of açaí seed (Euterpe oleracea Mart.) extracts containing A- and B-type procyanidins,” LWT, vol. 132, p. 109830, Oct. 2020, doi: 10.1016/j.lwt.2020.109830. | spa |
| dc.relation.references | [65] G. R. Martins et al., “Açaí (Euterpe oleracea Mart.) Seed Extracts from Different Varieties: A Source of Proanthocyanidins and Eco-Friendly Corrosion Inhibition Activity,” Molecules, vol. 26, no. 11, p. 3433, Jun. 2021, doi: 10.3390/molecules26113433. | spa |
| dc.relation.references | [66] A. C. Lima, D. Silva, V. Silva, M. Godoy, M. Cammarota, and M. Gutarra, “β-Mannanase production by Penicillium citrinum through solid-state fermentation using açaí residual biomass (Euterpe oleracea),” Journal of Chemical Technology & Biotechnology, vol. 96, no. 10, pp. 2744–2754, 2021, doi: 10.1002/jctb.6818. | spa |
| dc.relation.references | [67] J. H. A. Rocha et al., “Circular Bioeconomy in the Amazon Rainforest: Evaluation of Açaí Seed Ash as a Regional Solution for Partial Cement Replacement,” Sustainability, vol. 14, no. 21, p. 14436, Nov. 2022, doi: 10.3390/su142114436. | spa |
| dc.relation.references | [68] F. T. A. Jorge, A. S. da Silva, and G. V. Brigagão, “Açaí waste valorization via mannose and polyphenols production: techno-economic and environmental assessment,” Biomass Conv. Bioref., Apr. 2022, doi: 10.1007/s13399-022-02681-0. | spa |
| dc.relation.references | [69] N. Salgado-Aristizabal, T. Agudelo-Patiño, S. Ospina-Corral, I. Álvarez-Lanzarote, and C. E. Orrego, “Environmental Life Cycle Analysis of Açaí (Euterpe oleracea) Powders Obtained via Two Drying Methods,” Processes, vol. 11, no. 8, p. 2290, Jul. 2023, doi: 10.3390/pr11082290. | spa |
| dc.relation.references | [70] Ariandi, Yopi, and A. Meryandini, “Enzymatic Hydrolysis of Copra Meal by Mannanase from Streptomyces sp. BF3.1 for The Production of Mannooligosaccharides,” HAYATI Journal of Biosciences, vol. 22, no. 2, pp. 79–86, Apr. 2015, doi: 10.4308/hjb.22.2.79. | spa |
| dc.relation.references | [71] J. Arnling Bååth, A. Martínez-Abad, J. Berglund, J. Larsbrink, F. Vilaplana, and L. Olsson, “Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation,” Biotechnol Biofuels, vol. 11, no. 1, p. 114, Dec. 2018, doi: 10.1186/s13068-018-1115-y. | spa |
| dc.relation.references | [72] P. S. Chauhan, P. Sharma, N. Puri, and N. Gupta, “A process for reduction in viscosity of coffee extract by enzymatic hydrolysis of mannan,” Bioprocess Biosyst Eng, vol. 37, no. 7, pp. 1459–1467, Jul. 2014, doi: 10.1007/s00449-013-1118-9. | spa |
| dc.relation.references | [73] K. Suzuki et al., “Purification, Cloning, Functional Expression, Structure, and Characterization of a Thermostable β-Mannanase from Talaromyces trachyspermus B168 and Its Efficiency in Production of Mannooligosaccharides from Coffee Wastes,” Journal of Applied Glycoscience, vol. 65, pp. 13–21, May 2018, doi: 10.5458/jag.jag.JAG-2017_018. | spa |
| dc.relation.references | [74] T. Jooste, M. P. García-Aparicio, M. Brienzo, W. H. van Zyl, and J. F. Görgens, “Enzymatic Hydrolysis of Spent Coffee Ground,” Appl Biochem Biotechnol, vol. 169, no. 8, pp. 2248–2262, Apr. 2013, doi: 10.1007/s12010-013-0134-1. | spa |
| dc.relation.references | [75] A. Sachslehner, G. Foidl, N. Foidl, G. Gübitz, and D. Haltrich, “Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii,” Journal of Biotechnology, vol. 80, no. 2, pp. 127–134, Jun. 2000, doi: 10.1016/S0168-1656(00)00253-4. | spa |
| dc.relation.references | [76] C. R. F. Terrasan, W. G. de Morais Junior, and F. J. Contesini, “Enzyme Immobilization for Oligosaccharide Production,” in Encyclopedia of Food Chemistry, Elsevier, 2019, pp. 415–423. doi: 10.1016/B978-0-08-100596-5.22444-X. | spa |
| dc.relation.references | [77] S. Dhiman, B. Srivastava, G. Singh, M. Khatri, and S. K. Arya, “Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin: An easy and cost effective approach for the improvement of enzyme properties,” International Journal of Biological Macromolecules, vol. 156, pp. 1347–1358, Aug. 2020, doi: 10.1016/j.ijbiomac.2019.11.175. | spa |
| dc.relation.references | [78] X. Chen, Z. Tian, H. Zhou, G. Zhou, and H. Cheng, “Enhanced Enzymatic Performance of β-Mannanase Immobilized on Calcium Alginate Beads for the Generation of Mannan Oligosaccharides,” Foods, vol. 12, no. 16, p. 3089, Aug. 2023, doi: 10.3390/foods12163089. | spa |
| dc.relation.references | [79] A. Fernández-Ríos, J. Laso, M. Margallo, and R. Aldaco, “The Environmental Impact of ‘Superfoods’: A Space for Debate and Joint Reflection,” in The 2nd International Electronic Conference on Foods - “Future Foods and Food Technologies for a Sustainable World,” MDPI, Oct. 2022, p. 123. doi: 10.3390/Foods2021-11022. | spa |
| dc.relation.references | [80] “5 problemas ambientales en Brasil 2022 - ¡Descúbrelos aquí!,” ecologiaverde.com. Accessed: Nov. 05, 2023. [Online]. Available: https://www.ecologiaverde.com/problemas-ambientales-en-brasil-4057.html | spa |
| dc.relation.references | [81] A. Sluiter, “Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005,” Technical Report, 2008. | spa |
| dc.relation.references | [82] B. Rivas, A. Torrado, P. Torre, A. Converti, and J. M. Domínguez, “Submerged Citric Acid Fermentation on Orange Peel Autohydrolysate,” J. Agric. Food Chem., vol. 56, no. 7, pp. 2380–2387, Apr. 2008, doi: 10.1021/jf073388r. | spa |
| dc.relation.references | [83] S. L. Murillo-Franco, J. D. Galvis-Nieto, and C. E. Orrego, “Encapsulation of Euterpe oleracea pulp by vacuum drying: Powder characterization and antioxidant stability,” Journal of Food Engineering, vol. 345, p. 111416, May 2023, doi: 10.1016/j.jfoodeng.2023.111416. | spa |
| dc.relation.references | [84] L. F. Ballesteros, M. A. Cerqueira, J. A. Teixeira, and S. I. Mussatto, “Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment,” Carbohydrate Polymers, vol. 127, pp. 347–354, Aug. 2015, doi: 10.1016/j.carbpol.2015.03.047. | spa |
| dc.relation.references | [85] “ASTM D1104 : Method of Test for Holocellulose in Wood.” Accessed: Jun. 02, 2023. [Online]. Available: https://global.ihs.com/doc_detail.cfm?document_name=ASTM%20D1104&item_s_key=00015411 | spa |
| dc.relation.references | [86] B. Hames, R. Ruiz, C. Scarlata, A. Sluiter, J. Sluiter, and D. Templeton, “Preparation of Samples for Compositional Analysis: Laboratory Analytical Procedure (LAP); Issue Date 08/08/2008,” Technical Report, 2008. | spa |
| dc.relation.references | [87] “Acid-insoluble lignin in wood and pulp, Test Method T 222 om-21.” Accessed: Jun. 02, 2023. [Online]. Available: https://imisrise.tappi.org/TAPPI/Products/01/T/0104T222.aspx | spa |
| dc.relation.references | [88] S. S. Nielsen, Food Analysis. Springer, 2017. | spa |
| dc.relation.references | [89] A. Sluiter, “Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP); Issue Date: 7/17/2005,” Technical Report, 2008. | spa |
| dc.relation.references | [90] A. C. P. de Lima et al., “Physicochemical characterization of residual biomass (seed and fiber) from açaí (Euterpe oleracea) processing and assessment of the potential for energy production and bioproducts,” Biomass Conv. Bioref., vol. 11, no. 3, pp. 925–935, Jun. 2021, doi: 10.1007/s13399-019-00551-w. | spa |
| dc.relation.references | [91] R. T. Buratto, M. J. Cocero, and Á. Martín, “Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction,” Chemical Engineering and Processing - Process Intensification, vol. 160, p. 108269, Mar. 2021, doi: 10.1016/j.cep.2020.108269. | spa |
| dc.relation.references | [92] Johnatt Oliveira, Luiza Martins, Andrea Komesu, and Rubens Maciel Filho, “Evaluation of alkaline delignification (naoh) of acai seeds (eutherpe oleracea) treated with h2so4 dilute and effect on enzymatic hydrolysis,” Chemical Engineering Transactions, vol. 43, pp. 499–504, 2015, doi: 10.3303/CET1543084. | spa |
| dc.relation.references | [93] W. Wycoff et al., “Chemical and nutritional analysis of seeds from purple and white açaí ( Euterpe oleracea Mart.),” Journal of Food Composition and Analysis, vol. 41, pp. 181–187, Aug. 2015, doi: 10.1016/j.jfca.2015.01.021. | spa |
| dc.relation.references | [94] S. de S. Barros et al., “Sementes de açaí (Euterpe precatoria Mart.) como uma nova fonte alternativa de celulose: Extração e caracterização,” Research, Society and Development, vol. 10, no. 7, Art. no. 7, Jun. 2021, doi: 10.33448/rsd-v10i7.16661. | spa |
| dc.relation.references | [95] C. E. Gómez Carvajal, “Determinacion de la capacidad antioxidante y fenoles totales del endocarpio del fruto de acai (euterpe oleracea),” Universidad de Bogotá Jorge Tadeo Lozano, p. 15, 2019, doi: 10/7832. | spa |
| dc.relation.references | [96] E. R. Soares et al., “Up-regulation of Nrf2-antioxidant signaling by Açaí (Euterpe oleracea Mart.) extract prevents oxidative stress in human endothelial cells,” Journal of Functional Foods, vol. 37, pp. 107–115, Oct. 2017, doi: 10.1016/j.jff.2017.07.035. | spa |
| dc.relation.references | [97] P. S. Melo, L. de O. R. Arrivetti, S. M. de Alencar, and L. H. Skibsted, “Antioxidative and prooxidative effects in food lipids and synergism with α-tocopherol of açaí seed extracts and grape rachis extracts,” Food Chemistry, vol. 213, pp. 440–449, Dec. 2016, doi: 10.1016/j.foodchem.2016.06.101. | spa |
| dc.relation.references | [98] R. H. Atalla and D. L. VanderHart, “Native Cellulose: A Composite of Two Distinct Crystalline Forms,” Science, vol. 223, no. 4633, pp. 283–285, Jan. 1984, doi: 10.1126/science.223.4633.283. | spa |
| dc.relation.references | [99] A. D. French and M. Santiago Cintrón, “Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index,” Cellulose, vol. 20, no. 1, pp. 583–588, Feb. 2013, doi: 10.1007/s10570-012-9833-y. | spa |
| dc.relation.references | [100] P. B. Filson, B. E. Dawson-Andoh, and D. Schwegler-Berry, “Enzymatic-mediated production of cellulose nanocrystals from recycled pulp,” Green Chem., vol. 11, no. 11, p. 1808, 2009, doi: 10.1039/b915746h. | spa |
| dc.relation.references | [101] S. Scudino, P. Donnadieu, K. B. Surreddi, K. Nikolowski, M. Stoica, and J. Eckert, “Microstructure and mechanical properties of Laves phase-reinforced Fe–Zr–Cr alloys,” Intermetallics, vol. 17, no. 7, pp. 532–539, Jul. 2009, doi: 10.1016/j.intermet.2009.01.007. | spa |
| dc.relation.references | [102] H. Bian, Y. Yang, and P. Tu, “Crystalline Structure Analysis of All-cellulose Nanocomposites Films Based on Corn and Wheat Straw,” In Review, preprint, May 2021. doi: 10.21203/rs.3.rs-511111/v1. | spa |
| dc.relation.references | [103] F. Grimaud et al., “In Vitro Synthesis and Crystallization of β-1,4-Mannan,” Biomacromolecules, vol. 20, no. 2, pp. 846–853, Feb. 2019, doi: 10.1021/acs.biomac.8b01457. | spa |
| dc.relation.references | [104] S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, “Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance,” Biotechnol Biofuels, vol. 3, no. 1, p. 10, Dec. 2010, doi: 10.1186/1754-6834-3-10. | spa |
| dc.relation.references | [105] A. Avanthi and R. Banerjee, “A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production,” Industrial Crops and Products, vol. 92, pp. 174–185, Dec. 2016, doi: 10.1016/j.indcrop.2016.08.009. | spa |
| dc.relation.references | [106] R. R. N. Mvondo, P. Meukam, J. Jeong, D. D. S. Meneses, and E. G. Nkeng, “Influence of water content on the mechanical and chemical properties of tropical wood species,” Results in Physics, vol. 7, pp. 2096–2103, Jan. 2017, doi: 10.1016/j.rinp.2017.06.025. | spa |
| dc.relation.references | [107] M. A. Cerqueira et al., “Structural and thermal characterization of galactomannans from non-conventional sources,” Carbohydrate Polymers, vol. 83, no. 1, pp. 179–185, Jan. 2011, doi: 10.1016/j.carbpol.2010.07.036. | spa |
| dc.relation.references | [108] P. K. Srivastava, D. Panwar, K. V. H. Prashanth, and M. Kapoor, “Structural Characterization and in Vitro Fermentation of β-Mannooligosaccharides Produced from Locust Bean Gum by GH-26 endo -β-1,4-Mannanase (ManB-1601),” J. Agric. Food Chem., vol. 65, no. 13, pp. 2827–2838, Apr. 2017, doi: 10.1021/acs.jafc.7b00123. | spa |
| dc.relation.references | [109] U. K. Jana and N. Kango, “Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans,” International Journal of Biological Macromolecules, vol. 149, pp. 931–940, Apr. 2020, doi: 10.1016/j.ijbiomac.2020.01.304. | spa |
| dc.relation.references | [110] H.-L. Jian, L.-W. Zhu, W.-M. Zhang, D.-F. Sun, and J.-X. Jiang, “Enzymatic production and characterization of manno-oligosaccharides from Gleditsia sinensis galactomannan gum,” International Journal of Biological Macromolecules, vol. 55, pp. 282–288, Apr. 2013, doi: 10.1016/j.ijbiomac.2013.01.025. | spa |
| dc.relation.references | [111] J. Chen, D. Liu, B. Shi, H. Wang, Y. Cheng, and W. Zhang, “Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology,” Carbohydrate Polymers, vol. 93, no. 1, pp. 81–88, Mar. 2013, doi: 10.1016/j.carbpol.2012.05.037. | spa |
| dc.relation.references | [112] K. Intaratrakul, S. Nitisinprasert, T.-H. Nguyen, D. Haltrich, and S. Keawsompong, “Manno-oligosaccharides from copra meal: Optimization of its enzymatic production and evaluation its potential as prebiotic,” Bioactive Carbohydrates and Dietary Fibre, vol. 27, p. 100292, May 2022, doi: 10.1016/j.bcdf.2021.100292. | spa |
| dc.relation.references | [113] D. A. Gonçalves, A. González, D. Roupar, J. A. Teixeira, and C. Nobre, “How prebiotics have been produced from agro-industrial waste: An overview of the enzymatic technologies applied and the models used to validate their health claims,” Trends in Food Science & Technology, vol. 135, pp. 74–92, May 2023, doi: 10.1016/j.tifs.2023.03.016. | spa |
| dc.relation.references | [114] S. Malgas, J. S. van Dyk, S. Abboo, and B. I. Pletschke, “The inhibitory effects of various substrate pre-treatment by-products and wash liquors on mannanolytic enzymes,” Journal of Molecular Catalysis B: Enzymatic, vol. 123, pp. 132–140, Jan. 2016, doi: 10.1016/j.molcatb.2015.11.014. | spa |
| dc.relation.references | [115] F. A. de Moura, F. T. Macagnan, and L. P. da Silva, “Oligosaccharide production by hydrolysis of polysaccharides: a review,” Int J Food Sci Technol, vol. 50, no. 2, pp. 275–281, Feb. 2015, doi: 10.1111/ijfs.12681. | spa |
| dc.relation.references | [116] J. Rungruangsaphakun and S. Keawsompong, “Optimization of hydrolysis conditions for the mannooligosaccharides copra meal hydrolysate production,” 3 Biotech, vol. 8, no. 3, p. 169, Mar. 2018, doi: 10.1007/s13205-018-1178-2. | spa |
| dc.relation.references | [117] S. A. Pradeep, L. J. Rodríguez, A. B. Kousaalya, S. Farahani, C. E. Orrego, and S. Pilla, “Effect of silane-treated pine wood fiber (PWF) on thermal and mechanical properties of partially biobased composite foams,” Composites Part C: Open Access, vol. 8, p. 100278, Jul. 2022, doi: 10.1016/j.jcomc.2022.100278. | spa |
| dc.relation.references | [118] S. K. C. Chang and Y. Zhang, “Protein Analysis,” in Food Analysis, S. S. Nielsen, Ed., in Food Science Text Series. , Cham: Springer International Publishing, 2017, pp. 315–331. doi: 10.1007/978-3-319-45776-5_18. | spa |
| dc.relation.references | [119] I. P. Wood, A. Elliston, P. Ryden, I. Bancroft, I. N. Roberts, and K. W. Waldron, “Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay,” Biomass and Bioenergy, vol. 44, pp. 117–121, Sep. 2012, doi: 10.1016/j.biombioe.2012.05.003. | spa |
| dc.relation.references | [120] F. Dong et al., “Immobilization of a Novel ESTBAS Esterase from Bacillus altitudinis onto an Epoxy Resin: Characterization and Regioselective Synthesis of Chloramphenicol Palmitate,” Catalysts, vol. 9, no. 7, p. 620, Jul. 2019, doi: 10.3390/catal9070620. | spa |
| dc.relation.references | [121] Z. Feng et al., “Salt crystallization-assisted degradation of epoxy resin surface in simulated marine environments,” Progress in Organic Coatings, vol. 149, p. 105932, Dec. 2020, doi: 10.1016/j.porgcoat.2020.105932. | spa |
| dc.relation.references | [122] T. Theophile, Infrared Spectroscopy: Materials Science, Engineering and Technology. BoD – Books on Demand, 2012. | spa |
| dc.relation.references | [123] H. Liu, C. Hao, Y. Zhang, H. Yang, and R. Sun, “The interaction of graphene oxide-silver nanoparticles with trypsin: Insights from adsorption behaviors, conformational structure and enzymatic activity investigations,” Colloids and Surfaces B: Biointerfaces, vol. 202, p. 111688, Jun. 2021, doi: 10.1016/j.colsurfb.2021.111688. | spa |
| dc.relation.references | [124] M. R. Karim and F. Hashinaga, “Preparation and properties of immobilized pummelo limonoid glucosyltransferase,” Process Biochemistry, vol. 38, no. 5, pp. 809–814, Dec. 2002, doi: 10.1016/S0032-9592(02)00233-9. | spa |
| dc.relation.references | [125] N. Miletić, A. Nastasović, and K. Loos, “Immobilization of biocatalysts for enzymatic polymerizations: Possibilities, advantages, applications,” Bioresource Technology, vol. 115, pp. 126–135, Jul. 2012, doi: 10.1016/j.biortech.2011.11.054. | spa |
| dc.relation.references | [126] W. Sichina J., “Characterization of Polymers by TMA,” 2000. Accessed: Oct. 10, 2023. [Online]. Available: https://thermalsupport.com/wp-content/uploads/2018/05/PETech-28.pdf | spa |
| dc.relation.references | [127] N. S. Punekar, ENZYMES: Catalysis, Kinetics and Mechanisms. Singapore: Springer, 2018. doi: 10.1007/978-981-13-0785-0. | spa |
| dc.relation.references | [128] A. Dawood and K. Ma, “Applications of Microbial β-Mannanases,” Front. Bioeng. Biotechnol., vol. 8, p. 598630, Dec. 2020, doi: 10.3389/fbioe.2020.598630. | spa |
| dc.relation.references | [129] M. de L. T. M. Polizeli and M. Rai, Eds., Fungal Enzymes, 0 ed. CRC Press, 2016. doi: 10.1201/b15247. | spa |
| dc.relation.references | [130] X. Tang, X. Zhu, Y. Yang, Z. Qi, Y. Mu, and Z. Huang, “Research Article Product Composition Analysis and Process Research of Oligosaccharides Produced from Enzymatic Hydrolysis of High-Concentration Konjac Flour,” ACS Omega, vol. 5, no. 5, pp. 2480–2487, Feb. 2020, doi: 10.1021/acsomega.9b04218. | spa |
| dc.relation.references | [131] K. Hodd, “Epoxy Resins,” in Comprehensive Polymer Science and Supplements, Elsevier, 1989, pp. 667–699. doi: 10.1016/B978-0-08-096701-1.00178-6. | spa |
| dc.relation.references | [132] M. Abdel Gayed et al., “A Review of some prebiotics and probiotics supplementation effects on farmed fishes: with special reference to Mannan oligosaccharides (MOS),” Benha Veterinary Medical Journal, vol. 40, no. 1, pp. 141–145, Mar. 2021, doi: 10.21608/bvmj.2021.62545.1342. | spa |
| dc.relation.references | [133] Gobernación del Chocó, “PLAN DEPARTAMENTAL DE EXTENSIÓN AGROPECUARIA PDEA – CHOCÓ 2020-2023.” 2020. [Online]. Available: https://www.adr.gov.co/wp-content/uploads/2021/11/PDEA-CHOCO-2020-2023-Versio%CC%81n-Final-03-12-2020.pdf | spa |
| dc.relation.references | [134] J. C. Solarte-Toro, “Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case,” Trabajo de grado - Doctorado, Universidad Nacional de Colombia, 2022. Accessed: Nov. 04, 2023. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/83551 | spa |
| dc.relation.references | [135] M. S. Peters, K. D. Timmerhaus, and R. E. West, Plant Design and Economics for Chemical Engineers. McGraw-Hill Education, 2003. | spa |
| dc.relation.references | [136] “Inicio | Banco de la República.” Accessed: Nov. 04, 2023. [Online]. Available: https://www.banrep.gov.co/es | spa |
| dc.relation.references | [137] L. R. Dysert, “Sharpen your cost estimating skills,” Cost Engineering (Morgantown, West Virginia), vol. 45, pp. 22–30, Jan. 2003. | spa |
| dc.relation.references | [138] Laina Konstantina M., Eleni Panagiota N., Talfanidi Dioni, Boukouvalas Christos, Panagiotou Nickolaos, and Krokida Magdalini, “Life Cycle Assessment of Functional Animal Feeds Enriched with Natural Bioactive Compounds Derived from Medicinal Plants and Herbs,” Chemical Engineering Transactions, vol. 93, pp. 97–102, Jul. 2022, doi: 10.3303/CET2293017. | spa |
| dc.relation.references | [139] S. Wang, L. Cheng, and X. Liu, “Comparative study on the carbon footprints of extruded and pelleted feed and their potential for carbon reduction: A case study of grass carp feed,” Journal of Cleaner Production, vol. 381, p. 135192, Dec. 2022, doi: 10.1016/j.jclepro.2022.135192. | spa |
| dc.relation.references | [140] S. Gonzalez-Garcia, B. Gullón, and M. T. Moreira, “Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides,” Journal of Cleaner Production, vol. 172, pp. 4066–4073, Jan. 2018, doi: 10.1016/j.jclepro.2017.02.164. | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 540 - Química y ciencias afines | spa |
| dc.subject.lemb | Manano-oligosacáridos (MOS) | spa |
| dc.subject.proposal | Mananoligosacáridos | spa |
| dc.subject.proposal | Euterpe oleracea | spa |
| dc.subject.proposal | Inmovilización enzimática | spa |
| dc.subject.proposal | Valorización de residuos | spa |
| dc.subject.proposal | Semillas de naidí | spa |
| dc.subject.proposal | Enzymatic immobilization | eng |
| dc.subject.proposal | Mannan oligosaccharides | eng |
| dc.subject.proposal | Waste valorization | eng |
| dc.subject.proposal | Naidí seeds | eng |
| dc.subject.unesco | Enzimas inmovilizadas | spa |
| dc.title | Producción de oligosacáridos de manosa (MOS) a partir de semillas de naidí usando enzima comercial inmovilizada | spa |
| dc.title.translated | Production of mannan oligosaccharides (MOS) from naidí seeds using immobilized commercial enzyme | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
| oaire.fundername | Minciencias Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1059815038.2023.pdf
- Tamaño:
- 5.08 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

