Preliminary studies for modeling diploid potato crop

dc.contributor.advisorCotes Torres, José Miguel
dc.contributor.authorSaldaña Villota, Tatiana María
dc.contributor.researchgroupMejoramiento y Producción de Especies Andinas y Tropicalesspa
dc.date.accessioned2021-05-24T16:37:00Z
dc.date.available2021-05-24T16:37:00Z
dc.date.issued2020
dc.description.abstractLas variedades de papa diploide (Solanum phureja Juz. et Buk.) se cultivan en diferentes regiones de América del Sur, principalmente en Colombia, Ecuador, Perú y Bolivia. Estas variedades se destacan por sus características organolépticas y nutricionales. Sin embargo, no se han realizado suficientes estudios para mejorar la comprensión de la dinámica de crecimiento y desarrollo de este cultivo y mejorar las condiciones agronómicas del mismo. Con el objetivo de mejorar el conocimiento sobre estas variedades y su uso en estudios de modelación de cultivos, en esta investigación se evaluó el modelo SUBSTOR-Potato, y aunque el modelo predice bien el crecimiento de los tubérculos, no logra simular variables relacionadas con la parte vegetativa. Este estudio explica que las dificultades de SUBSTOR-Potato para simular la parte vegetativa se deben a fallas en la estimación del índice de área foliar y del uso eficiente de la radiación (RUE) en cultivos de papa. Por lo tanto, esta investigación también se llevó a cabo con el objetivo de estimar la fracción de radiación solar interceptada a partir del porcentaje de cobertura de follaje mediante el uso de fotografías. También muestra cómo estimar el índice de área foliar a partir de la cobertura del follaje aplicando la ley de Beer-Lambert. La expectativa, es que este conocimiento pueda usarse para desarrollar un modelo de cultivo de papa diploide. Finalmente, de acuerdo con las características del crecimiento en diferentes momentos fenológicos y de la importancia del RUE para comprender la productividad del cultivo, este estudio también tuvo como objetivo estimar el RUE del cultivo de papa diploide involucrando no solo la biomasa total acumulada respecto a la cantidad de PAR interceptada, sino que también tomó en cuenta las pérdidas de carbohidratos por respiración.spa
dc.description.abstractThe diploid potato cultivars (Solanum phureja Juz. et Buk.) are grown in different South American regions, mainly in Colombia, Ecuador, Peru, and Bolivia. These cultivars stand out for their organoleptic and nutritional characteristics. However, not enough studies have been carried out to improve the understanding of this crop growth and development dynamics and improve its agronomic conditions. With the aim of increase knowledge about these cultivars and their use in crop modeling studies, in this research, the SUBSTORPotato model was evaluated. Although the model predicts well the tuber growth, it has some issues simulating variables related to the vegetative part. This study explains that the difficulties of SUBSTOR-Potato to simulate the vegetative part are due to failures in the estimation of the leaf area index and the radiation use efficiency (RUE) in potato crops. Therefore, this research was also carried out with the objective of estimating the fraction of intercepted solar radiation from the foliage cover by using photographs. It also shows how to estimate the leaf area index from the foliage cover applying the Beer-Lambert law. The expectation is that this knowledge can be used to develop a diploid potato crop model. Finally, according to the growth characteristics at different phenological moments and the importance of the RUE to understand the productivity of the crop, this study also aimed to estimate the RUE of the diploid potato crop involving not only the total biomass accumulated concerning the amount of PAR intercepted, but also took into account the carbohydrate losses per respiration.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ciencias Agrariasspa
dc.description.researchareaFisiología de la Producción Vegetalspa
dc.format.extent46 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79548
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Agronómicasspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ciencias Agrariasspa
dc.relation.referencesAlamar, M. C., Tosetti, R., Landahl, S., Bermejo, A., & Terry, L. A. (2017). Assuring potato tuber quality during storage: A future perspective. Frontiers in Plant Science, 8(2034), 1–6. https://doi.org/10.3389/fpls.2017.02034spa
dc.relation.referencesAlva, A. K., Marcos, J., Stockle, C., Reddy, V. R., & Timlin, D. (2010). A crop simulation model for predicting yield and fate of nitrogen in irrigated potato rotation cropping system. Journal of Crop Improvement, 24(2), 142–152. https://doi.org/10.1080/15427520903581239spa
dc.relation.referencesAmthor, J. S. (1984). The role of maintenance respiration in plant growth. Plant, Cell and Environment, 7(8), 561–569. https://doi.org/10.1111/j.1365-3040.1984.tb01856.xspa
dc.relation.referencesAmthor, J. S. (2000). The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 Years later. Annals of Botany, 86(1), 1–20. https://doi.org/10.1006/anbo.2000.1175spa
dc.relation.referencesBirch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., & Toth, I. K. (2012). Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? In Food Security (Vol. 4, Issue 4). https://doi.org/10.1007/s12571-012-0220-1spa
dc.relation.referencesBoogaard, H. L., & Kroes, J. G. (1998). Leaching of nitrogen and phosphorus from rural areas to surface waters in the Netherlands. Nutrient Cycling in Agroecosystems, 50(1–3), 321–324. https://doi.org/10.1007/978-94-017-3021-1_35 Bréda, N. (2003). Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403–2417. https://doi.org/10.1093/jxb/erg263spa
dc.relation.referencesBrown, H. E., Huth, N., & Holzworth, D. (2011). A potato model built using the APSIM Plant.net Framework. MODSIM 2011 - 19th International Congress on Modelling and Simulation - Sustaining Our Future: Understanding and Living with Uncertainty, 961–967. https://doi.org/10.36334/modsim.2011.b3.brownspa
dc.relation.referencesBukasov, S. M. (1933). The potatoes of South America and their breeding possibilities. (According to data gathered by expeditions of the Institute of Plant Industry to Central and South America.). Bull. Appl. Bot, 58–192.spa
dc.relation.referencesBurgos, G., Salas, E., Amoros, W., Auqui, M., Muñoa, L., Kimura, M., & Bonierbale, M. (2009). Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. Journal of Food Composition and Analysis, 22(6), 503–508. https://doi.org/10.1016/j.jfca.2008.08.008spa
dc.relation.referencesCadena, M., Naranjo, A., & Ñústez, C. (2005). Evaluating the response of 60 Solanum phureja (Juz. et Buk.) genotypes to attacks by the Guatemalan moth (Tecia solanivora Povolny). Agronomía Colombiana, 23(1), 112–116.spa
dc.relation.referencesCampbell, G. S. (1986). Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology, 36(4), 317–321. https://doi.org/10.1016/0168-1923(86)90010-9spa
dc.relation.referencesCampbell, G. S. (1990). Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agricultural and Forest Meteorology, 49, 173–176.spa
dc.relation.referencesCampbell, G. S., & van Evert, F. K. (1995). Light interception by plant canopies: Efficiency and architecture. In Resource Capture by Crops (pp. 35–52). University Press.spa
dc.relation.referencesCampillo, C., García, M. I., Daza, C., & Prieto, M. H. (2010). Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images. HortScience, 45(10), 1459–1463.spa
dc.relation.referencesCorrell, D. (1962). Potato Its Wild Relatives (First Edit). Texas Research Foundation.spa
dc.relation.referencesDe la Casa, A., Ovando, G., Bressanini, L., Martínez, J., & Ibarra, E. (2008). Leaf Area Index in Potato Estimate From Canopy Cover. Agronomía Trop., 58(1), 61–64.spa
dc.relation.referencesDe la Casa, A., Ovando, G., Bressanini, L., Rodríguez, Á., & Martínez, J. (2007). Use of leaf area index and ground cover to estimate intercepted radiation in potato. Agricultura Técnica, 67(1), 78–85.spa
dc.relation.referencesDobson, G., Griffiths, D. W., Davies, H. V., & McNicol, J. W. (2004). Comparison of fatty acid and polar lipid contents of tubers from two potato species, Solanum tuberosum and Solanum phureja. Journal of Agricultural and Food Chemistry, 52(20), 6306–6314. https://doi.org/10.1021/jf049692rspa
dc.relation.referencesDodds, K. S., & Paxman, G. J. (1962). The Genetic System of Cultivated Diploid Potatoes. Evolution, 16(2), 154. https://doi.org/10.2307/2406194spa
dc.relation.referencesEl-Sharkawy, M. A. (2011). Overview: Early history of crop growth and photosynthesis modeling. BioSystems, 103(2), 205–211. https://doi.org/10.1016/j.biosystems.2010.08.004spa
dc.relation.referencesEscallón, R., Ramirez, M., & Ñústez, C. E. (2005). Evaluating potential yield and resistance to Phytophthora infestans (Mont. de Bary) in the Solanum phureja (Juz. et Buk.) yellow potato collection. Agronomia Colombiana, 23(1), 35–41.spa
dc.relation.referencesGayler, S., Wang, E., Priesack, E., Schaaf, T., & Maidl, F.-X. (2002). Modeling biomass growth, N-uptake and phenological development of potato crop. Geoderma, 105, 367–383. https://doi.org/10.1016/S0016-7061(01)00113-6spa
dc.relation.referencesGifford, R. M., Thorne, J. H., Hitz, W. D., & Giaquinta, R. T. (1984). Crop productivity and photoassimilate partitioning. Science, 225, 801–808. https://doi.org/10.1126/science.225.4664.801spa
dc.relation.referencesGriffin, T. S., Johnson, B. S., & Ritchie, J. T. (1993). A simulation model for potato growth and development: SUBSTOR-Potato version 2.0. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawai, Honolulu. Soil Science, 32.spa
dc.relation.referencesGutaker, R. M., Weiß, C. L., Ellis, D., Anglin, N. L., Knapp, S., Luis Fernández-Alonso, J., Prat, S., & Burbano, H. A. (2019). The origins and adaptation of European potatoes reconstructed from historical genomes. Nature Ecology and Evolution, 3(July). https://doi.org/10.1038/s41559-019-0921-3spa
dc.relation.referencesGuzmán, M., & Rodríguez, P. (2010). Susceptibility of Solanum phureja (Juz. et Buk.) to potato yellow vein virus. Agronomía Colombiana, 28(2), 219–224.spa
dc.relation.referencesHansen, S., Abrahamsen, P., Petersen, C. T., & Styczen, M. (2012). DAISY: Model, use, calibration and validation. Transactions of the ASABE, 55(4), 1315–1333.spa
dc.relation.referencesHariharan, I. K., Wake, D. B., & Wake, M. H. (2016). Indeterminate growth: Could it represent the ancestral condition? Cold Spring Harbor Perspectives in Biology, 8(2), 1–17. https://doi.org/10.1101/cshperspect.a019174spa
dc.relation.referencesHatfield, J. (2014). Radiation use efficiency: Evaluation of cropping and management systems. Agronomy Journal, 106(5), 1820–1827. https://doi.org/10.2134/agronj2013.0310spa
dc.relation.referencesHaverkort, A. J., Franke, A. C., Steyn, J. M., Pronk, A. A., Caldiz, D. O., & Kooman, P. L. (2015). A Robust Potato Model: LINTUL-Potato-DSS. Potato Research, 58(4), 313–327. https://doi.org/10.1007/s11540-015-9303-7spa
dc.relation.referencesHaverkort, A. J., & Top, J. L. (2011). The potato ontology: Delimitation of the domain, modelling concepts, and prospects of performance. Potato Research, 54(2), 119–136. https://doi.org/10.1007/s11540-010-9184-8spa
dc.relation.referencesHawkes, J. G. (1956). Taxonomic studies on the tuber ‐ bearing Solanums. 1: Solanum tuberosum and the tetraploid species complex. Proceedings of the Linnean Society of London, 166(1–2), 97–144. https://doi.org/10.1111/j.1095-8312.1956.tb00754.xspa
dc.relation.referencesHawkes, J. G. (1990). The Potato: Evolution, biodiversity and genetic resources. Smithsonian Institution Press.spa
dc.relation.referencesHodges, T., Johnson, S. L., & Johnson, B. S. (1992). A Modular Structure for crop simulation models: Implemented in the SIMPOTATO model. Agronomy Journal, 84(5), 911–915. https://doi.org/10.2134/agronj1992.00021962008400050027xspa
dc.relation.referencesHoogenboom, G., Porter, C. H., Boote, K. J., Shelia, V., Wilkens, P. W., Singh, U., White, J. W., Asseng, S., Lizaso, J. I., Moreno, L. P., Pavan, W., Ogoshi, R., Hunt, L. A., Tsuji, G. Y., & Jones, J. W. (2019). The DSSAT crop modeling ecosystem. In K. J. Boote (Ed.), Advances in Crop Modeling for a Sustainable Agriculture (pp. 173–216). Burleigh Dodds Science Publishing.spa
dc.relation.referencesHoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., Singh, U., White, J. W., Hunt, L. A., Ogoshi, R., Lizaso, J. I., Koo, J., Asseng, S., Singels, A., Moreno, L. P., & Jones, J. W. (2018). Decision Support System for Agrotechnology Transfer (DSSAT). Version 4.7.2 (4.7.2). www.DSSAT.netspa
dc.relation.referencesIngram, K. T., & McCloud, D. E. (1984). Simulation of Potato Crop Growth and Development 1. Crop Science, 24(1), 21–27. https://doi.org/10.2135/cropsci1984.0011183x002400010006xspa
dc.relation.referencesJamieson, P. D., Zyskowski, R. F., Sinton, S. M., Brown, H. E., & Butler, R. C. (2006). Potato calculator: A tool for scheduling nitrogen fertiliser applications. Agronomy New Zealand, 36(July 2015), 49–53.spa
dc.relation.referencesJennings, S. A., Koehler, A. K., Nicklin, K. J., Deva, C., Sait, S. M., & Challinor, A. J. (2020). Global Potato Yields Increase Under Climate Change With Adaptation and CO2 Fertilisation. Frontiers in Sustainable Food Systems, 4(December). https://doi.org/10.3389/fsufs.2020.519324spa
dc.relation.referencesJonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., & Baret, F. (2004). Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121, 19–35. https://doi.org/10.1016/j.agrformet.2003.08.027spa
dc.relation.referencesJones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3–4), 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7spa
dc.relation.referencesKadaja, J., & Tooming, H. (2004). Potato production model based on principle of maximum plant productivity. Agricultural and Forest Meteorology, 127(1–2), 17–33. https://doi.org/10.1016/j.agrformet.2004.08.003spa
dc.relation.referencesLenz-Wiedemann, V. I. S., Klar, C. W., & Schneider, K. (2010). Development and test of a crop growth model for application within a Global Change decision support system. Ecological Modelling, 221(2), 314–329. https://doi.org/10.1016/j.ecolmodel.2009.10.014spa
dc.relation.referencesLi, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., Bregaglio, S., Buis, S., Confalonieri, R., Fumoto, T., Gaydon, D., Marcaida, M., Nakagawa, H., Oriol, P., Ruane, A. C., Ruget, F., Singh, B., Singh, U., Tang, L., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. https://doi.org/10.1111/gcb.12758spa
dc.relation.referencesLigarreto, G., & Suárez, M. (2003). Evaluation of the potential of genetics resources of creole potato (Solanum phureja) for industrial quality. Agronomía Colombiana, 21(1–3), 83–94.spa
dc.relation.referencesLuo, S., He, Y., Li, Q., Jiao, W., Zhu, Y., & Zhao, X. (2020). Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage. Plant Methods, 16(1), 1–14. https://doi.org/10.1186/s13007-020-00693-3spa
dc.relation.referencesLutaladio, N., & Castaldi, L. (2009). Potato: The hidden treasure. Journal of Food Composition and Analysis, 22(6), 491–493. https://doi.org/10.1016/j.jfca.2009.05.002spa
dc.relation.referencesMann, J. E., Curry, G. L., DeMichele, D. W., & Baker, D. N. (1980). Light Penetration in a Row-Crop with Random Plant Spacing1. Agronomy Journal, 72(1), 131. https://doi.org/10.2134/agronj1980.00021962007200010026xspa
dc.relation.referencesMonsi, M., & Saeki, T. (1953). Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap. Journ. Bot., 14, 22–52.spa
dc.relation.referencesMonteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 281, 277–294. https://doi.org/10.1098/rstb.1977.0140spa
dc.relation.referencesMoslemkhani, K., Mozafari, J., Shams-Bakhsh, M., & Mohamadi, E. (2012). Expressions of some defense genes against Ralstonia Solanacearum in susceptible and resistant potato genotypes under in vitro conditions. Iran. J. Plant Path., 48(2), 57–60.spa
dc.relation.referencesMurchie, E. H., Townsend, A., & Reynolds, M. (2019). Crop Radiation Capture and Use Efficiency. In R. Savin & G. Slafer (Eds.), Crop Science (pp. 73–106). Springer. https://doi.org/10.1007/978-1-4939-8621-7spa
dc.relation.referencesNIKON®. (2019). Capture NX-D Reference Manual (pp. 1–58).spa
dc.relation.referencesOvchinnikova, A., Krylova, E., Gavrilenko, T., Smekalova, T., Zhuk, M., Knapp, S., & Spooner, D. M. (2011). Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society, 165(2), 107–155. https://doi.org/10.1111/j.1095-8339.2010.01107.xspa
dc.relation.referencesPatrignani, A., & Ochsner, T. E. (2015). Canopeo: A powerful new tool for measuring fractional green canopy cover. Agronomy Journal, 107(6), 2312–2320. https://doi.org/10.2134/agronj15.0150spa
dc.relation.referencesPregno, L. M., & Armour, J. D. (1992). Boron deficiency and toxicity in potato cv. Sebago on an Oxisol of the Atherton Tablelands, North Queensland. Australian Journal of Experimental Agriculture, 32(2), 251–253. https://doi.org/10.1071/EA9920251spa
dc.relation.referencesR Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRaymundo, R., Kleinwechter, U., & Asseng, S. (2014). Virtual potato crop modeling: A comparison of genetic coefficients of the DSSAT-SUBSTOR potato model with breeding goals for developing countries. January, 1–15. https://doi.org/10.5281/zenodo.7687spa
dc.relation.referencesReddy, B., Mandal, R., Chakroborty, M., Hijam, L., & Dutta, P. (2018). A review on potato (Solanum tuberosum L.) and its genetic diversity. International Journal of Genetics, 10(2), 360–364. https://doi.org/10.9735/0975-2862.10.2.360-364spa
dc.relation.referencesRitchie, J. T., Griffin, T. S., & Johnson, B. S. (1995). SUBSTOR: Functional model of potato growth, development and yield. In P. Kabat, B. Marshall, B. J. van der Broek, J. Vos, & H. van Keulen (Eds.), Modelling and Parameterization of the Soil-Plant-Atmosphere System: A Comparison of Potato Growth Models (pp. 401–435). Wageningen Pers.spa
dc.relation.referencesRussell, G., Marshall, B., & Jarvis, P. . (1989). Plant canopies: their growth, form and function (G. Russell, B. Marshall, & P. G. Jarvis (eds.)). Cambridge University Press.spa
dc.relation.referencesSaqib, M., & Anjum, M. A. (2021). Applications of decision support system: A case study of solanaceous vegetables. Phyton - International Journal of Experimental Botany, 90(2), 331–352. https://doi.org/10.32604/phyton.2021.011685spa
dc.relation.referencesSinclair, T., & Muchow, R. (1999). Radiation Use Efficiency. Advances in Agronomy, 65, 215–265. https://doi.org/10.1016/s0065-2113(08)60914-1spa
dc.relation.referencesSingh, J., Govindakrishnan, P., Lal, S., & Aggarwal, P. (2005). Increasing the efficiency of agronomy experiments in potato using INFOCROP-POTATO model. Potato Research, 48(3–4), 131–152. https://doi.org/10.1007/BF02742372spa
dc.relation.referencesSinoquet, H., & Andrieu, B. (1993). The geometrical structure of plant canopies : characterization and direct measurement methods. In Crop structure and light microclimate (Issue June, pp. 131–158).spa
dc.relation.referencesSpooner, D. M., Ghislain, M., Simon, R., Jansky, S. H., & Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80(4), 283–383. https://doi.org/10.1007/s12229-014-9146-yspa
dc.relation.referencesSteduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101(3), 426–437. https://doi.org/10.2134/agronj2008.0139sspa
dc.relation.referencesSteven, M. D., Biscoe, P. V., Jaggard, K. W., & Paruntu, J. (1986). Foliage cover and radiation interception. Field Crops Research, 13(C), 75–87. https://doi.org/10.1016/0378-4290(86)90012-2spa
dc.relation.referencesStöckle, C. O., & Kemanian, A. R. (2009). Crop Radiation Capture and Use Efficiency. Crop Physiology, 145–170. https://doi.org/10.1016/b978-0-12-374431-9.00007-4spa
dc.relation.referencesSukhotu, T., & Hosaka, K. (2006). Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers. Genome, 49(6), 636–647. https://doi.org/10.1139/G06-014spa
dc.relation.referencesThornley, J. H. M. (2011). Plant growth and respiration re-visited: Maintenance respiration defined it is an emergent property of, not a separate process within, the system and why the respiration: Photosynthesis ratio is conservative. Annals of Botany, 108(7), 1365–1380. https://doi.org/10.1093/aob/mcr238spa
dc.relation.referencesUrbanek, S. (2014). Package jpeg: Read and write JPEG images. 1–5. https://cran.r-project.org/package=jpegspa
dc.relation.referencesVose, J. M., Clinton, B. D., Sullivan, N. H., & Bolstad, P. V. (2008). Vertical leaf area distribution, light transmittance, and application of the Beer–Lambert Law in four mature hardwood stands in the southern Appalachians. Canadian Journal of Forest Research, 25(6), 1036–1043. https://doi.org/10.1139/x95-113spa
dc.relation.referencesWallach, D., Makowski, D., Jones, J. W., & Brun, F. (2019). Working with dynamic crop models. Methods, tools and examples for agroculture and environment (Third edit). Academic Press. https://doi.org/10.1016/c2011-0-06987-9spa
dc.relation.referencesWatson, D. J. (1947). Comparative Physiological Studies on the Growth of Field Crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Applied Biology, 11(41), 41–76. https://doi.org/10.1111/j.1744-7348.1953.tb02364.xspa
dc.relation.referencesWebb, N., Wood, J., & Nicholl, C. (2008). User Manual for the SunScan Canopy Analysis System Delta-T Devices Ltd.spa
dc.relation.referencesWhite, J. W., Hoogenboom, G., Kimball, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124(3), 357–368. https://doi.org/10.1016/j.fcr.2011.07.001spa
dc.relation.referencesWillmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90(5), 8995–9005.spa
dc.relation.referencesWolf, J. (2002). Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses. Climate Research, 21, 173–186.spa
dc.relation.referencesYamaguchi, J. (1978). Respiration and the growth efficiency in relation to crop productivity. J. Fac. Agric. Hokkaido Univ., 59, 59129.spa
dc.relation.referencesYang, J., Greenwood, D. J., Rowell, D. L., Wadsworth, G. A., & Burns, I. G. (2000). Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE. Agricultural Systems, 64(1), 37–53. https://doi.org/10.1016/S0308-521X(00)00010-Xspa
dc.relation.referencesZhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., Pavan, W., Shelia, V., Kim, K. S., Hernandez-Ochoa, I. M., Wallach, D., Porter, C. H., Stockle, C. O., Zhu, Y., & Asseng, S. (2019). A SIMPLE crop model. European Journal of Agronomy, 104(January), 97–106. https://doi.org/10.1016/j.eja.2019.01.009spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcPapa (Solanum phureja Juz. et Buk)
dc.subject.ddc580 - Plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalPotatoeng
dc.subject.proposalRadiation use efficiencyeng
dc.subject.proposalLeaf area indexeng
dc.subject.proposalFoliage covereng
dc.titlePreliminary studies for modeling diploid potato cropeng
dc.title.translatedEstudios preliminares para la modelación de variedades de papa diploidesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085253669.2020.pdf
Tamaño:
674.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: