Estudio de las propiedades electrónicas de la interfase manganeso antimoniuro de galio Mn/GaSb

dc.contributor.advisorRojas Cuervo, Ángela Marcelaspa
dc.contributor.advisorRey Gonzáles, Rafael Ramónspa
dc.contributor.authorMuñoz Reina, Eduardo Andresspa
dc.date.accessioned2025-04-03T15:50:31Z
dc.date.available2025-04-03T15:50:31Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl estudio de los materiales ha contribuido constantemente al desarrollo de nuevas tecnologías, siendo este un atractivo campo para la investigación, particularmente de los materiales conductores y semiconductores como el manganeso (Mn) y el antimoniuro de galio (GaSb), considerados importantes frente a la mejora en el rendimiento de dispositivos electrónicos. En el presente trabajo se busca analizar las propiedades estructurales y electrónicas de estos materiales y de la interfaz (Mn/GaSb). Se examinan sistemas de múltiples cristales ideales, en condiciones puras y de difusión, así como también la superposición de las capas (interfase), todo esto mediante cálculos ab-initio y de acuerdo a la teoría del funcional de la densidad (DFT) implementada en el código SIESTA, en la aproximación de gradiente generalizado GGA. Se obtiene como resultado, una energía mínima de estabilización para la interfaz sin difusión de -1 eV, a una distancia entre capas de 2.05 Å y de -0.58 eV a 2.02 Å para la interfase del sistema con difusión, mostrando una estabilización en una energía más alta para este último, y con una diferencia pequeña en la separación óptima de estabilización entre los dos sistemas de 0.03 A. Se genera además estos mismos sistemas con polarización de espín para el Mn, lo cual mostró no producir afectación magnética al GaSb en la juntura, siendo este un posible aislante de los efectos magnéticos del Mn para esta configuración (Texto tomado de la fuente).spa
dc.description.abstractThe study of materials has constantly contributed to the development of new technologies, making this an attractive field for research, particularly in the field of conductive and semiconductor materials such as manganese (Mn) and gallium antimonide (GaSb), considered important for improving the performance of electronic devices. In this work, we aim to analyze the structural and electronic properties of these materials and the interface (Mn/GaSb). We examine ideal multi-crystal systems, in pure and diffusion conditions, as well as the superposition of the layers (interface), all this by ab-initio calculations and according to the density functional theory (DFT) implemented in the SIESTA code, in the generalized gradient approximation GGA. The result is a minimum stabilization energy for the diffusionfree interface of -1 eV at an interlayer distance of 2.05 ˚A and of -0.58 eV at 2.02 ˚A for the diffusion system, showing a stabilization at a higher energy for the latter, and with a small difference in the optimal stabilization separation between the two systems of 0.03 ˚A. These same systems are also generated with spin polarization for Mn, which was shown not to produce magnetic effects on GaSb at the junction, this being a possible insulator of the magnetic effects of Mn for this configuration.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias-Físicaspa
dc.description.researchareaMateria Condensadaspa
dc.format.extentxiv, 49 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87833
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesE. Significados, “Que son los orbitales at´omicos,” 2024.spa
dc.relation.referencesJ. G. Euclides Velazco and A. Boada, “S´ ıntesis, caracterizaci´ on estructural y propiedades magn´ eticas de compuestos semiconductores del tipo dy(x) in(1−x)sb,” SciELO Analytics Saber, vol. 26, pp. 1315–0162, 2014.spa
dc.relation.referencesT. Tortajada, Tendencias Cient´ ıfico-Tecnol´ogicas. Retos, potencialidades y problemas sociales. Espa˜ na: Universidad Nacional de Educaci´on a distancia, Madrid, 2017.spa
dc.relation.referencesC. Zhao, Z. Li, T. Tang, J. Sun, W. Zhan, B. Xu, H. Sun, H. Jiang, K. Liu, S. Qu, Z. Wang, and Z. Wang, “Novel III-V semiconductor epitaxy for optoelectronic de vices through two-dimensional materials,” Progress in Quantum Electronics, vol. 76, p. 100313, 2021.spa
dc.relation.referencesI. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Journal of applied physics, vol. 89, no. 11, pp. 5815 5875, 2001.spa
dc.relation.referencesC. Kang, Y. Zhang, X. Zhu, L. Chen, and Z. Xiong, “Role of silicon on the conductivity GaSb surface: A first-principles study,” Vacuum, vol. 217, p. 112410, 2023.spa
dc.relation.referencesM. Curia, “Estudio fisicoqu´ ımico y catal´ ıtico del sistema Mn-o-v,” tech. rep., Universi dad Nacional de la Plata, 2010.spa
dc.relation.referencesJ. A. Calder´on, C. L. Ter´an, H. P. Quiroz, A. Dussan, and M. Manso-Silv´ an, “Ion migration in GaSb/Mn multilayers for memories applications: Study of Mn diffusion into the GaSb layers,” Journal of Alloys and Compounds, vol. 960, p. 170587, 2023.spa
dc.relation.referencesH. Luo, G. Kim, M. Cheon, X. Chen, M. Na, S. Wang, B. McCombe, X. Liu, Y. Sasaki, T. Wojtowicz, J. Furdyna, G. Boishin, and L. Whitman, “Ferromagnetic GaSb/Mn digital alloys,” Physica E: Low-dimensional Systems and Nanostructures, vol. 20, no. 3, pp. 338–345, 2004. Proceedings of the 11th International Conference on Narrow Gap Semiconductors.spa
dc.relation.referencesW. I. Gonz´alez Rojas, “S´ ıntesis y estudio de la propiedades estructurales y morfol´ ogicas de multicapas de GaSb/Mn para aplicaciones en espintr´ onica,” 2021.spa
dc.relation.referencesJ. A. Calder´ on C´ ombita, “Estudio de las propiedades f´ ısicas de sistemas multicapas basados en GaSbMn para aplicaciones en espintr´ onica,” 2021.spa
dc.relation.referencesM. Priyanka and G. Nath, “A review on the use of DFT for the prediction of the properties of nanomaterials,” Royal Society of Chemistry, vol. 11, p. 170587, 2021.spa
dc.relation.referencesT. B. Adrien Dousse and G. Dasgupta, “Modeling nanomaterial physical properties: theory and simulation,” International Journal of Smart and Nano Materials, vol. 10, no. 2, pp. 116–143, 2019.spa
dc.relation.referencesG. W. Fernando, “Chapter 6- generalized Kohn–Sham density functional theory via effective action formalism,” in Metallic Multilayers and their Applications (G. W. Fer nando, ed.), vol. 4 of Handbook of Metal Physics, pp. 131–156, Elsevier, 2008.spa
dc.relation.referencesN. Se˜ na, A. Dussan, F. Mesa, E. Casta˜ no, and R. Gonz´ alez-Hern´andez, “Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: A DFT study,” Journal of Applied Physics, vol. 120, p. 051704, 07 2016.spa
dc.relation.referencesA. Titov, E. Kulatov, Y. Uspenskii, V. Tugushev, F. Michelini, and H. Mariette, “Ab initio study of electronic and magnetic properties of GaSb/Mn and GaAs/Mn digital ferromagnetic heterostructures,” in Magnetism and Magnetic Materials, vol. 152 of Solid State Phenomena, pp. 533–536, Trans Tech Publications Ltd, 10 2009.spa
dc.relation.referencesA. C. Lawson, A. C. Larson, M. C. Aronson, S. Johnson, Z. Fisk, P. C. Canfield, J. D. Thompson, and R. B. Von Dreele, “Magnetic and crystallographic order in-manganese,” Journal of Applied Physics, vol. 76, pp. 7049–7051, 11 1994.spa
dc.relation.referencesA. J. Bradley and J. Thewlis, “The Crystal Structure of α-Manganese,” Proceedings of the Royal Society of London Series A, vol. 115, pp. 456–471, July 1927.spa
dc.relation.referencesT. M. Project, “Materials explorer Mn,” 2024.spa
dc.relation.referencesO. De la Pe˜ na, “Estado solido 1,” tech. rep., Benemerita Universidad Aut´onoma de Puebla, 2021.spa
dc.relation.referencesO. Madelung, Semiconductors: Data Handbook. London: Springer, 2004.spa
dc.relation.referencesH. Quiroz, N. Cruz, I. Rodriguez, A. Dussan Cuenca, and X. Velasquez, “Propiedades f´ ısicas de nanoestructuras de GaSb para aplicaciones en espintr´ onica,” Revista EIA, vol. 16, p. 89, 01 2019.spa
dc.relation.referencesJ. Kopaczek, R. Kudrawiec, W. Linhart, M. Rajpalke, K. Yu, T. Jones, M. Ashwin, J. Misiewicz, and T. Veal, “Temperature dependence of the band gap of GaSb1−xBix alloys with 0 < x < 0,042 determined by photoreflectance,” Applied Physics Letters, vol. 103, pp. 261907–261907, 12 2013.spa
dc.relation.referencesD. Bagayoko, “Understanding density functional theory (DFT) and completing it in practice,” AIP Advances, vol. 4, p. 127104, 12 2014.spa
dc.relation.referencesS. Project, “What is SIESTA?,” 2024.spa
dc.relation.referencesM. Wolfram, K. Holthausen, A Chemist´s Guide to Density Funcional Theory. Weinheim: WILEY-VCH, 2001.spa
dc.relation.referencesN. Kohanoff, j. Gidopoulos, “Functional theory: Basics, new trends and applications,” Handbook of Molecular Physics and Quantum Chemistry, vol. 2, pp. 532–568, 2003.spa
dc.relation.referencesQuimica.ES, “Teoria del funcional de la densidad,” 2024.spa
dc.relation.referencesR. Cuadrado, “Simulacion de propiedades electr´onicas y magneticas de sistemas me sosc´ opicos,” Master’s thesis, Universidad Autonoma de Madrid, 2011.spa
dc.relation.referencesP. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–B871, Nov 1964.spa
dc.relation.referencesJ. Garza, “El metodo de Khon-Sham,” tech. rep., Universidad Aut´onoma Metropolitana-Izatapalapa, 2018.spa
dc.relation.referencesA. D. Becke, “Perspective: Fifty years of density-functional theory in chemical physics,” The Journal of Chemical Physics, vol. 140, p. 18A301, 04 2014.spa
dc.relation.referencesJ. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, vol. 46, pp. 6671 6687, Sep 1992.spa
dc.relation.referencesC. Stampfl and C. G. Van de Walle, “Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation,” Phys. Rev. B, vol. 59, pp. 5521–5535, Feb 1999.spa
dc.relation.referencesS. Project., “Pseudopotential for SIESTA,” 2024.spa
dc.relation.referencesJ. M. Soler, E. Artacho, J. D. Gale, A. Garc´ ıa, J. Junquera, P. Ordej´ on, and D. S´ anchez Portal, “The siesta method for ab initio order-n materials simulation,” Journal of Phy sics: Condensed Matter, vol. 14, p. 2745, mar 2002.spa
dc.relation.referencesP. Ordej´ on, “Linear scaling ab initio calculations in nanoscale materials with siesta,” physica status solidi (b), vol. 217, no. 1, pp. 335–356, 2000.spa
dc.relation.referencesE. Mete, “DFT in practe: PartII (pseudopotentials),” tech. rep., Balikesir University, 2009.spa
dc.relation.referencesM. Square, “Pseudopotential for Efficient Simulation,” 2019.spa
dc.relation.referencesA. Garcia, ATOM User Manual. Barcelona: ICMAB-CSIC, 2014.spa
dc.relation.referencesV. Villa, “Pseudopotenciales transferibles para elementos de transici´on en la teor´ ıa del funcional de la densidad,” Master’s thesis, Universidad de Valladolid, 2017.spa
dc.relation.referencesN. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave calculations,” Phys. Rev. B, vol. 43, pp. 1993–2006, Jan 1991.spa
dc.relation.referencesR. Marchiori, Nanoestructuras. Weinheim: Wiley-VCH, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembALEACIONES DE MANGANESOspa
dc.subject.lembManganese alloyseng
dc.subject.lembALEACIONES MAGNETICASspa
dc.subject.lembMagnetic alloyseng
dc.subject.lembMATERIALES MAGNETICOSspa
dc.subject.lembMagnetic materialseng
dc.subject.lembPOLARIZACION (FISICA NUCLEAR)spa
dc.subject.lembPolarization (nuclear physics)eng
dc.subject.proposalDFTspa
dc.subject.proposalInterfacespa
dc.subject.proposalSIESTAspa
dc.subject.proposalPseudo potencialspa
dc.subject.proposalDensidad electrónicaspa
dc.subject.proposalPDOSspa
dc.subject.proposalInterfaceeng
dc.subject.proposalPseudopotentialeng
dc.subject.proposalElectron densityeng
dc.titleEstudio de las propiedades electrónicas de la interfase manganeso antimoniuro de galio Mn/GaSbspa
dc.title.translatedStudy of the electronic properties of the manganese antimonide gallium Mn/GaSb interfaceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentImagespa
dc.type.contentPhysicalObjectspa
dc.type.contentSoftwarespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79731997.2025.pdf
Tamaño:
6.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: