Evaluación tecnoeconómica de la torrefacción de biomasa residual de la agroindustria de la palma de aceite en un horno rotatorio

dc.contributor.advisorGómez Mejía, Alexánder
dc.contributor.authorMontealegre Yela, Nora Eliana
dc.contributor.researchgroupBiomasa y Optimización Térmica de Procesos - BIOTspa
dc.date.accessioned2021-06-29T19:55:33Z
dc.date.available2021-06-29T19:55:33Z
dc.date.issued2020
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractLa torrefacción es un proceso termoquímico que permite obtener un producto sólido con mayor densidad energética, cualidades hidrofóbicas y mayor resistencia a la degradación respecto a su biomasa. Igualmente, permite mejorar los costos de manipulación, almacenamiento y transporte del producto. En Colombia la industria de la palma de aceite es parte importante del sector bioenergético. Además, una planta con capacidad mayor procesa en promedio 40 t/h de racimo de fruta fresca. De esta manera, la planta genera residuos sólidos conformados por 8,8 t/h de tusa, 5,2 t/h de fibra y 2,4 t/h de cuesco. Por tales razones, el presente trabajo desarrolla un análisis tecnoeconómico que tiene un nivel de estudio de estimación de costos. Inicialmente, se plantea el diagrama de flujo del proceso de la torrefacción. Asimismo, se determinan las condiciones de torrefacción para cada residuo sólido. También, se dimensiona el horno rotatorio para la torrefacción de los flujos de biomasas por separado. Además, se utiliza la metodología de porcentajes con base en los costos de compra de los equipos y se estiman los costos de inversión y operación anuales. De esta forma, se establece el precio de venta para el material torrefacto en 1.236 COP/kg. Luego, se realiza el análisis financiero mediante el cálculo del VPN. Con ello se concluye que el proyecto es rentable financieramente para una tasa de oportunidad menor a 3,54 % con ganancia igual a 10 %. Por último, se realiza el análisis de sensibilidad que indica la dependencia de los precios finales hacia los costos de inversión, la capacidad y horas de producción anuales.spa
dc.description.abstractTorrefaction is a thermochemical process that allows to get a solid product with higher energy density, hydrophobic properties and greater resistance to degradation compared to its original biomass. Equally, it allows to improve the manipulation, storage and shipping costs. Moreover, Colombian oil palm industry is an important participant of the bioenergetic sector. Furthermore, a plant with greater capacity, processes an average of 40 t/h of fresh fruit bunches. Therefore, a plant generates solid wastes consisting of 8,8 t/h empty fruit bunches; 5,2 t/h of palm fiber and 2,4 t/h of palm kernel shell. For such reasons, the present investigation develops a techno-economic analysis with a study level of cost estimation. Initially, the torrefaction process flow diagram is suggested. Also, the torrefaction conditions for each solid waste are determined. Moreover, the rotary kiln used for the torrefaction of each biomass flow is dimensioned. Besides, the percentage of Delivered-Equipment Cost methodology is used to determine the Total Capital Investment and Annual Operating Cost. Thus, the sale price is settled in 1.236 COP/kg for torrefied material. Then, a financial analysis is done by calculating NPV. Based on this, it is concluded is financially viable at the return rate less than 3,54 % and 10 % profit. Finally, a sensitivity analysis is carried out and shows the dependence of the final prices to the investment costs, capacity and annual production hours.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaDiseño de sistemas energéticosspa
dc.format.extent183 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79740
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesNaciones Unidas, Acuerdo de París. 2015.spa
dc.relation.referencesJ. Kim, S. M. Sen, and C. T. Maravelias, “An optimization-based assessment framework for biomass-to-fuel conversion strategies,” Energy Environ. Sci., vol. 6, no. 4, pp. 1093–1104, 2013.spa
dc.relation.referencesEuropean Union, “Horizon 2020.” [Online]. Available: https://ec.europa.eu/programmes/horizon2020/. [Accessed: 15-May-2019].spa
dc.relation.referencesEuropean Union, “Climate strategies & targets.” [Online]. Available: https://ec.europa.eu/clima/policies/strategies_en. [Accessed: 15-May-2019].spa
dc.relation.referencesEuropean Climate Foundation, “Roadmap 2050. A practical guide to a prosperous low-carbon Europe. Technical analysis.,” 2010.spa
dc.relation.referencesGlobal Bioeconomy Summit, “Communiqué Global Bioeconomy Summit 2018,” 2018.spa
dc.relation.referencesGerman Federal Government, “Biorefineries Roadmap,” 2012.spa
dc.relation.referencesIEA Bioenergy, “Annual Report 2018,” 2019.spa
dc.relation.referencesInternational Renewable Energy Agency IRENA, “Renewable Energy Market Analysis: Latin America,” 2016.spa
dc.relation.referencesWorld Bioenergy Association, “Global Bioenergy Statistics 2016,” 2016.spa
dc.relation.referencesA. G. Rodríguez, A. O. Mondaini, and M. A. Hitschfeld, “Bioeconomía en América Latina y el Caribe: Contexto global y regional y perspectivas,” 2017.spa
dc.relation.referencesC. Razo, C. Ludeña, A. Saucedo, S. Astete-Miller, J. Hepp, and A. Vildósola, “Producción de biomasa para biocombustibles líquidos: el potencial de América latina y el Caribe,” Santiago de Chile, 2007.spa
dc.relation.referencesC. García Arbeláez, G. Vallejo, M. L. Higgings, and E. M. Escobar, “El Acuerdo de París. Así actuará Colombia frente al cambio climático,” 2016.spa
dc.relation.referencesCongreso de la Republica de Colombia, Ley N° 1715 del 13 de mayo de 2014, no. Mayo. 2014, p. 26.spa
dc.relation.referencesUnidad de Planeación Minero Energética UPME., “Integración de las energías renovables no convencionales en Colombia,” 2015.spa
dc.relation.referencesUnidad de Planeación Minero Energética UPME., “Plan Energetico Nacional Colombia: Ideario Energético 2050,” 2015.spa
dc.relation.referencesH. Escalante Hernández, J. Orduz Prada, H. J. Zapata Lesmes, M. C. Cardona Ruiz, and M. Duarte Ortega, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2010.spa
dc.relation.referencesSector Agroindustrial de la Caña ASOCAÑA, “Aspectos Generales del Sector Agroindustrial de la Caña 2017-2018,” 2018.spa
dc.relation.referencesFederación Nacional de Cultivadores de Palma de Aceite FEDEPALMA, “Informe Informe de Gestión 2017,” 2017.spa
dc.relation.referencesJ. A. Garcia-Nunez et al., “Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents,” Resour. Conserv. Recycl., vol. 110, pp. 99–114, 2016.spa
dc.relation.referencesG. F. Talero Rojas, “Evaluación del proceso de torrefacción de tusa y fibra de palma africana (Elaeis guineensis),” Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesB. Batidzirai, A. P. R. Mignot, W. B. Schakel, H. M. Junginger, and A. P. C. Faaij, “Biomass torrefaction technology: Techno-economic status and future prospects,” Energy, vol. 62, pp. 196–214, 2013.spa
dc.relation.referencesJ. A. García N., M. M. Cárdenas M., and E. E. Yáñez A., “Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia,” Rev. Palmas, vol. 31, no. 2, pp. 41–48, 2010.spa
dc.relation.referencesFederación Nacional de Cultivadores de Palma de Aceite FEDEPALMA, “Anuario Estadístico 2018 - La agroindustria de la palma de aceite en Colombia y en el mundo,” 2018.spa
dc.relation.referencesG. Talero, S. Rincón, and A. Gómez, “Biomass torrefaction in a standard retort: A study on oil palm solid residues,” Fuel, vol. 244, no. February, pp. 366–378, 2019.spa
dc.relation.referencesG. Talero, S. Rincón, and A. Gonzáles, “Torrefacción de tusa y fibra de palma africana ( Elaeis guineensis ) procedente de los Llanos Orientales. Determinación del efecto de la temperatura de torrefacción en las características de los productos,” Palmas, vol. 38, no. 1, pp. 27–47, 2017.spa
dc.relation.referencesY. J. Rueda-ordóñez, C. J. Arias-hernández, J. F. Manrique-Pinto, P. Gauthier-Maradei, and W. Antônio Bizzo, “Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend,” Bioresour. Technol., vol. 292, no. June, p. 121923, 2019.spa
dc.relation.referencesY. Uemura, W. N. Omar, T. Tsutsui, and S. B. Yusup, “Torrefaction of oil palm wastes,” Fuel, vol. 90, no. 8, pp. 2585–2591, 2011.spa
dc.relation.referencesD. A. Granados, H. I. Velásquez, and F. Chejne, “Energetic and exergetic evaluation of residual biomass in a torrefaction process,” Energy, vol. 74, pp. 181–189, 2014.spa
dc.relation.referencesC. F. Valdés et al., “Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process,” Appl. Therm. Eng., vol. 107, pp. 1201–1209, 2016.spa
dc.relation.referencesA. Gómez, W. Klose, and S. Rincón, Pirólisis de Biomasa: Cuesco de palma de aceite. 2008.spa
dc.relation.referencesW. Klose, S. Rincón, and A. Gómez, Procesos de transporte de biomasa y carbonizados en hornos rotatorios. 2016.spa
dc.relation.referencesM. Patel, X. Zhang, and A. Kumar, “Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1486–1499, 2016.spa
dc.relation.referencesB. Balagurumurthy, R. Singh, P. Ohri, A. Prakash, and T. Bhaskar, “Thermochemical Biorefinery,” in Recent Advances in Thermochemical Conversion of Biomass, Elsevier B.V., 2015, pp. 157–174.spa
dc.relation.referencesMercadoLibre Colombia LTDA, Biomass Conversion. 2012.spa
dc.relation.referencesM. J. C. van der Stelt, H. Gerhauser, J. H. A. Kiel, and K. J. Ptasinski, “Biomass upgrading by torrefaction for the production of biofuels: A review,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3748–3762, 2011.spa
dc.relation.referencesA. Pirraglia, R. Gonzalez, D. Saloni, and J. Denig, “Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US,” Energy Convers. Manag., vol. 66, pp. 153–164, 2013.spa
dc.relation.referencesM. A. Sukiran, F. Abnisa, W. M. A. Wan Daud, N. Abu Bakar, and S. K. Loh, “A review of torrefaction of oil palm solid wastes for biofuel production,” Energy Convers. Manag., vol. 149, pp. 101–120, 2017.spa
dc.relation.referencesG. Talero, S. Rincón, and A. Gómez, “Torrefaction of oil palm residual biomass: Thermogravimetric characterization,” Fuel, vol. 242, no. September 2018, pp. 496–506, 2019.spa
dc.relation.referencesP. C. A. Bergman, A. R. Boersma, R. W. R. Zwart, and J. H. A. Kiel, “Torrefaction for biomass co-firing in existing coal-fired power stations,” 2005.spa
dc.relation.referencesJ. J. Chew and V. Doshi, “Recent advances in biomass pretreatment - Torrefaction fundamentals and technology,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 4212–4222, 2011.spa
dc.relation.referencesIEA Bioenergy, “Status overview of torrefaction technologies,” 2015.spa
dc.relation.referencesA. Dhungana, P. Basu, and A. Dutta, “Effects of Reactor Design on the Torrefaction of Biomass,” vol. 134, no. December, pp. 1–11, 2012.spa
dc.relation.referencesM. Asadullah, A. M. Adi, N. Suhada, N. H. Malek, M. I. Saringat, and A. Azdarpour, “Optimization of palm kernel shell torrefaction to produce energy densified bio-coal,” Energy Convers. Manag., vol. 88, pp. 1086–1093, 2014.spa
dc.relation.referencesK. M. Sabil, M. A. Aziz, B. Lal, and Y. Uemura, “Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell,” Biomass and Bioenergy, vol. 56, pp. 351–360, 2013.spa
dc.relation.referencesK. L. Chin et al., “Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia,” Ind. Crops Prod., vol. 49, pp. 768–774, 2013.spa
dc.relation.referencesY. Uemura, W. Omar, N. A. Othman, S. Yusup, and T. Tsutsui, “Torrefaction of oil palm EFB in the presence of oxygen,” Fuel, vol. 103, pp. 156–160, 2013.spa
dc.relation.referencesM. A. Sukiran et al., “Experimental and modelling study of the torrefaction of empty fruit bunches as a potential fuel for palm oil mill boilers,” Biomass and Bioenergy, vol. 136, no. February, p. 105530, 2020.spa
dc.relation.referencesY. Mei et al., “Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas,” Bioresour. Technol., vol. 177, pp. 355–360, 2015.spa
dc.relation.referencesIEA Bioenergy, “Status overview of torrefaction technologies,” 2012.spa
dc.relation.referencesD. Thrän et al., “Moving torrefaction towards market introduction – Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project,” Biomass and Bioenergy, vol. 89, pp. 184–200, 2016.spa
dc.relation.referencesFEECO International Inc, “Rotary Kilns,” Rotary Kilns. 2016.spa
dc.relation.referencesS. Le Capitaine and C. Carlson, “Direct Fired Rotary Kiln vs. Indirect Fired Rotary Kiln: What’s the Difference?” [Online]. Available: https://feeco.com/direct-fired-rotary-kiln-vs-indirect-fired-rotary-kiln-whats-the-difference/. [Accessed: 10-Jun-2020].spa
dc.relation.referencesV. Arpiainen and C. Wilen, “Production of Solid Sustainable Energy Carriers from Biomass by Means of Torrefaction - Report on optimisation opportunities by integrating torrefaction into existing industries,” 2014.spa
dc.relation.referencesS. Zhang, B. Hu, L. Zhang, and Y. Xiong, “Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon,” J. Anal. Appl. Pyrolysis, vol. 119, pp. 217–223, 2016.spa
dc.relation.referencesS. Nanda, A. K. Dalai, F. Berruti, and J. A. Kozinski, “Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials,” Waste and Biomass Valor, vol. 7, no. 2, pp. 201–235, 2016.spa
dc.relation.referencesS. Kern, M. Halwachs, G. Kampichler, C. Pfeifer, T. Pröll, and H. Hofbauer, “Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant - Influence of pyrolysis temperature on pyrolysis product performance,” J. Anal. Appl. Pyrolysis, vol. 97, pp. 1–10, 2012.spa
dc.relation.referencesR. T. K. C. Doddapaneni, R. Praveenkumar, H. Tolvanen, J. Rintala, and J. Konttinen, “Techno-economic evaluation of integrating torrefaction with anaerobic digestion,” Appl. Energy, vol. 213, no. January, pp. 272–284, 2018.spa
dc.relation.referencesJ. E. Moreno García, “Estimación de la huella de carbono en una planta extractora de aceite de palma en Colombia: estudio de caso,” Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesM. S. Peters, K. D. Timmerhaus, and R. E. West, Plant Design and Economics for Chemical Engineers, 5th ed. McGraw-Hill, 2003.spa
dc.relation.referencesR. Turton, J. A. Shaeiwitz, D. Bhattacharyya, and W. B. Whiting, Analysis, Synthesis and Design of Chemical Processes, 5th ed. 2018.spa
dc.relation.referencesR. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis Synthesis and Design of Chemical Processes, 4th ed. 2012.spa
dc.relation.referencesAACE International., “AACE International Recommended Practice No. 18R-97. Cost Estimate Classification System – As Applied in Engineering, Procurement, and Construction For The Process Industries.,” 2011.spa
dc.relation.referencesAACE International., “AACE International Recommended Practice No. 16R-90. Conducting Technical and Economic Evaluations – As Applied for the Process and Utility Industries Conducting Technical and Economic Evaluations – As Applied for the Process and Utility Industries,” 1990.spa
dc.relation.referencesM. Córdoba Padilla, Formulación y Evaluación de Proyectos, 2nd ed. Bogotá, D.C., 2011.spa
dc.relation.referencesR. Sinnott and G. Towler, “Flow-sheeting,” in Chemical Engineering Design, 6th ed., S. Merken, Ed. Birtcher, Katey, 2020.spa
dc.relation.referencesE. Almberg, “Techno-Economic Feasibility of Distributed Torrefaction Systems Using Corn Stover Feedstock,” South Dakota State University, 2016.spa
dc.relation.referencesFederación Nacional de Cultivadores de Palma de Aceite FEDEPALMA, “Perspectivas de negocios en el aprovechamiento energético de la tusa y la fibra de la agroindustria de palma de aceite en Colombia,” Bogotá, D.C., 2017.spa
dc.relation.referencesM. Svanberg, I. Olofsson, J. Flodén, and A. Nordin, “Analysing biomass torrefaction supply chain costs,” Bioresour. Technol., vol. 142, pp. 287–296, 2013.spa
dc.relation.referencesM. Akbari, A. O. Oyedun, and A. Kumar, “Techno-economic assessment of wet and dry torrefaction of biomass feedstock,” Energy, vol. 207, p. 118287, 2020.spa
dc.relation.referencesM. E. Contreras Buitrago, Formulación y Evaluación de Proyectos, UNISUR. Bogotá, D.C., 1995.spa
dc.relation.referencesA. A. Boateng, “Basic Description of Rotary Kiln Operation,” in Rotary Kilns, 2016, pp. 13–26.spa
dc.relation.referencesW. C. Saeman, “Passage of Solids through Rotary Kilns: Factors Affecting Time of Passage,” Chem. Eng. Prog., vol. 47, no. 10, pp. 508–514, 1951.spa
dc.relation.referencesZ. Guo, X. Chen, H. Liu, Q. Guo, X. Guo, and H. Lu, “Theoretical and experimental investigation on angle of repose of biomass-coal blends,” Fuel, vol. 116, pp. 131–139, 2014.spa
dc.relation.referencesG. Xu, M. Li, and P. Lu, “Experimental investigation on flow properties of different biomass and torrefied biomass powders,” Biomass and Bioenergy, vol. 122, no. July 2018, pp. 63–75, 2019.spa
dc.relation.referencesY. Xi, Q. Chen, and C. You, “Flow characteristics of biomass particles in a horizontal stirred bed reactor: Part I. Experimental measurements of residence time distribution,” Powder Technol., vol. 269, pp. 577–584, 2015.spa
dc.relation.referencesP. Basu, “Torrefaction,” in Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed., 2018.spa
dc.relation.referencesStrommashina, “Pyro-Processing for Beginners : Direct-Fired and Indirect-Fired Rotary Kilns and Dryers,” 2018. [Online]. Available: http://strommashina.com/articles/pyro-processing-for-beginners-direct-fired-and-indirect-fired-rotary-kilns-and-dryers. [Accessed: 16-Oct-2020].spa
dc.relation.referencesStrommashina, “Indirect-fired rotary kilns (furnaces),” 2020. [Online]. Available: http://strommashina.com/catalog/kilns-furnaces-of-indirect-heating. [Accessed: 16-Oct-2020].spa
dc.relation.referencesM. Manouchehrinejad and S. Mani, “Process simulation of an integrated biomass torrefaction and pelletization (iBTP) plant to produce solid biofuels,” Energy Convers. Manag. X, vol. 1, no. January, p. 100008, 2019.spa
dc.relation.referencesA. A. Boateng, “The Rotary Kiln Evolution and Phenomenon,” in Rotary Kilns, 2nd ed., 2016, pp. 1–11.spa
dc.relation.referencesR. Sinnott and G. Towler, “Fundamentals of energy balances and energy utilization,” in Chemical Engineering Design, 6th ed., S. Merken, Ed. Birtcher, Katey, 2020.spa
dc.relation.referencesFAO, “Métodos simples para fabricar carbón vegetal,” 1983. [Online]. Available: http://www.fao.org/3/X5328s/X5328S00.htm. [Accessed: 24-Sep-2020].spa
dc.relation.referencesS. Rincón, L. Mendoza, and A. Gómez, Tratamiento térmico de biosólidos para aplicaciones energéticas - Pirólisis y conversión de sus alquitranes. 2019.spa
dc.relation.referencesL. Kumar, A. A. Koukoulas, S. Mani, and J. Satyavolu, “Integrating torrefaction in the wood pellet industry: A critical review,” Energy and Fuels, vol. 31, no. 1, pp. 37–54, 2016.spa
dc.relation.referencesO. Williams et al., “Influence of mill type on densified biomass comminution,” Appl. Energy, vol. 182, pp. 219–231, 2016.spa
dc.relation.referencesO. Williams, C. Eastwick, S. Kingman, D. Giddings, S. Lormor, and E. Lester, “Investigation into the applicability of Bond Work Index ( BWI ) and Hardgrove Grindability Index ( HGI ) tests for several biomasses compared to Colombian La Loma coal,” Fuel, vol. 158, pp. 379–387, 2015.spa
dc.relation.referencesS. Ruksathamcharoen, M. W. Ajiwibowo, T. Chuenyam, A. Surjosatyo, and K. Yoshikawa, “Effect of Hydrothermal Treatment on Grindability and Fuel Characteristics of Empty Fruit Bunch derived Hydrochar,” Int. J. Technol., no. 6, pp. 1246–1255, 2018.spa
dc.relation.referencesM. Tymoszuk, “Investigations of torrefied biomass grindability using a modified Hardgrove test,” in E3S Web of Conferences, 2017, vol. 14.spa
dc.relation.referencesS. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan, “An overview of the organic and inorganic phase composition of biomass,” Fuel, vol. 94, pp. 1–33, 2012.spa
dc.relation.referencesT. C. Acharjee, C. J. Coronella, and V. R. Vasquez, “Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass,” Bioresour. Technol., vol. 102, no. 7, pp. 4849–4854, 2011.spa
dc.relation.referencesA. J. Sandoval and J. A. Barreiro, “Water sorption isotherms of non-fermented cocoa beans (Theobroma cacao),” J. Food Eng., vol. 51, no. 2, pp. 119–123, 2002.spa
dc.relation.referencesW. T. Simpson, “Predicting Equilibrium Moisture Content of Wood by Mathematical Models,” Spring, vol. 5, no. 1, pp. 41–49, 1973.spa
dc.relation.referencesY. A. Cengel and M. A. Boles, Termodinámica, 8th ed. 2015.spa
dc.relation.referencesE. Sermyagina, J. Saari, B. Zakeri, J. Kaikko, and E. Vakkilainen, “Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant,” Appl. Energy, vol. 149, pp. 24–34, 2015.spa
dc.relation.referencesA. Uslu, A. P. C. Faaij, and P. C. A. Bergman, “Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation,” Energy, vol. 33, no. 8, pp. 1206–1223, 2008.spa
dc.relation.referencesP. Basu, “Biomass Characteristics,” in Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2018, pp. 49–91.spa
dc.relation.referencesGreenVinci biomass Machinery Co. LTD, “Palm Fiber Biomass Burner.” [Online]. Available: https://www.greenvinci.com/burner-machine/biomass-gasification-burner/palm-fiber-biomass-burner.html#F1. [Accessed: 02-Jun-2021].spa
dc.relation.referencesLIPPEL, “Pyrolytic Biomass Burner with Inclined Moving Grill QPL.” [Online]. Available: https://www.lippel.com.br/pyrolytic-burners/pyrolytic-biomass-burner-with-inclined-moving-grill-qpl/?lng=en. [Accessed: 02-Jun-2021].spa
dc.relation.referencesA. Gómez and S. Rincón, “Termodinámica de Sistemas Energéticos, Notas de Clase.” Universidad Nacional de Colombia, Bogotá, D.C., 2019.spa
dc.relation.referencesD. C. Shallcross, Handbook of Psychrometric Charts, First Edit. Melbourne, 1997.spa
dc.relation.referencesA. Gómez and S. Rincón, “Colección Talleres de Clase.” Universidad Nacional de Colombia, Bogotá, D.C., 2019.spa
dc.relation.referencesO. Kutlu and G. Kocar, “Improving stability of torrefied biomass at cooling stage,” Renew. Energy, vol. 147, pp. 814–823, 2020.spa
dc.relation.referencesabc Machinery, “Enfriador de flujo a contracorriente,” 2020. [Online]. Available: http://www.plantadepellets.com/Otros-equipos/enfriador-flujo-contracorriente.html. [Accessed: 01-Dec-2020].spa
dc.relation.referencesP. C. A. Bergman, M. K. Herrebrugh, and T. Kleingeld, “Cooling process of torrefied biomass,” 2020.spa
dc.relation.referencesUPME and Universidad Nacional de Colombia, “Anexo a - Equivalencia Energética Consumo Vehículo Operando Con Gnv Y Diésel Convencional.” pp. 1–2, 2014.spa
dc.relation.referencesM. Barbanera and I. F. Muguerza, “Effect of the temperature on the spent coffee grounds torrefaction process in a continuous pilot-scale reactor,” Fuel, vol. 262, no. June 2019, p. 116493, 2020.spa
dc.relation.referencesM. N. Cahyanti, T. R. K. C. Doddapaneni, and T. Kikas, “Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements,” Bioresour. Technol., vol. 301, no. January, p. 122737, 2020.spa
dc.relation.referencesT. R. K. C. Doddapaneni, R. Praveenkumar, H. Tolvanen, M. R. T. Palmroth, J. Konttinen, and J. Rintala, “Anaerobic batch conversion of pine wood torrefaction condensate,” Bioresour. Technol., vol. 225, pp. 299–307, 2017.spa
dc.relation.referencesL. Fagernäs, E. Kuoppala, and V. Arpiainen, “Composition, utilization and economic assessment of torrefaction condensates,” Energy and Fuels, vol. 29, no. 5, pp. 3134–3142, 2015.spa
dc.relation.referencesM. M. Wright, D. E. Daugaard, J. A. Satrio, and R. C. Brown, “Techno-economic analysis of biomass fast pyrolysis to transportation fuels,” Fuel, vol. 89, no. SUPPL. 1, pp. S2–S10, 2010.spa
dc.relation.referencesC. Li and K. Suzuki, “Tar property, analysis, reforming mechanism and model for biomass gasification-An overview,” Renew. Sustain. Energy Rev., vol. 13, no. 3, pp. 594–604, 2009.spa
dc.relation.referencesGuaicaramo S.A., “Quiénes Somos – Guaicaramo,” 2018. [Online]. Available: http://www.guaicaramo.com/somos/. [Accessed: 12-Aug-2020].spa
dc.relation.referencesAlcaldia Municipal de Barranca de Upía, “Plan de Desarrollo 2016-2019. Municipio de Barranca de Upía. Departamento de Meta.” 2016.spa
dc.relation.referencesMunicipios de Colombia, “Barranca de Upía.” [Online]. Available: https://www.municipio.com.co/municipio-barranca-de-upia.html. [Accessed: 12-Aug-2020].spa
dc.relation.referencesCORMACARENA, “Fichas Técnicas de Determinantes Ambientales para el Ordenamiento Territorial Municipal.” Villavicencio.spa
dc.relation.referencesEstatuto Tributario Nacional, “Art. 137. Limitación a la deducción por depreciación.” [Online]. Available: https://estatuto.co/?e=1136. [Accessed: 03-Sep-2020].spa
dc.relation.referencesA. A. Rentizelas and J. Li, “Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing,” Energy, vol. 114, pp. 129–142, 2016.spa
dc.relation.referencesT. Van Remmen and FEECO International Inc, “Indirect Kiln System for Biomass Pyrolysis.” 2020.spa
dc.relation.references“2019 Chemical Engineering Plant Cost Index Annual Average,” Chemical Engineering, 2020. [Online]. Available: https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/. [Accessed: 05-Jun-2020].spa
dc.relation.referencesGuaicaramo S.A., “INFORME DE REPORTE DE SOSTENIBILIDAD 2014-2015.” Bogotá, D.C., p. 76, 2015.spa
dc.relation.referencesMinisterio de Minas y Energía, “Precios de Combustiibles Año 2020,” 2020. [Online]. Available: https://www.minenergia.gov.co/precios-ano-2020. [Accessed: 20-Aug-2020].spa
dc.relation.referencesJ. de J. Meza Orozco, Evaluación financiera de proyectos, 3rd ed. Bogotá, D.C., 2013.spa
dc.relation.referencesBanco de la República de Colombia, “Inflación total y meta.” [Online]. Available: https://www.banrep.gov.co/es/estadisticas/inflacion-total-y-meta. [Accessed: 03-Sep-2020].spa
dc.relation.referencesEstatuto Tributario Nacional, “Art. 240. Tarifa general para para personas juridicas.” [Online]. Available: https://estatuto.co/?e=989. [Accessed: 05-Sep-2020].spa
dc.relation.referencesMercadoLibre Colombia LTDA, “Mercadolibre: Carbón Vegetal (Biochar) - Bioespacio x 20 kg,” 2020. [Online]. Available: https://articulo.mercadolibre.com.co/MCO-576560706-carbon-vegetal-biochar-bioespacio-x-20-kg-sustrato-_JM?matt_tool=40494112&matt_word&matt_source=google&matt_campaign_id=9879785937&matt_ad_group_id=99767540585&matt_match_type&matt_network=u&matt_device=c. [Accessed: 01-Nov-2020].spa
dc.relation.referencesBioespacio, “Ficha técnica Carbón Vegetal.” Bogotá.spa
dc.relation.referencesC. P. Araque Saldaña, S. M. Chamucero Ruiz, Z. Duran Duran, and R. A. Vélez León, “Estudio de caso para la determinación de la viabilidad financiera de un proyecto de inversión en una empresa del sector palmero,” Universidad Católica de Colombia, 2019.spa
dc.relation.referencesAlibaba, “Mobile gravel belt conveyor with feeding hopper,” 2020. [Online]. Available: https://www.alibaba.com/product-detail/Mobile-gravel-belt-conveyor-with-feeding_800751020.html?spm=a2700.galleryofferlist.0.0.5d4543fc5kc1yt. [Accessed: 15-Dec-2020].spa
dc.relation.referencesPackTech, “ZT - 3,” 2020. [Online]. Available: https://pt-ua.com/en/equipment/equipment-selection/conveyors-and-accessories/zt-3/. [Accessed: 15-Dec-2020].spa
dc.relation.referencesAlibaba, “5000kg loader 3 cubic meter bucket front loader 5ton chinese wheel loader with Factory Price,” 2020. [Online]. Available: https://www.alibaba.com/product-detail/cargadores-frontales-5000kg-loader-3-cubic_62534376431.html?spm=a2700.galleryofferlist.0.0.7d8e56eeWqoWKL&s=p. [Accessed: 15-Dec-2020].spa
dc.relation.referencesBiomass Pellet Machine, “EFB Shredder and EFB Fiber Crushing Machine Get Latest Price,” 2012. [Online]. Available: https://www.biopelletmachine.com/product/sawdust-making-machine/EFB-shredder-crushing-machine.html. [Accessed: 27-May-2021].spa
dc.relation.referencesAlibaba, “EFB Fiber Shredder Machine.” [Online]. Available: https://www.alibaba.com/product-detail/Used-EFB-Coir-Fiber-Extracting-Coconut_60757207859.html?spm=a2700.7724857.normal_offer.d_title.73693d58Cl5mUu. [Accessed: 27-May-2021].spa
dc.relation.referencesPALET, “Rotary drum dryer.” [Online]. Available: https://www.biopelletmachines.com/rotary-drum-dryer/. [Accessed: 15-Dec-2020].spa
dc.relation.referencesGreat Wall Machinery Coporation, “Rotary kiln.” [Online]. Available: http://www.greatwallcorporation.com/product/rotary-kiln/rotary-kiln.html. [Accessed: 15-Dec-2020].spa
dc.relation.referencesWyssmont, “Multiple Screw Feeder,” 2012. [Online]. Available: http://www.wyssmont.com/product_detail.php?section=Feeders&id=10. [Accessed: 15-Dec-2020].spa
dc.relation.referencesFDSP Group, “Swing Cooler for biomass pellet production line.” [Online]. Available: https://www.fdsp-cn.com/swing-cool. [Accessed: 15-Dec-2020].spa
dc.relation.referencesXIAMEN LTMG CO. LTD., “Diesel Forklift.” [Online]. Available: http://www.ltmg-forklift.com/index.php/index/productinfo/id/68. [Accessed: 15-Dec-2020].spa
dc.relation.referencesAlibaba, “Montacargas diésel marca LTMG,” 2020. [Online]. Available: https://spanish.alibaba.com/product-detail/ltmg-brand-diesel-forklift-3-ton-5-ton-forklift-truck-with-cab-japanese-engine-fork-positioner-optional-60833590362.html?spm=a2700.galleryofferlist.0.0.e717856afdlye6. [Accessed: 21-Aug-2020].spa
dc.relation.referencesSMC, “Oil Cooler - Water Cooled Type.” [Online]. Available: https://www.smc.eu/en-eu. [Accessed: 02-Dec-2020].spa
dc.relation.referencesAGP Bombas, “AGP Bombas - Catálogo,” 2015. [Online]. Available: http://www.agpbombas.com/catalogo.pdf. [Accessed: 02-Dec-2020].spa
dc.relation.referencesROS CONESA, “Filtro mangas - Ficha técnica.” Murcia.spa
dc.relation.referencesAlibaba, “Low cost bag filter dust collector for cement plant,” 2020. [Online]. Available: https://www.alibaba.com/product-detail/Low-cost-bag-filter-dust-collector_60765186670.html. [Accessed: 09-Dec-2020].spa
dc.relation.referencesPiping Engineering, “Types of Storage Tanks.” [Online]. Available: https://www.pipingengineer.org/types-of-storage-tanks/. [Accessed: 15-Dec-2020].spa
dc.relation.referencesH. P. Loh, J. Lyons, and I. I. I. Charles W. White, “Process Equipment Cost Estimation, Final Report,” 2002.spa
dc.relation.referencesBulkmatic, “Silos Bulk Storage (BSS).” [Online]. Available: http://www.bulkmatic.co.za/PRODUCTS/SilosBulkStorage(BSS).aspx. [Accessed: 09-Dec-2020].spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocElaeis guineensis
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalResiduos de palma de aceitespa
dc.subject.proposalTorrefacciónspa
dc.subject.proposalHorno rotariospa
dc.subject.proposalAnálisis tecnoeconómicospa
dc.subject.proposalBioenergíaspa
dc.subject.proposalPalm solid residueseng
dc.subject.proposalTorrefactioneng
dc.subject.proposalRotary kilneng
dc.subject.proposalTechno-economic analysiseng
dc.subject.proposalBioenergyeng
dc.subject.unescoEnergía de la biomasaspa
dc.titleEvaluación tecnoeconómica de la torrefacción de biomasa residual de la agroindustria de la palma de aceite en un horno rotatoriospa
dc.title.translatedTechno-economic evaluation of the torrefaction of residual biomass from the oil palm agro-industry in a rotary kilneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1123311311.2020.pdf
Tamaño:
3.88 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: