Efectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira.

dc.contributor.advisorPoveda, Germán
dc.contributor.advisorVillegas Palacio, Clara Inés
dc.contributor.authorVelásquez Restrepo, Manuela
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos hidráulicos (PARH)spa
dc.date.accessioned2021-07-12T15:55:15Z
dc.date.available2021-07-12T15:55:15Z
dc.date.issued2021-07
dc.descriptionilustraciones, mapasspa
dc.description.abstractEn esta investigación se exploró principalmente los efectos sobre las variables del balance de agua y energía y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal en la cuenca del río Mira, desde la perspectiva del marco conceptual de los sistemas socio-ecológicos. Para ello, en el primer capítulo se realizó la clasificación y mapeo de coberturas del suelo para la identificación de las características, extensión y patrón de cambio de la cobertura del suelo en el tiempo. Los resultados revelaron que las áreas de pastos, cultivos, suelo desnudo y zonas urbanas aumentaron durante el periodo 1987-2019, lo que resultó en una reducción sustancial de la superficie forestal y los páramos. En el capítulo 3 se analizó la precisión del balance de agua y energía de largo plazo en la cuenca del Río Mira a través de diferentes conjuntos de datos de teledetección e información in situ. La evaluación de la precisión hasta la estación hidrológica más cercana a la desembocadura de la cuenca indicó que el error porcentual entre el caudal de la estación y el caudal obtenido del balance de agua es del orden de 50\%, evidenciándose una subestimación generalizada en los resultados. Además se detectó una tendencia decreciente estadísticamente significativa en el residuo del balance de energía a escala mensual y en el caudal medio mensual de la estación hidrológica, este último con una pendiente de aproximadamente 0.38 m^3/s por mes y un cambio en la homogeneidad de la serie en agosto del año 2000. Además, en el capítulo 4 se exploró la respuesta hidrológica de la cuenca estudiando 27 subcuencas a partir de dos ecuaciones derivadas del marco teórico de Budyko, la ecuación propuesta por Choudhury-Yang y la ecuación de Carmona et al., y usando el método de contribución del cambio de escorrentía basado en la ecuación de Choudhury-Yang se cuantificaron las contribuciones de la fluctuación climática y de uso/cobertura del suelo en el cambio de escorrentía, lo cual evidenció que la contribución del uso/cobertura del suelo es significativo, demostrando la relevancia de la cobertura vegetal en el mantenimiento y regulación de los procesos hidrológicos en la cuenca; también se cuantificó el efecto del cambio de cobertura vegetal en los componentes individuales del balance de energía y en el cambio resultante en la temperatura de la superficie terrestre, obteniéndose variaciones importantes en los componentes del balance energético entre los subperiodos 1981 - 1999 y 2000 – 2018 que se traducen en un aumento generalizado de la temperatura en la zona de estudio. Y finalmente en el capítulo 5, se desarrolló un esquema conceptual de las interrelaciones existentes entre los servicios ecosistémicos, el sistema social y el sistema natural, a través de diagramas causales como una representación conceptual de la complejidad dinámica del sistema. (Tomado de la fuente)spa
dc.description.abstractThis research mainly explores the effects on the variables of the water and energy balance and the potential provision of ecosystem services as a result of the change in vegetation cover in the Mira river basin, from the perspective of the conceptual framework of socio-ecological systems. For this, the basin was characterized and the vegetation covers were classified to understand the characteristics, the extension, and the pattern of the change of the land cover over time. Through the analysis of the water balance and the energy balance, it was contributed to the knowledge of the hydro-climatological processes in the Mira River basin using satellite information and in situ information available the basin, this was performed from the perspective of the characterization of the variables, the closing of the balances and the consideration of other variables that may intervene in the processes. Besides, the hydrological response was explored by studying 27 sub-basins of the Mira river basin from two equations derived from the Budyko theoretical framework, the equation proposed by Choudhury-Yang and the empirical equation proposed by Carmona et al.; The resulting change in surface temperature in the basin was also explored, using the surface energy balance decomposition approach. And finally, a conceptual model of interrelationships between ecosystem services, the social system, and the natural system was developed, through causal loop diagrams as a conceptual representation of the dynamic complexity of the system. (Tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidrología y servicios ecosistémicosspa
dc.format.extent153 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79796
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesI Petrosillo, R Aretano, and G Zurlini. Socioecological systems. Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015.spa
dc.relation.referencesXuechao Wang, Xiaobin Dong, Huiming Liu, Hejie Wei, Weiguo Fan, Nachuan Lu, Zihan Xu, Jiahui Ren, and Kaixiong Xing. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of xinjiang, china. Ecosystem services, 27:113–123, 2017.spa
dc.relation.referencesMillennium Ecosystem Assessment. Drivers of Ecosystem Change. In Ecosystems and Human Well-being: Multiscale Assessments, volume 4, chapter 7. 2005.spa
dc.relation.referencesMattias Gaglio, Vassilis George Aschonitis, Marta Maria Mancuso, Juan Pablo Reyes Puig, Francisco Moscoso, Giuseppe Castaldelli, and Elisa Anna Fano. Changes in land use and ecosystem services in tropical forest areas: a case study in andes mountains of ecuador. International Journal of Biodiversity Science, Ecosystem Services & Management, 13(1):264–279, 2017.spa
dc.relation.referencesBojie Fu, Liwei Zhang, Zhihong Xu, Yan Zhao, Yongping Wei, and Dominic Skinner. Ecosystem services in changing land use. Journal of Soils and Sediments, 15(4):833– 843, 2015.spa
dc.relation.referencesMilkessa Dangia Negassa, Demissie Tsega Mallie, and Dessalegn Obsi Gemeda. Forest cover change detection using geographic information systems and remote sensing techniques: a spatio-temporal study on komto protected forest priority area, east wollega zone, ethiopia. Environmental Systems Research, 9(1):1, 2020.spa
dc.relation.referencesEckehard G Brockerhoff, Luc Barbaro, Bastien Castagneyrol, David I Forrester, Barry Gardiner, José Ramón González-Olabarria, Phil O’B Lyver, Nicolas Meurisse, Anne Oxbrough, Hisatomo Taki, et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services, 2017.spa
dc.relation.referencesJuan Fernando Salazar, Juan Camilo Villegas, Angela Marı́a Rendón, Estiven Rodrı́guez, Isabel Hoyos, Daniel Mercado-Bettı́n, and Germán Poveda. Scaling properties reveal regulation of river flows in the amazon through a “forest reservoir”. Hydrology and Earth System Sciences, 22(3):1735–1748, 2018.spa
dc.relation.referencesLos devastadores efectos del derrame de crudo en Tumaco, 2015.spa
dc.relation.referencesGordon B Bonan. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882):1444–1449, 2008.spa
dc.relation.referencesXiangyu Xu, Dawen Yang, Hanbo Yang, and Huimin Lei. Attribution analysis based on the budyko hypothesis for detecting the dominant cause of runoff decline in haihe basin. Journal of Hydrology, 510:530–540, 2014.spa
dc.relation.referencesMichael L Roderick and Graham D Farquhar. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resources Research, 47(12), 2011.spa
dc.relation.referencesGregory Duveiller, Josh Hooker, and Alessandro Cescatti. The mark of vegetation change on earth’s surface energy balance. Nature communications, 9(1):679, 2018.spa
dc.relation.referencesShulei Zhang, Yuting Yang, Tim R McVicar, and Dawen Yang. An analytical solution for the impact of vegetation changes on hydrological partitioning within the budyko framework. Water Resources Research, 54(1):519–537, 2018.spa
dc.relation.referencesJCS Davie, PD Falloon, R Kahana, R Dankers, R Betts, FT Portmann, D Wisser,DB Clark, A Ito, Y Masaki, et al. Comparing projections of future changes in runoff from hydrological and biome models in isi-mip. Earth System Dynamics, 4(2):359–374, 2013.spa
dc.relation.referencesAlice E Brown, Lu Zhang, Thomas A McMahon, Andrew W Western, and Robert A Vertessy. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of hydrology, 310(1-4):28–61, 2005.spa
dc.relation.referencesGarrison Sposito. Understanding the budyko equation. Water, 9(4):236, 2017.spa
dc.relation.referencesAM Carmona, G Poveda, Murugesu Sivapalan, SM Vallejo-Bernal, and E Bustamante. A scaling approach to budyko’s framework and the complementary relationship of evapotranspiration in humid environments: case study of the amazon river basin. Hydrology and Earth System Sciences, 20(2):589, 2016.spa
dc.relation.referencesGunnar Myhre, Drew Shindell, and Julia Pongratz. Anthropogenic and natural radiative forcing. 2014.spa
dc.relation.referencesRyan M Bright, Edouard Davin, Thomas O’Halloran, Julia Pongratz, Kaiguang Zhao, and Alessandro Cescatti. Local temperature response to land cover and management change driven by non-radiative processes. Nature Climate Change, 7(4):296–302, 2017.spa
dc.relation.referencesRyan M Bright, Kaiguang Zhao, Robert B Jackson, and Francesco Cherubini. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Global Change Biology, 21(9):3246–3266, 2015.spa
dc.relation.referencesLF Gómez, B Gallego, and LG Naranjo. Atlas socioambiental de las cuencas transfronterizas mira y mataje: aportes para su ordenamiento y gestión integral colombia-ecuador. Cali: WWF-Colombia, 2017.spa
dc.relation.referencesGermán Poveda. La hidroclimatologı́a de colombia: una sı́ntesis desde la escala interdecadal hasta la escala diurna. Rev. Acad. Colomb. Cienc, 28(107):201–222, 2004.spa
dc.relation.referencesGermán Poveda and O Mesa. La corriente de chorro superficial del oeste (“del chocó”) y otras dos corrientes de chorro en colombia: climatologı́a y variabilidad durante las fases del enso”. Revista Académica Colombiana de Ciencia, 23(89):517–528, 1999.spa
dc.relation.referencesCritical Ecosystem Partnership Fund (CEPF). CORREDOR DE CONSERVACIÓN CHOCÓ-MANABÍ ECORREGIÓN TERRESTRE PRIORITARIA DEL CHOCÓ-DARIÉN-ECUADOR OCCIDENTAL (HOTSPOT) Colombia y Ecuador. Technical report, 2005.spa
dc.relation.referencesJ Freddy Mejı́a and G Poveda. Ambientes atmosféricos de sistemas convectivos de mesoescala sobre colombia durante 1998 según la misión trmm y el re-análisis ncep/ncar. REVISTA ACADEMIA, 29(113):495–514, 2005.spa
dc.relation.referencesKayode Adepoju, Samuel Adelabu, and Olutoyin Fashae. Vegetation response to recent trends in climate and landuse dynamics in a typical humid and dry tropical region under global change. Advances in Meteorology, 2019, 2019.spa
dc.relation.referencesJianhua Wang, Yaohuan Hang, Dong Jiang, and Xiaoyang Song. Energy-water balance and ecosystem response to climate change in southwest china. Topics in Climate Modeling, page 47, 2016.spa
dc.relation.referencesSander Jacobs, Birgen Haest, Tom de Bie, Glenn Deliège, Anik Schneiders, and Francis Turkelboom. Chapter 3 - biodiversity and ecosystem services. In Sander Jacobs, Nicolas Dendoncker, and Hans Keune, editors, Ecosystem Services, pages 29–40. Elsevier, Boston, 2013.spa
dc.relation.referencesJames Boyd and Spencer Banzhaf. What are ecosystem services? the need for standardized environmental accounting units. Ecological economics, 63(2-3):616–626, 2007.spa
dc.relation.referencesDavid C Le Maitre, David F Scott, and C Colvin. Review of information on interactions between vegetation and groundwater. 1999.spa
dc.relation.referencesDavid Ellison, Cindy E Morris, Bruno Locatelli, Douglas Sheil, Jane Cohen, Daniel Murdiyarso, Victoria Gutierrez, Meine Van Noordwijk, Irena F Creed, Jan Pokorny, et al. Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43:51–61, 2017.spa
dc.relation.referencesPaul C West, Gemma T Narisma, Carol C Barford, Christopher J Kucharik, and Jonathan A Foley. An alternative approach for quantifying climate regulation by ecosystems. Frontiers in Ecology and the Environment, 9(2):126–133, 2011.spa
dc.relation.referencesCuong Nguyen, Yong Wang, and Ha Nam Nguyen. Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic. 2013.spa
dc.relation.referencesArun D Kulkarni and Barrett Lowe. Random forest algorithm for land cover classification. 2016.spa
dc.relation.referencesPall Oskar Gislason, Jon Atli Benediktsson, and Johannes R Sveinsson. Random forests for land cover classification. Pattern recognition letters, 27(4):294–300, 2006.spa
dc.relation.referencesVictor Francisco Rodriguez-Galiano, Bardan Ghimire, John Rogan, Mario Chica-Olmo, and Juan Pedro Rigol-Sanchez. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67:93–104, 2012.spa
dc.relation.referencesMatthew M Hayes, Scott N Miller, and Melanie A Murphy. High-resolution landcover classification using random forest. Remote sensing letters, 5(2):112–121, 2014.spa
dc.relation.referencesLeo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.spa
dc.relation.referencesKenichi Tatsumi, Yosuke Yamashiki, Miguel Angel Canales Torres, and Cayo Leonidas Ramos Taipe. Crop classification of upland fields using random forest of time-series landsat 7 etm+ data. Computers and Electronics in Agriculture, 115:171–179, 2015.spa
dc.relation.referencesNeil Flood. Seasonal composite landsat tm/etm+ images using the medoid (a multidimensional median). Remote Sensing, 5(12):6481–6500, 2013.spa
dc.relation.referencesRobert Susmaga. Confusion matrix visualization. In Intelligent Information Processing and Web Mining, pages 107–116. Springer, 2004.spa
dc.relation.referencesJW Rouse, Rüdiger H Haas, John A Schell, Donald W Deering, et al. Monitoring vegetation systems in the great plains with erts. NASA special publication, 351(1974):309, 1974.spa
dc.relation.referencesGlenn B. Stracher. Environmental Monitoring in the Jharia Coalfield, India. In Coal and Peat Fires: A Global Perspective, pages 359–385. Elsevier, jan 2019.spa
dc.relation.referencesJayakumar Drisya, Thendiyath Roshni, et al. Spatiotemporal variability of soil moisture and drought estimation using a distributed hydrological model. In Integrating disaster science and management, pages 451–460. Elsevier, 2018.spa
dc.relation.referencesJohn Weier and David Herring. Measuring vegetation (ndvi & evi). NASA Earth Observatory, 20, 2000.spa
dc.relation.referencesCarolien Toté. Copernicus Global Land Operations “Vegetation and Energy”. Technical report, 2019.spa
dc.relation.referencesJose Luis Villaescusa-Nadal, Belen Franch, Eric F Vermote, and Jean-Claude Roger. Improving the avhrr long term data record brdf correction. Remote Sensing, 11(5):502, 2019.spa
dc.relation.referencesMeteorologı́a y Estudios Ambientales (IDEAM) Instituto de Hidrologı́a. Estudio Nacional del Agua. Bogotá D.C., 2014.spa
dc.relation.referencesINEC. Fascı́culo provincial Imbabura. Technical report, 2010.spa
dc.relation.referencesINEC. Fascı́culo Provincial Carchi. Technical report, 2010.spa
dc.relation.referencesDANE. Proyecciones de población.spa
dc.relation.referencesJESSICA ARIAS GAVIRIA, SANTIAGO ARANGO ARAMBURO, CLARA INES VILLEGAS PALACIO, VERONICA MARRERO TRUJILLO, and JUAN CAMILO OCHOA PABON. Análisis sistémico de fuerzas impulsoras de la deforestación en Colombia. Technical report, 2018.spa
dc.relation.referencesG Terán Rosero and R Cobo. Determining management factors in dairy farms in carchi, ecuador. Cuban Journal of Agricultural Science, 51(2), 2017.spa
dc.relation.referencesWWF. Reporte de Salud de las cuencas binacionales de los rı́os Mira y Mataje Ecuador Colombia 2019 — WWF. Technical report, 2019.spa
dc.relation.referencesWilson Lechón and Jenny Chicaiza. De la agricultura familiar campesina a las microempresas de monocultivo. reestructura socioterritorial en la sierra norte del ecuador.Eutopia, pages 193–210, 2019.spa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Condiciones climáticas y la actividad humana impactan en la degradación de la tierra, comprometiendo la seguridad alimentaria., 2018.spa
dc.relation.referencesFAO and CAF. Ecuador - Nota de Análisis Sectorial: Agricultura y Desarrollo. Technical report, 2009.spa
dc.relation.referencesPérez. Alejandro. Los ríos Mira y Mataje requieren de terapia para asegurar su conservación, 2020.spa
dc.relation.referencesUNODC. Monitoreo de territorios afectados por cultivos ilícitos 2019. Technical report, 2019.spa
dc.relation.referencesTatiana Rojas Hernández. Deforestación en Colombia: A la vista de todos, no cesa tala de bosque protegido en Nariño., 2020.spa
dc.relation.referencesAngela Yesenia Olaya Requene. El río Mira está desplazando gente en Tumaco , 2017.spa
dc.relation.referencesJaime Arocha. El del río Mira, ¿desastre natural?, feb 2009.spa
dc.relation.referencesStefan N Grösser. Complexity management and system dynamics thinking. In Dynamics of Long-Life Assets, pages 69–92. Springer, Cham, 2017.spa
dc.relation.referencesLa Oficina de las Naciones Unidas para la Coordinación de Asuntos Humanitarios (OCHA). Derrame de crudo en ríos Mira y Caunapi, Tumaco (Nariño). Technical report, Tumaco, 2015.spa
dc.relation.referencesDefensoría del pueblo. Informe de Riesgo N°027-12 A.I. Technical report, 2015.spa
dc.relation.referencesRevista Semana. Los devastadores efectos del derrame de crudo en Tumaco. 2009.spa
dc.relation.referencesMatthew C Hansen, Peter V Potapov, Rebecca Moore, Matt Hancher, Svetlana A Turubanova, Alexandra Tyukavina, David Thau, SV Stehman, Scott J Goetz, Thomas R Loveland, et al. High-resolution global maps of 21st-century forest cover change. Science, 342(6160):850–853, 2013.spa
dc.relation.referencesJohannes Reiche, Eliakim Hamunyela, Jan Verbesselt, Dirk Hoekman, and Martin Herold. Improving near-real time deforestation monitoring in tropical dry forests by combining dense sentinel-1 time series with landsat and alos-2 palsar-2. Remote Sensing of Environment, 204:147–161, 2018.spa
dc.relation.referencesC Domenikiotis, A Loukas, and NR Dalezios. The use of noaa/avhrr satellite data for monitoring and assessment of forest fires and floods. Natural Hazards and Earth System Sciences, 3(1/2):115–128, 2003.spa
dc.relation.referencesSecretaria Nacional de Planificación y Desarrollo (ECUADOR) and Ministerio de Ambiente y Desarrollo Sostenible (COLOMBIA). Plan Binacional de Gestión Integral del Recurso Hídrico de las cuencas transfronterizas Carchi-Guáitara, Mira y Mataje. Quito, Bogotá, 2017.spa
dc.relation.referencesFlorence Pendrill and U Martin Persson. Combining global land cover datasets to quantify agricultural expansion into forests in latin america: Limitations and challenges. PloS one, 12(7):e0181202, 2017.122spa
dc.relation.referencesHuong Nguyen Thi Thanh, Trung Minh Doan, Erkki Tomppo, and Ronald E McRoberts. Land use/land cover mapping using multitemporal sentinel-2 imagery and four classification methods—a case study from dak nong, vietnam. Remote Sensing, 12(9):1367, 2020.spa
dc.relation.referencesAdriana Aparecida Moreira, Anderson Luis Ruhoff, Débora Regina Roberti, Vanessa de Arruda Souza, Humberto Ribeiro da Rocha, and Rodrigo Cauduro Dias de Paiva. Assessment of terrestrial water balance using remote sensing data in south america. Journal of Hydrology, 575:131–147, 2019.spa
dc.relation.referencesJosé Miguel Reichert, Miriam Fernanda Rodrigues, Jhon Jairo Zuluaga Peláez, Régis Lanza, Jean Paolo Gomes Minella, Jeffrey G Arnold, and Rosane Barbosa Lopes Cavalcante. Water balance in paired watersheds with eucalyptus and degraded grassland in pampa biome. Agricultural and Forest Meteorology, 237:282–295, 2017.spa
dc.relation.referencesAlok K Sahoo, Ming Pan, Tara J Troy, Raghuveer K V inukollu, Justin Sheffield, and Eric F Wood. Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sensing of Environment, 115(8):1850–1865, 2011.spa
dc.relation.referencesJustin Sheffield, Craig R Ferguson, Tara J Troy, Eric F Wood, and Matthew F McCabe. Closing the terrestrial water budget from satellite remote sensing. Geophysical Research Letters, 36(7), 2009.spa
dc.relation.referencesHuilin Gao, Qiuhong Tang, Craig R Ferguson, Eric F Wood, and Dennis P Lettenmaier. Estimating the water budget of major us river basins via remote sensing. International Journal of Remote Sensing, 31(14):3955–3978, 2010.spa
dc.relation.referencesSara M. Vallejo-Bernal, Viviana Urrea, Juan M. Bedoya-Soto, Daniela Posada, Alejandro Olarte, Yadira Cárdenas-Posso, Franklyn Ruiz-Murcia, Marı́a T. Martı́nez, Walter A. Petersen, George J. Huffman, and Germán Poveda. Ground validation of TRMM 3B43 V7 precipitation estimates over Colombia. Part I: Monthly and seasonal timescales. International Journal of Climatology, page joc.6640, jul 2020.spa
dc.relation.referencesMichael Strauch, Rohini Kumar, Stephanie Eisner, Mark Mulligan, Julia Reinhardt, William Santini, Tobias Vetter, and Jan Friesen. Adjustment of global precipitation data for enhanced hydrologic modeling of tropical andean watersheds. Climatic Change, 141(3):547–560, 2017.spa
dc.relation.referencesBeatriz H Ramı́rez, Adriaan J Teuling, Laurens Ganzeveld, Zita Hegger, and Rik Leemans. Tropical montane cloud forests: Hydrometeorological variability in three neighbouring catchments with different forest cover. Journal of Hydrology, 552:151–167, 2017.spa
dc.relation.referencesLucheng Zhan, Jiansheng Chen, Chenming Zhang, Tao Wang, Pei Xin, and Ling Li. Fog interception maintains a major waterfall landscape in southwest china revealed by isotopic signatures. Water Resources Research, 56(3), 2020.spa
dc.relation.referencesLu Zhang, Nick Potter, Klaus Hickel, Yongqiang Zhang, and Quanxi Shao. Water balance modeling over variable time scales based on the budyko framework–model development and testing. Journal of Hydrology, 360(1-4):117–131, 2008.spa
dc.relation.referencesA Carmona. Impacts of climate change and climate variability on the spatio-temporal hydrological dynamics of amazonia. Universidad Nacional de Colombia, 2015.spa
dc.relation.referencesChapter 4 The Energy Balance of the Surface. In Dennis L B T International Geophysics Hartmann, editor, Global Physical Climatology, volume 56, pages 81–114. Academic Press, 1994.spa
dc.relation.referencesHatma Suryatmojo, Masamitsu Fujimoto, Yosuke Yamakawa, Ken’ichiro Kosugi, and Takahisa Mizuyama. Water balance changes in the tropical rainforest with intensive forest management system. International Journal of Sustainable Future for Human Security J-SustaiN, 1(2):56–62, 2013.spa
dc.relation.referencesFriedrich J Bohn, Karin Frank, and Andreas Huth. Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecological Modelling, 278:9–17, 2014.spa
dc.relation.referencesXihua Yang, Xiaojin Xie, De Li Liu, Fei Ji, and Lin Wang. Spatial interpolation of daily rainfall data for local climate impact assessment over greater sydney region. Advances in Meteorology, 2015, 2015.spa
dc.relation.referencesA Dewi Hartkamp, Kirsten De Beurs, Alfred Stein, and Jeffrey W White. Interpolation techniques for climate variables, 1999.spa
dc.relation.referencesDonald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, pages 517–524, 1968.spa
dc.relation.referencesAntonio Samuel Alves da Silva, Borko Stosic, Rômulo Simões Cezar Menezes, and Vijay P Singh. Comparison of interpolation methods for spatial distribution of monthly precipitation in the state of pernambuco, brazil. Journal of Hydrologic Engineering, 24(3):04018068, 2019.spa
dc.relation.referencesRichard Franke and Greg Nielson. Smooth interpolation of large sets of scattered data. International journal for numerical methods in engineering, 15(11):1691–1704, 1980.spa
dc.relation.referencesJuan Camilo Villegas, Conrado Tobón, and David D. Breshears. Fog interception by non-vascular epiphytes in tropical montane cloud forests: Dependencies on gauge type and meteorological conditions. Hydrological Processes, 22(14):2484–2492, jul 2008.spa
dc.relation.referencesJaime Ignacio Vélez Upegui, Germán Poveda, J Oscar, and S Mesa. Balances hidrológicos de Colombia. Universidad Nacional de Colombia, Sede Medellı́n, Facultad de Minas, Posgrado, 2000.spa
dc.relation.referencesB Chaves and A Jaramillo. Regionalización de la temperatura del aire en Colombia. 1998.spa
dc.relation.referencesGordon Bonan. Surface Energy Fluxes. In Ecological Climatology, pages 193–208. Cambridge University Press, Cambridge, 2015.spa
dc.relation.referencesRyan McGloin, Ladislav Šigut, Kateřina Havránková, Jiřı́ Dušek, Marian Pavelka, and Pavel Sedlák. Energy balance closure at a variety of ecosystems in central europe with contrasting topographies. Agricultural and Forest Meteorology, 248:418–431, 2018.spa
dc.relation.referencesRK Jaiswal, AK Lohani, and HL Tiwari. Statistical analysis for change detection and trend assessment in climatological parameters. Environmental Processes, 2(4):729–749, 2015.spa
dc.relation.referencesAnthony N Pettitt. A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2):126–135, 1979.spa
dc.relation.referencesChris Funk, Pete Peterson, Martin Landsfeld, Diego Pedreros, James Verdin, Shraddhanand Shukla, Gregory Husak, James Rowland, Laura Harrison, Andrew Hoell, et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1):1–21, 2015.spa
dc.relation.referencesZheng Duan and WGM Bastiaanssen. First results from version 7 trmm 3b43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sensing of Environment, 131:1–13, 2013.spa
dc.relation.referencesGeorge J Huffman, David T Bolvin, Eric J Nelkin, et al. Integrated multi-satellite retrievals for gpm (imerg) technical documentation. NASA/GSFC Code, 612(2015):47, 2015.spa
dc.relation.referencesJohn T Abatzoglou, Solomon Z Dobrowski, Sean A Parks, and Katherine C Hegewisch. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5:170191, 2018.spa
dc.relation.referencesBrecht Martens, Diego Gonzalez Miralles, Hans Lievens, Robin Van Der Schalie, Richard AM De Jeu, Diego Fernández-Prieto, Hylke E Beck, Wouter Dorigo, and Niko Verhoest. Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5):1903–1925, 2017.spa
dc.relation.referencesHualan Rui and Amy McNally. Document for Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) Products. Technical report, Goddard Space Flight Center, Maryland, 2017.spa
dc.relation.referencesFilippo Giorgi, Csaba Torma, Erika Coppola, Nikolina Ban, Christoph Schär, and Samuel Somot. Enhanced summer convective rainfall at alpine high elevations in response to climate warming. Nature Geoscience, 9(8):584–589, 2016.spa
dc.relation.referencesViviana Urrea, Andrés Ochoa, and Oscar Mesa. CHIRPS para Colombia a escala diaria, mensual y anual en el perı́odo ... (November), 2016.spa
dc.relation.referencesAbigail LS Swann, Marcos Longo, Ryan G Knox, Eunjee Lee, and Paul R Moorcroft. Future deforestation in the amazon and consequences for south american climate. Agricultural and Forest Meteorology, 214:12–24, 2015.spa
dc.relation.referencesXiaoming Sun. Role of Surface Evapotranspiration on Moist Convection along the Eastern Flanks of the. PhD thesis, Duke University, 2014.spa
dc.relation.referencesXiaoming Sun and Ana P Barros. Isolating the role of surface evapotranspiration on moist convection along the eastern flanks of the tropical andes using a quasi-idealized approach. Journal of Atmospheric Sciences, 72(1):243–261, 2015.spa
dc.relation.referencesRobert E Dickinson. Land-atmosphere interaction. Reviews of Geophysics, 33(S2):917–922, 1995.spa
dc.relation.referencesRoger A Pielke Sr, Gregg Marland, Richard A Betts, Thomas N Chase, Joseph L Eastman, John O Niles, Dev Dutta S Niyogi, and Steven W Running. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1797):1705–1719, 2002.spa
dc.relation.referencesPraveena Krishnan, Tilden P Meyers, Russell L Scott, Linda Kennedy, and Mark Heuer. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in north america. Agricultural and Forest Meteorology, 153:31–44, 2012.spa
dc.relation.referencesCarlos AC dos Santos, Denis A Mariano, A Francisco das Chagas, Fabiane Regina da C Dantas, Gabriel de Oliveira, Madson T Silva, Lindenberg L da Silva, Bernardo B da Silva, Bergson G Bezerra, Babak Safa, et al. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in brazil. International Journal of Applied Earth Observation and Geoinformation, 85:101982, 2020.126spa
dc.relation.referencesQi Hu, Gary D Willson, Xi Chen, and Adnan Akyuz. Effects of climate and landcover change on stream discharge in the ozark highlands, usa. Environmental Modeling & Assessment, 10(1):9–19, 2005.spa
dc.relation.referencesBhaskarJ Choudhury. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216(1-2):99–110, 1999.spa
dc.relation.referencesHanbo Yang, Dawen Yang, Zhidong Lei, and Fubao Sun. New analytical derivation of the mean annual water-energy balance equation. Water resources research, 44(3), 2008.spa
dc.relation.referencesBP Fu. On the calculation of the evaporation from land surface. Sci. Atmos. Sin, 5(1):23–31, 1981.spa
dc.relation.referencesOmid Rahmati, Mahmood Samadi, Himan Shahabi, Ali Azareh, Elham Rafiei-Sardooi, Hossein Alilou, Assefa M. Melesse, Biswajeet Pradhan, Kamran Chapi, and Ataollah Shirzadi. SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 10(6):2167– 2175, nov 2019.spa
dc.relation.referencesPD Aher, J Adinarayana, and SD Gorantiwar. Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of india: a remote sensing and gis approach. Journal of Hydrology, 511:850–860, 2014.spa
dc.relation.referencesKumar Avinash, KS Jayappa, and B Deepika. Prioritization of sub-basins based on geomorphology and morphometricanalysis using remote sensing and geographic informationsystem (gis) techniques. Geocarto International, 26(7):569–592, 2011.spa
dc.relation.referencesKumar Avinash, KS Jayappa, and B Deepika. Prioritization of sub-basins based on geomorphology and morphometricanalysis using remote sensing and geographic informationsystem (gis) techniques. Geocarto International, 26(7):569–592, 2011.spa
dc.relation.referencesEdouard L Davin and Nathalie de Noblet-Ducoudré. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 23(1):97–112, 2010.spa
dc.relation.referencesGovindasamy Bala, K Caldeira, M Wickett, TJ Phillips, DB Lobell, C Delire, and A Mirin. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16):6550–6555, 2007.spa
dc.relation.referencesMikhail Ivanovich Budyko, David H Miller, and David Hewitt Miller. Climate and life, volume 508. Academic press New York, 1974.spa
dc.relation.referencesP Schreiber. Über die beziehungen zwischen dem niederschlag und der wasserführung der flüsse in mitteleuropa. Z. Meteorol, 21(10):441–452, 1904.spa
dc.relation.referencesEM Ol’Dekop. On evaporation from the surface of river basins. Transactions on meteorological observations, 4:200, 1911.spa
dc.relation.referencesLu Zhang, WR Dawes, and GR Walker. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water resources research, 37(3):701–708, 2001.spa
dc.relation.referencesAmilcare Porporato, Edoardo Daly, and Ignacio Rodriguez-Iturbe. Soil water balance and ecosystem response to climate change. The American Naturalist, 164(5):625–632, 2004.spa
dc.relation.referencesQining Shen, Zhentao Cong, and Huimin Lei. Evaluating the impact of climate and underlying surface change on runoff within the budyko framework: A study across 224 catchments in china. Journal of Hydrology, 554:251–262, 2017.spa
dc.relation.referencesTingting Ning, Zhi Li, Qi Feng, Wenzhao Liu, and Zongxing Li. Comparison of the effectiveness of four budyko-based methods in attributing long-term changes in actual evapotranspiration. Scientific reports, 8(1):1–10, 2018.spa
dc.relation.referencesDawen Yang, Fubao Sun, Zhiyu Liu, Zhentao Cong, Guangheng Ni, and Zhidong Lei. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of china using the budyko hypothesis. Water Resources Research, 43(4), 2007.spa
dc.relation.referencesMaurice George Kendall. Rank correlation methods. 1948.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible–MADS. Criterios para la priorización de cuencas hidrográficas objeto de ordenación y manejo. Technical report, Bogotá, 2014.spa
dc.relation.referencesOECD. Water Security for Better Lives. 2013.spa
dc.relation.referencesGermán Poveda, Liliana Jaramillo, and Luisa F Vallejo. Seasonal precipitation patterns along pathways of south american low-level jets and aerial rivers. Water Resources Research, 50(1):98–118, 2014.spa
dc.relation.referencesAnastassia M Makarieva and Victor G Gorshkov. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. 2007.spa
dc.relation.referencesJavier Houspanossian, Raúl Giménez, Esteban Jobbágy, and Marcelo Nosetto. Surface albedo raise in the south american chaco: Combined effects of deforestation and agricultural changes. Agricultural and Forest Meteorology, 232:118–127, 2017.spa
dc.relation.referencesRichard H. Waring and Steven W. Running. Water Cycle. In Forest Ecosystems, pages 19–57. Elsevier, jan 2007.spa
dc.relation.referencesMillennium Ecosystem Assessment (MEA). Ecosystems and Human Well-being: Synthesis. Technical report, Washington, DC., 2005.128spa
dc.relation.referencesJonathan A Foley, Ruth DeFries, Gregory P Asner, Carol Barford, Gordon Bonan, Stephen R Carpenter, F Stuart Chapin, Michael T Coe, Gretchen C Daily, Holly K Gibbs, et al. Global consequences of land use. Science, 309(5734):570–574, 2005.spa
dc.relation.referencesLaura E Dee, Stefano Allesina, Aletta Bonn, Anna Eklöf, Steven D Gaines, Jes Hines, Ute Jacob, Eve McDonald-Madden, Hugh Possingham, Matthias Schröter, et al. Operationalizing network theory for ecosystem service assessments. Trends in ecology & evolution, 32(2):118–130, 2017.spa
dc.relation.referencesJulio C. Postigo and Kenneth R. Young. Naturaleza y Sociedad: perspectivas socio-ecológicas sobre cambios globales en América. Lima, 2016.spa
dc.relation.referencesNicholas M Gotts, George AK van Voorn, J Gareth Polhill, Eline de Jong, Bruce Edmonds, Gert Jan Hofstede, and Ruth Meyer. Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecological Complexity, 40:100728, 2019.spa
dc.relation.referencesLinda Berrio-Giraldo, Clara Villegas-Palacio, and Santiago Arango-Aramburo. Dinámica de sistemas socio-ecológicos en cuencas hidrográficas de media montaña. PhD thesis, Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesLaura Schmitt Olabisi, Saweda Liverpool-Tasie, Louie Rivers, Arika Ligmann-Zielinska, Jing Du, Riva Denny, Sandra Marquart-Pyatt, and Amadou Sidibé. Using participatory modeling processes to identify sources of climate risk in west africa. Environment Systems and Decisions.spa
dc.relation.referencesJohn Sterman. System dynamics: systems thinking and modeling for a complex world. 2002.spa
dc.relation.referencesJulia Martin-Ortega, Robert C Ferrier, Iain J Gordon, Shahbaz Khan, et al. Water ecosystem services: a global perspective. UNESCO Publishing, 2015.spa
dc.relation.referencesMaja Schlueter, Ryan RJ Mcallister, Robert Arlinghaus, Nils Bunnefeld, Klaus Eisenack, Frank Hoelker, Eleanor J MILNER-GULLAND, Birgit Müller, Emily Nicholson, Martin Quaas, et al. New horizons for managing the environment: A review of coupled social-ecological systems modeling. Natural Resource Modeling, 25(1):219–272, 2012.spa
dc.relation.referencesSondoss Elsawah, Suzanne A Pierce, Serena H Hamilton, Hedwig Van Delden, Dagmar Haase, Amgad Elmahdi, and Anthony J Jakeman. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environmental Modelling & Software, 93:127–145, 2017.spa
dc.relation.referencesV Aceros, A Dı́az, J Escobar, A Garcı́a, J Gomez, C Olaya, and V Otero. ¿ cualitativo o cuantitativo? esa no es la cuestión: un método para el desarrollo de hipótesis dinámicas. IX Congreso Latinoamericano de Dinámica de Sistemas y II Congreso Brasileño, 2011.spa
dc.relation.referencesA Mejı́a, F Dı́az, G Dı́az, and C Olaya. Ser directo puede traerte problemas, pero ser indirecto también: Las realimentaciones en dinámica de sistemas cualitativa y cuantitativa. In Artı́culo aceptado para el Congreso Latinoamericano de Dinámica de Sistemas, 2007.spa
dc.relation.referencesEric F Wolstenholme. Qualitative vs quantitative modelling: the evolving balance. Journal of the Operational Research Society, 50(4):422–428, 1999.spa
dc.relation.referencesThomas Binder, Andreas Vox, Salim Belyazid, Hordur Haraldsson, and Mats Svensson. Developing system dynamics models from causal loop diagrams. In Proceedings of the 22nd International Conference of the System Dynamic Society, pages 1–21, 2004.spa
dc.relation.referencesNiNa Dhirasasna and Oz Sahin. A multi-methodology approach to creating a causal loop diagram. Systems, 7(3):42, 2019.spa
dc.relation.referencesNicola Clerici, Maria Luisa Paracchini, and Joachim Maes. Land-cover change dynamics and insights into ecosystem services in european stream riparian zones. Ecohydrology & Hydrobiology, 14(2):107–120, 2014.spa
dc.relation.referencesIPBES. IPBES Global assessment – Chapter 2.3 Supplementary materia. Technical report, 2019.spa
dc.relation.referencesMillennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment. Washington, DC, island press edition, 2003.spa
dc.relation.referencesScott L Collins, Stephen R Carpenter, Scott M Swinton, Daniel E Orenstein, Daniel L Childers, Ted L Gragson, Nancy B Grimm, J Morgan Grove, Sharon L Harlan, Jason P Kaye, et al. An integrated conceptual framework for long-term social–ecological research. Frontiers in Ecology and the Environment, 9(6):351–357, 2011.spa
dc.relation.referencesMichael Nassl and Jörg Löffler. Ecosystem services in coupled social–ecological systems: Closing the cycle of service provision and societal feedback. Ambio, 44(8):737–749, 2015.spa
dc.relation.referencesSandra Dı́az, Sebsebe Demissew, Julia Carabias, Carlos Joly, Mark Lonsdale, Neville Ash, Anne Larigauderie, Jay Ram Adhikari, Salvatore Arico, András Báldi, et al. The ipbes conceptual framework—connecting nature and people. Current opinion in environmental sustainability, 14:1–16, 2015.spa
dc.relation.referencesInstituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP). EL CULTIVO DE LA PAPA EN ECUADOR. Technical report, Quito, 2002.spa
dc.relation.referencesVanessa Garcı́a-Leoz, Juan Camilo Villegas, Diego Suescún, Claudia P Flórez, Luis Merino-Martı́n, Teresita Betancur, and Juan Diego León. Land cover effects on water balance partitioning in the colombian andes: improved water availability in early stages of natural vegetation recovery. Regional Environmental Change, 18(4):1117–1129, 2018.spa
dc.relation.referencesNuzhat Q Qazi, L Adrian Bruijnzeel, Shive Prakash Rai, and Chandra P Ghimire. Impact of forest degradation on streamflow regime and runoff response to rainfall in the garhwal himalaya, northwest india. Hydrological sciences journal, 62(7):1114–1130, 2017.spa
dc.relation.referencesMelanie Feurer, Andreas Heinimann, Flurina Schneider, Christine Jurt, Win Myint, and Julie Gwendolin Zaehringer. Local perspectives on ecosystem service trade-offs in a forest frontier landscape in myanmar. Land, 8(3):45, 2019.spa
dc.relation.referencesPK Snyder, C Delire, and JA Foley. Evaluating the influence of different vegetation biomes on the global climate. Climate Dynamics, 23(3-4):279–302, 2004.spa
dc.relation.referencesH Zhang, Ann Henderson-Sellers, and Kendal McGuffie. Impacts of tropical deforestation. part i: Process analysis of local climatic change. Journal of Climate, 9(7):1497– 1517, 1996.spa
dc.relation.referencesJagadish Shukla, Carlos Nobre, and Piers Sellers. Amazon deforestation and climate change. Science, 247(4948):1322–1325, 1990.spa
dc.relation.referencesCharlotte Hess and Elinor Ostrom. Understanding Knowledge as a Commons. The MIT Press, jan 2007.spa
dc.relation.referencesCONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL (CONPES). LINEAMIENTOS DE POLÍTICA Y PROGRAMA NACIONAL DE PAGO POR SERVICIOS AMBIENTALES PARA LA CONSTRUCCIÓN DE PAZ . Technical report, Bogotá, 2017.spa
dc.relation.referencesSven Wunder et al. Payments for environmental services: some nuts and bolts. 2005.spa
dc.relation.referencesCristina Vargas. Dinámica de los agroecosistemas bajo el enfoque de sistemas socioecológicos. Caso de estudio: cuenca hidrográfica del rı́o Grande y del rı́o Chico. PhD thesis, Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesMaja Schlüter, Jochen Hinkel, Pieter WG Bots, and Robert Arlinghaus. Application of the ses framework for model-based analysis of the dynamics of social-ecological systems. Ecology and Society, 19(1), 2014.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible – MADS. Bosques Territorios de Vida: Estrategia Integral de Control a la Deforestación y Gestión de los Bosques. Technical report, Ministerio de Ambiente y Desarrollo Sostenible, 2018.spa
dc.relation.referencesSibel Eker and Nici Zimmermann. Using textual data in system dynamics model conceptualization. Systems, 4(3):28, 2016.spa
dc.relation.referencesSherman Farhad. Los sistemas socio-ecológicos. una aproximación conceptual y metodológica. XII Jornadas de economía crítica, pages 265–280, 2012.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. 3,8 millones de dólares es el aporte de Colombia y Ecuador para cuidar el agua de dos cuencas compartidas , 2020.spa
dc.relation.referencesG. Poveda. Garantizar la integridad de los ecosistemas de Colombia: condición básica para preservar la biodiversidad y desarrollar la bioeconomía. In CIENCIA Y TECNOLOGÍA: FUNDAMENTO DE LA BIOECONOMÍA, volume 3, chapter 3. 2021.spa
dc.relation.referencesRudi J Van der Ent, Hubert HG Savenije, Bettina Schaefli, and Susan C Steele-Dunne. Origin and fate of atmospheric moisture over continents. Water Resources Research, 46(9), 2010.spa
dc.relation.referencesChi Zhang, Qiuhong Tang, Deliang Chen, Laifang Li, Xingcai Liu, and Huijuan Cui. Tracing changes in atmospheric moisture supply to the drying southwest china. Atmospheric Chemistry and Physics, 17(17):10383–10393, 2017.spa
dc.relation.referencesDC Zemp, C-F Schleussner, HMJ Barbosa, RJ Van der Ent, Jonathan Friedemann Donges, J Heinke, G Sampaio, and A Rammig. On the importance of cascading moisture recycling in south america. Atmospheric Chemistry and Physics, 14(23):13337– 13359, 2014.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembEcosistemas
dc.subject.lembCuencas Hidrográficas - Rio Mira
dc.subject.proposalSistemas socioecológicosspa
dc.subject.proposalServicios ecosistémicosspa
dc.subject.proposalDeforestaciónspa
dc.subject.proposalCambio de uso/cobertura del suelospa
dc.subject.proposalBalance de energíaspa
dc.subject.proposalBalance de aguaspa
dc.subject.proposalMarco de Budykospa
dc.titleEfectos sobre las variables hidrológicas y la provisión potencial de servicios ecosistémicos producto del cambio de cobertura vegetal. Caso de estudio sistema socioecológico de la cuenca del Río Mira.spa
dc.title.translatedEffects on hydrological variables and potential provision of ecosystem services as a result of land cover changes. Case study Socioecological system of the Mira River basin.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFundación para la Promoción de la Investigación y la Tecnología - Banco de la República - Convenio 202006 - Proyecto 4.389spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037624657_2021.pdf
Tamaño:
147.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: