Photostability enhancement in oligo (phenylene vinylene) systems and their application as heterogeneous photocatalysts

dc.contributor.advisorSierra Ávila, César Augusto
dc.contributor.authorAcelas Mantilla, Edgar Mauricio de Jesús
dc.contributor.researchgroupGrupo de Investigación en Macromoléculasspa
dc.date.accessioned2022-09-06T13:01:15Z
dc.date.available2022-09-06T13:01:15Z
dc.date.issued2022-08-25
dc.descriptionilustraciones, graficasspa
dc.description.abstractThe first chapter revises the most relevant aspects of phenylene vinylene (PV) systems applied to photocatalysis. Despite the photochemical applications of these conjugated systems that have been widely described and involve photodynamic therapy, pollutants degradation, chemical synthesis, and hydrogen production, among others, it should be noted that a major photostability improvement is required to promote future research in this field. Evidence has pointed out that the vinyl segment directly contributes to the degradation of the PV materials, thus limiting its exploration as organic photocatalysts. Notwithstanding, the scientific literature provides some clues regarding strategies such as structural rigidification and the use of electron-withdrawing groups and inorganic supports to attenuate the PV system fragmentation and therefore enhance the materials’ photocatalytic performance. The second chapter describes the synthesis and chemical/optoelectronic characterization of four target OPVs, prepared via Mizoroki-Heck reaction under solvothermal conditions as a strategy to assemble the conjugated framework with E-E configuration in moderate to high yields. These OPV materials displayed absorption features that included the visible region of the electromagnetic spectrum, suggesting their photochemical activity can be achieved under irradiation with wavelength values >400 nm. Moreover, their optoelectronic properties in both solution and solid-state confirm their potential as organic photocatalysts. Additionally, the preparation of amino OPVs was rationally explored. It was found that the reduction of nitro OPVs employing Na2S/pyridine provides a simple and straightforward synthetic tactic to overcome all the solubility issues related to these materials. The third chapter summarizes the photocatalytic behavior towards the degradation of indigo carmine dye (IC) of the four target OPVs when adsorbed on SiO2 and irradiated using a 350-450 nm LED panel. Different spectroscopic techniques and mass spectrometry allowed us to corroborate that tethering electron-withdrawing groups around the conjugated backbone contribute to the OPV systems’ photostability. OPV 1 resulted in the most efficient and photo-resistant material; its photodegradation products were clearly identified and found to directly relate to the chemical reaction of the conjugated framework with different ROS. The IC photodegradation route was also established, simultaneously identifying the dye degradation products, where the participation of OH· radicals could be disregarded. Nevertheless, reusability experiments confirmed a very low degradation percentage (20%) for the third cycle. The fourth chapter provides detail of the synthetic process and characterization of the chemical immobilization of OPV 1 onto SiO2 and TiO2 along with its copolymerization with rigid and flexible spacers as strategies to improve the photostability of the PV system during the heterogeneous photocatalytic degradation of IC. The assessment of the materials as photocatalyst was simultaneously carried out, where TiO2/OPV 1 displayed outstanding IC degradation performance under visible light. It was found that this process is boosted by the charge transfer process from the OPV moiety towards the TiO2 support, the latter responsible for directly interacting with oxygen to generate ROS producing the dye degradation. Additionally, a direct reductive IC decoloration pathway was observed for this material. On the other hand, when SiO2 was employed as support for OPV 1, the IC degradation was inferior compared to all other materials, even under UVA irradiation. Also, the prepared polymers exhibited a greater photocatalytic activity when 350-450 nm LEDs were used. In summary, both photocatalytic activity and stability significantly improved as demonstrated by TiO2/OPV 1 and the polymer with aromatic rigid spacers Pol-1, which preserved a significantly high IC degradation percentage up to the seventh reuse cycle. This thesis comprises the starting point for future research concerning the rational design of PV-based materials with enhanced properties, performance, and stability for their application as photocatalytic systems. Finally, the fifth chapter discloses the obtained results concerning the treatment of a real textile wastewater sample and 17β-estradiol solutions, the hormone released in the poultry process, using TiO2/OPV 1 (under visible light) and Pol-1 (under UV light) as photocatalysts. This, as a remediation strategy for national environmental issues of concern. In general, it was confirmed that the evaluated PV systems serve as preliminary approaches to address the above-mentioned environmental challenges, comprising a pertinent alternative towards the control of aqueous pollutants.eng
dc.description.abstractEl primer capítulo revisa los aspectos más relevantes del uso de sistemas conjugados tipo fenilen vinileno (FV) en diferentes aplicaciones fotocatalíticas. A pesar de que la actividad fotoquímica de estos sistemas se ha descrito en campos que van desde la terapia fotodinámica en sistemas biológicos, la degradación de contaminantes, la síntesis química y la producción de hidrógeno, es evidente que se requieren mejoras sustanciales en términos de fotoestabilidad que permitan promover futuras investigaciones en este campo, considerando que el fragmento vinílico es el principal responsable de la degradación de estos materiales limitando su exploración como fotocatalizadores. No obstante, existe suficiente evidencia experimental que permite proponer estrategias como el ensamble de estructuras más rígidas, el uso de sustituyentes electroactractores y el uso de soportes inorgánicos para atenuar la fragmentación del sistema FV y, de este modo, mejorar sustancialmente su desempeño en las aplicaciones mencionadas anteriormente. El segundo capítulo describe la síntesis y caracterización química y optoelectrónica de cuatro compuestos oligo (fenilen vinileno) target, preparados a partir de la reacción de Mizoroki-Heck bajo condiciones solvotérmicas como estrategia sintética para el ensamble de la estructura conjugada en configuración E-E con rendimientos de moderados a altos. Se encontró que estos materiales exhiben características de absorción desde la región visible del espectro electromagnético, lo cual sugiere que su actividad fotoquímica puede darse incluso empleando fuentes de irradiación con longitudes de onda >400 nm. Además, sus propiedades optoelectrónicas, tanto en solución como en estado sólido, confirman su potencial como fotocatalizadores orgánicos. Adicionalmente, se exploró la preparación de compuestos amino oligo (fenilen vinileno) a partir de diferentes rutas, encontrándose que la reducción de nitro oligo (fenilen vinilenos) empleando el sistema Na2S/piridina constituye una ruta simple que permite superar los inconvenientes relacionados con la solubilidad de estos materiales. El tercer capítulo muestra el comportamiento fotocatalítico de los cuatro sistemas fenilen vinileno adsorbidos sobre SiO2 frente a la degradación del colorante índigo carmín (IC), empleando como fuente de luz un panel LED de 350-450 nm. Se logró comprobar mediante diferentes técnicas espectroscópicas, así como espectrometría de masas, que los sustituyentes electroatractores contribuyen a la fotoestabilidad de los sistemas. Adicionalmente, fue posible establecer que el sistema OPV 1 es el más eficiente y foto-resistente. Llegando también a identificar claramente sus productos de fotodegradación, los cuales están relacionados principalmente con la reacción del sistema conjugado con diferentes ROS. También, fue posible corroborar la ruta a través de la cual transcurre la degradación del colorante. Simultáneamente se realizó la caracterización de los productos de degradación del índigo carmín, descartándose la participación de radicales OH·. No obstante, experimentos de reusabilidad mostraron una baja capacidad de degradación cercana al 20% para el tercer ciclo. El cuarto capítulo detalla los procesos sintéticos y la caracterización relacionados con el anclaje químico del sistema OPV 1 sobre SiO2 y TiO2 así como su copolimerización con segmentos rígidos y flexibles; estrategias propuestas para la mejora de la estabilidad frente a su uso como fotocatalizadores. Simultáneamente se llevó a cabo su evaluación como fotocatalizadores heterogéneos para la degradación de IC, encontrando que el material TiO2/OPV 1 es capaz de degradar de manera eficiente el IC en tan solo 8 minutos bajo la acción de luz visible. Se determinó que este proceso está facilitado por la transferencia de carga del OPV 1 hacia el TiO2, este último responsable de interactuar con el oxígeno para generar ROS, ocasionando la degradación del colorante. Así mismo, se evidenció reducción directa del IC por el OPV, como ruta de degradación alternativa, exclusiva de este material. Por su parte, cuando se empleó SiO2 como soporte para el OPV 1, la degradación del IC fue baja, inclusive empleando radiación UVA. Por otro lado, los polímeros sintetizados exhibieron una mayor actividad fotocatalítica empleando LEDs de 350-450 nm. En conjunto, la actividad fotocatalítica y la estabilidad mejoraron significativamente, encontrándose que el TiO2/OPV 1 y el polímero con separadores aromáticos rígidos Pol-1, mantienen un elevado porcentaje de degradación del IC hasta el séptimo ciclo de reúso. Lo anterior lleva a que esta tesis se constituya en punto de partida para futuras investigaciones relacionadas con el diseño racional de materiales basados en fenilen vinilenos que puedan presentar mejores propiedades, desempeño y estabilidad para su aplicación como sistemas fotocatalíticos. Finalmente, el quinto capítulo expone los resultados obtenidos en la fotodegradación de colorantes presentes en una muestra real de agua residual textil y de soluciones de 17β-estradiol, hormona excretada en el proceso productivo avícola, empleando como fotocatalizadores los sistemas TiO2/OPV 1 (bajo irradiación con luz visible) y Pol-1 (bajo irradiación con luz UV). Lo anterior como propuesta de remediación a problemáticas de impacto nacional tanto para la industria textil como la industria avícola. En general, se confirma que los sistemas FV evaluados tienen potencial para abordar de manera preliminar estos desafíos ambientales, proyectándose como una alternativa relevante en el control de contaminantes acuosos. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaFotocatalizadores orgánicosspa
dc.format.extentxxv, 220 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82253
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesOelgemöller, M.; Jung, C.; Mattay, J. Green Photochemistry: Production of Fine Chemicals with Sunlight. Pure Appl. Chem. 2007, 79, 1939–1947. https://doi.org/10.1351/pac200779111939.spa
dc.relation.referencesRomero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057.spa
dc.relation.referencesAmos, S. G. E.; Garreau, M.; Buzzetti, L.; Waser, J. Photocatalysis with Organic Dyes: Facile Access to Reactive Intermediates for Synthesis. Beilstein J. Org. Chem. 2020, 16, 1163–1187. https://doi.org/10.3762/bjoc.16.103.spa
dc.relation.referencesBlayney, A. J.; Perepichka, I. F.; Wudl, F.; Perepichka, D. F. Advances and Challenges in the Synthesis of Poly(p-Phenylene Vinylene)-Based Polymers. Isr. J. Chem. 2014, 54, 674–688. https://doi.org/10.1002/ijch.201400067.spa
dc.relation.referencesMuktha, B.; Madras, G.; Guru Row, T. N.; Scherf, U.; Patil, S. Conjugated Polymers for Photocatalysis. J. Phys. Chem. B 2007, 111, 7994–7998. https://doi.org/10.1021/jp071096n.spa
dc.relation.referencesLi, X.; Yan, H.; Durrant, J. Studies on the Photo-Stability of Poly p-(Phenylene Vinylene). Spectrosc. Spectral Anal. (Beijing, China) 2004, 25, 743–746.spa
dc.relation.referencesLiras, M.; Barawi, M.; De La Peña O’Shea, V. A. Hybrid Materials Based on Conjugated Polymers and Inorganic Semiconductors as Photocatalysts: From Environmental to Energy Applications. Chem. Soc. Rev. 2019, 48, 5454–5487. https://doi.org/10.1039/c9cs00377k.spa
dc.relation.referencesYoung, C. A.; Hammack, A.; Lee, H. J.; Jia, H.; Yu, T.; Marquez, M. D.; Jamison, A. C.; Gnade, B. E.; Lee, T. R. Poly(1,4-Phenylene Vinylene) Derivatives with Ether Substituents to Improve Polymer Solubility for Use in Organic Light-Emitting Diode Devices. ACS Omega 2019, 4, 22332–22344. https://doi.org/10.1021/acsomega.9b02396.spa
dc.relation.referencesDiederich, F.; Martin, R. E. Linear Monodisperse p -Conjugated Oligomers : Angew. Chem. Int. Ed. 1999, 38, 1350–1377. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6.spa
dc.relation.referencesMikroyannidis, J. A.; Tsagkournos, D. V.; Balraju, P.; Sharma, G. D. Synthesis and Photovoltaic Properties of an Alternating Phenylenevinylene Copolymer with Substituted-Triphenylamine Units along the Backbone for Bulk Heterojunction and Dye-Sensitized Solar Cells. J. Power Sources 2011, 196, 2364–2372. https://doi.org/10.1016/j.jpowsour.2010.09.118.spa
dc.relation.referencesMüller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Multi-Colour Organic Light-Emitting Displays by Solution Processing. Nature 2003, 421, 829–833. https://doi.org/10.1038/nature01390.spa
dc.relation.referencesMorgado, J.; Cacialli, F.; Friend, R. H.; Chuah, B. S.; Moratti, S. C.; Holmes, A. B. Luminescence Properties of PPV-Based Copolymers with Crown Ether Substituents. Synth. Met. 2000, 111, 449–452. https://doi.org/10.1016/S0379-6779(99)00397-5.spa
dc.relation.referencesNg, P. K.; Gong, X.; Chan, S. H.; Lam, L. S.; Chan, W. K. The Role of Ruthenium and Rhenium Diimine Complexes in Conjugated Polymers That Exhibit Interesting Opto-Electronic Properties. Chem. - A Eur. J. 2001, 7, 4358–4367. https://doi.org/10.1002/1521-3765(20011015)7:20<4358::AID-CHEM4358>3.0.CO;2-M.spa
dc.relation.referencesHsieh, B. R.; Yu, Y.; Vanlaeken, A. C.; Lee, H. General Methodology toward Soluble Poly(p-Phenylenevinylene) Derivatives. Macromolecules 1997, 30, 8094–8095. https://doi.org/10.1021/ma9713771.spa
dc.relation.referencesYu, C. Y.; Lai, Y. C. Soluble Phenylenevinylene Polymers Containing Tetraphenylethene Units by Ring-Opening Metathesis Polymerization. Macromol. Chem. Phys. 2018, 219, 1–5. https://doi.org/10.1002/macp.201800135.spa
dc.relation.referencesSierra, C. A.; Lahti, P. M. A Photoluminescent , Segmented Oligo-Polyphenylenevinylene Copolymer with Hydrogen-Bonding Pendant Chains. Chem. Mater. 2004, 16, 55–61. https://doi.org/10.1021/cm034708z.spa
dc.relation.referencesCarvajal, T. R.; Kuebler, S. M.; Sierra, C. A. Synthesis of Novel Phenylenevinylene Linkers with Electron-Donating Substituents by the Heck Reaction. Synth. Met. 2015, 209, 183–187. https://doi.org/10.1016/j.synthmet.2015.07.024.spa
dc.relation.referencesDíaz, C.; Alzate, D.; Rodríguez, R.; Ochoa, C.; Sierra, C. A. High Yield and Stereospecific Synthesis of Segmented Poly (p-Phenylene Vinylene) by the Heck Reaction. Synth. Met. 2013, 172, 32–36. https://doi.org/10.1016/j.synthmet.2013.03.023.spa
dc.relation.referencesCastellanos-García, L. J.; Agudelo, B. C.; Rosales, H. F.; Cely, M.; Ochoa-Puentes, C.; Blanco-Tirado, C.; Sierra, C. A.; Combariza, M. Y. Oligo P-Phenylenevinylene Derivatives as Electron Transfer Matrices for UV-MALDI. J. Am. Soc. Mass Spectrom. 2017, 28, 2548–2560. https://doi.org/10.1007/s13361-017-1783-z.spa
dc.relation.referencesMikroyannidis, J. A. Synthesis by the Gilch Method of Blue-Light-Emitting Poly (p-Phenylenevinylene) Derivatives Bearing Highly Phenylated Pendants. Chem. Mater. 2003, 15, 1865–1871. https://doi.org/10.1021/cm0209113.spa
dc.relation.referencesSon, S.; Dodabalapur, A.; Lovinger, A. J.; Galvin, M. E. Luminescence Enhancement by the Introduction of Disorder into Poly(p-Phenylene Vinylene). Science. 1995, 269, 376–378. https://doi.org/10.1126/science.269.5222.376.spa
dc.relation.referencesLowet, F.; Vanderzande, D.; Gelan, J.; Mullens, J. A New Synthetic Route to a Soluble High Molecular Weight Precursor for Poly(p-Phenylenevinylene) Derivatives. Macromolecules 1995, 28, 1330–1331. https://doi.org/10.1021/ma00108a079.spa
dc.relation.referencesNomura, K. Well-Defined End-Functionalized Conjugated Polymers/Oligomers Exhibiting Unique Emission Properties through the End Groups: The Exclusive Synthesis by Combined Olefin Metathesis with Wittig-Type Coupling. Macromol. Mater. Eng. 2019, 304, 1900307. https://doi.org/10.1002/mame.201900307.spa
dc.relation.referencesKim, K.; Ahn, T. Synthesis and Light-Emitting Properties of a Carbazole-Containing Hyperbranched Conjugated Poly(Phenylene Vinylene). Mol. Cryst. Liq. Cryst. 2020, 705, 112–119. https://doi.org/10.1080/15421406.2020.1743427.spa
dc.relation.referencesLiu, Z.; Yuan, Y.; Wen, X.; Zhang, J.; Lei, G.; Zhang, P. Synthesis, Characterization, Photoluminescent, and Electroluminescent Properties of Poly(Biphenylenevinylene-Alt-Methoxyoctyloxyphenylenevinylene). Polym. Bull. 2013, 70, 1221–1235. https://doi.org/10.1007/s00289-012-0843-6.spa
dc.relation.referencesPfeiffer, S.; Hörhold, H. H. Synthesis of Soluble MEH-PPV and MEH-PPB by Horner Condensation Polymerization. Synth. Met. 1999, 101, 109–110. https://doi.org/10.1016/S0379-6779(98)01279-X.spa
dc.relation.referencesLehmann, M.; Maier, P. Shape-Persistent, Sterically Crowded Star Mesogens: From Exceptional Columnar Dimer Stacks to Supermesogens. Angew. Chemie - Int. Ed. 2015, 54, 9710–9714. https://doi.org/10.1002/anie.201501988.spa
dc.relation.referencesRotas, G.; Stranius, K.; Tkachenko, N.; Tagmatarchis, N. Ultralong 20 Milliseconds Charge Separation Lifetime for Photoilluminated Oligophenylenevinylene–Azafullerene Systems. Adv. Funct. Mater. 2018, 28, 1702278. https://doi.org/10.1002/adfm.201702278.spa
dc.relation.referencesSierra, A. F.; Rodríguez, R.; Sierra, C. A. Synthesis of a Stereoselective Nitro Phenylenevinylene Derivative by the Heck Reaction Using Phosphites. Rev. Colomb. Quim. 2010, 39, 163–171.spa
dc.relation.referencesLiang, F.; Pu, Y. J.; Kurata, T.; Kido, J.; Nishide, H. Synthesis and Electroluminescent Property of Poly(p-Phenylenevinylene)s Bearing Triarylamine Pendants. Polymer (Guildf). 2005, 46, 3767–3775. https://doi.org/10.1016/j.polymer.2005.03.036.spa
dc.relation.referencesZhang, W.; Zhu, L.; Qin, J.; Yang, C. Novel Water-Soluble Red-Emitting Poly(p -Phenylenevinylene) Derivative: Synthesis, Characterization, and Fluorescent Acetylcholinesterase Assays. J. Phys. Chem. B 2011, 115, 12059–12064. https://doi.org/10.1021/jp206930v.spa
dc.relation.referencesRamírez-Pradilla, J. S.; Blanco-Tirado, C.; Combariza, M. Y. Electron-Transfer Ionization of Nanoparticles, Polymers, Porphyrins, and Fullerenes Using Synthetically Tunable α-Cyanophenylenevinylenes as UV MALDI-MS Matrices. ACS Appl. Mater. Interfaces 2019, 11, 10975–10987. https://doi.org/10.1021/acsami.8b22246.spa
dc.relation.referencesPasco, S. T.; Lahti, P. M.; Karasz, F. E. Synthesis of Substituted Poly( p -Phenylenevinylene) Copolymers by the Heck Method for Luminescence Studies . Macromolecules 1999, 32, 6933–6937. https://doi.org/10.1021/ma990825x.spa
dc.relation.referencesFlores-Rojas, G. G.; Lijanova, I. V.; Morales-Saavedra, O. G.; Sanchez-Montes, K.; Martínez-García, M. Synthesis and NLO Behavior of Oligo(Phenylenevinylene)-Porphyrin Dendrimers. Dye. Pigm. 2013, 96, 125–129. https://doi.org/10.1016/j.dyepig.2012.07.011.spa
dc.relation.referencesFlores-Noria, R.; Vázquez, R.; Arias, E.; Moggio, I.; Rodríguez, M.; Ziolo, R. F.; Rodríguez, O.; Evans, D. R.; Liebig, C. Synthesis and Optoelectronic Properties of Phenylenevinylenequinoline Macromolecules. New J. Chem. 2014, 38, 974–984. https://doi.org/10.1039/c3nj01193c.spa
dc.relation.referencesNojima, M.; Ohta, Y.; Yokozawa, T. Investigation of Catalyst-Transfer Condensation Polymerization for Synthesis of Poly(p-Phenylenevinylene). J. Polym. Sci. Part A Polym. Chem. 2014, 52, 2643–2653. https://doi.org/10.1002/pola.27281.spa
dc.relation.referencesBabudri, F.; Cardone, A.; Chiavarone, L.; Ciccarella, G.; Farinola, G. M.; Naso, F.; Scamarcio, G. Synthesis and Characterization of Poly(2,3,5,6-Tetrafluoro-1,4-Phenylenevinylene). Chem. Commun. 2001, 1940–1941. https://doi.org/10.1039/b105029j.spa
dc.relation.referencesSharma, A.; Sharma, N.; Kumar, R.; Shard, A.; Sinha, A. K. Direct Olefination of Benzaldehydes into Hydroxy Functionalized Oligo (p-Phenylenevinylene)s via Pd-Catalyzed Heterodomino Knoevenagel- Decarboxylation-Heck Sequence and Its Application for Fluoride Sensing π-Conjugated Units. Chem. Commun. 2010, 46, 3283–3285. https://doi.org/10.1039/c001980a.spa
dc.relation.referencesAllolio, C.; Strassner, T. Palladium Complexes with Chelating Bis-NHC Ligands in the Mizoroki-Heck Reaction-Mechanism and Electronic Effects, a DFT Study. J. Org. Chem. 2014, 79, 12096–12105. https://doi.org/10.1021/jo501897s.spa
dc.relation.referencesCárdenas, J. C.; Fadini, L.; Sierra, C. A. Triphenylphosphite and Ionic Liquids: Positive Effects in the Heck Cross-Coupling Reaction. Tetrahedron Lett. 2010, 51, 6867–6870. https://doi.org/10.1016/j.tetlet.2010.10.104.spa
dc.relation.referencesCárdenas, J. C.; Ochoa-Puentes, C.; Gutiérrez-Puebla, E.; Sierra, C. A. Synthesis, Crystal Structure Determination and Photoluminescence Properties of a Pure anti trans-trans Phenylenevinylene Derivative. Synth. Met. 2016, 215, 194–199. https://doi.org/10.1016/j.synthmet.2016.02.021.spa
dc.relation.referencesEstrada, S. E.; Ochoa-Puentes, C.; Sierra, C. A. Phenylenevinylene Oligomers by Mizoroki-Heck Cross Coupling Reaction. Structural and Optoelectronic Characterization. J. Mol. Struct. 2017, 1133, 448–457. https://doi.org/10.1016/j.molstruc.2016.12.032.spa
dc.relation.referencesBaptista, M. S.; Cadet, J.; Di Mascio, P.; Ghogare, A. A.; Greer, A.; Hamblin, M. R.; Lorente, C.; Nunez, S. C.; Ribeiro, M. S.; Thomas, A. H.; Vignoni, M.; Yoshimura, T. M. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. https://doi.org/10.1111/php.12716.spa
dc.relation.referencesNeville, S. P.; Kirkby, O. M.; Kaltsoyannis, N.; Worth, G. A.; Fielding, H. H. Identification of a New Electron-Transfer Relaxation Pathway in Photoexcited Pyrrole Dimers. Nat. Commun. 2016, 7, 11357. https://doi.org/10.1038/ncomms11357.spa
dc.relation.referencesEl-Khouly, M. E.; Ito, O.; Smith, P. M.; D’Souza, F. Intermolecular and Supramolecular Photoinduced Electron Transfer Processes of Fullerene-Porphyrin/Phthalocyanine Systems. J. Photochem. Photobiol. C Photochem. Rev. 2004, 5, 79–104. https://doi.org/10.1016/j.jphotochemrev.2004.01.003.spa
dc.relation.referencesMarin, M. L.; Santos-Juanes, L.; Arques, A.; Amat, A. M.; Miranda, M. A. Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds. Chem. Rev. 2012, 112, 1710–1750. https://doi.org/10.1021/cr2000543.spa
dc.relation.referencesYan, M.; Rothberg, L. J.; Papadimitrakopoulos, F.; Galvin, M. E.; Miller, T. M. Defect Quenching of Conjugated Polymer Luminescence. Phys. Rev. Lett. 1994, 73, 744–747. https://doi.org/10.1103/PhysRevLett.73.744.spa
dc.relation.referencesPapadimitrakopoulos, F.; Yan, M.; Rothberg, L. J.; Katz, H. E.; Chandross, E. A.; Galvin, M. E. Thermal and Photochemical Origin of Carbonyl Group Defects in Poly-(p-Phenylenevinylene). Mol. Cryst. Liq. Cryst. 1994, 256, 663–669.spa
dc.relation.referencesScurlock, R. D.; Wang, B.; Ogilby, P. R.; Sheats, J. R.; Clough, R. L. Singlet Oxygen as a Reactive Intermediate in the Photodegradation of an Electroluminescent Polymer. J. Am. Chem. Soc. 1995, 117, 10194–10202. https://doi.org/10.1021/ja00146a004.spa
dc.relation.referencesCumpston, B. H.; Jensen, K. F. Photo-Oxidation of Polymers Used in Electroluminescent Devices. Synth. Met. 1995, 73, 195–199. https://doi.org/10.1016/0379-6779(95)80015-8.spa
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M.; Lutsen, L. Aging of a Donor Conjugated Polymer: Photochemical Studies of the Degradation of Poly[2-Methoxy-5- (30,70-Dimethyloctyloxy)-1,4-Phenylenevinylene]. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 317–331. https://doi.org/10.1002/pola.21815spa
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M. Reactive Intermediates in the Initiation Step of the Photo-Oxidation of MDMO-PPV. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6044–6052. https://doi.org/10.1002/pola.23628spa
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M. Photo- and Thermo-Oxidation of Poly(p-Phenylene-Vinylene) and Phenylene-Vinylene Oligomer. Polym. Degrad. Stab. 2011, 96, 1149–1158. https://doi.org/10.1016/j.polymdegradstab.2011.02.002.spa
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M. Photo- and Thermal Degradation of MDMO-PPV:PCBM Blends. Sol. Energy Mater. Sol. Cells 2007, 91, 394–398. https://doi.org/10.1016/j.solmat.2006.10.015.spa
dc.relation.referencesFerreira, G. R.; Nowacki, B.; Magalhães, A.; DeAzevedo, E. R.; De Sá, E. L.; Akcelrud, L. C.; Bianchi, R. F. Controlling Photo-Oxidation Processes of a Polyfluorene Derivative: The Effect of Additives and Mechanism. Mater. Chem. Phys. 2014, 146, 212–217. https://doi.org/10.1016/j.matchemphys.2014.02.037.spa
dc.relation.referencesChambon, S.; Manceau, M.; Firon, M.; Cros, S.; Rivaton, A.; Gardette, J. L. Photo-Oxidation in an 18O2 Atmosphere: A Powerful Tool to Elucidate the Mechanism of UV-Visible Light Oxidation of Polymers - Application to the Photodegradation of MDMO-PPV. Polymer (Guildf). 2008, 49, 3288–3294. https://doi.org/10.1016/j.polymer.2008.04.001.spa
dc.relation.referencesChambon, S.; Rivaton, A.; Gardette, J. L.; Firon, M. Durability of MDMO-PPV and MDMO-PPV: PCBM Blends under Illumination in the Absence of Oxygen. Sol. Energy Mater. Sol. Cells 2008, 92, 785–792. https://doi.org/10.1016/j.solmat.2007.12.003.spa
dc.relation.referencesDu, J.; Xie, N.; Wang, X.; Sun, L.; Zhao, Y.; Wu, F. Optical Limiting Effects of Cyano Substituted Distyrylbenzene Derivatives. Dye. Pigment. 2016, 134, 368–374. https://doi.org/10.1016/j.dyepig.2016.07.035.spa
dc.relation.referencesCumpston, B. H.; Jensen, K. F. Photooxidative Stability of Substituted Poly(Phenylene Vinylene) (PPV) and Poly(Phenylene Acetylene) (PPA). J. Appl. Polym. Sci. 1998, 69, 2451–2458. https://doi.org/10.1002/(sici)1097-4628(19980919)69:12<2451::aid-app16>3.0.co;2-%23.spa
dc.relation.referencesSantos, F. S. dos; Bertuzzi, D. L.; Pedroso, A. V.; Voinarovicz, M. A.; Klider, K. C. C. W. do. S.; Péres, L. O.; Garcia, J. R. Evaluation of the Photocurrent Value for Poly(2,5-Dicyano- p -Phenylene-Vinylene)-Co-(p-Phenylene-Vinylene) (DCN-PPV/PPV). J. Solid State Electrochem. 2016, 20, 2551–2557. https://doi.org/10.1007/s10008-016-3217-4.spa
dc.relation.referencesKoch, A. T. H.; Harrison, N. T.; Haylett, N.; Daik, R.; Feast, W. J.; Friend, R. H. Enhanced Photostability of Poly(1,3-Phenylene Diphenylvinylene)-Derivatives by Diphenyl-Substitution. Synth. Met. 1999, 100, 113–122. https://doi.org/10.1016/S0379-6779(98)00166-0.spa
dc.relation.referencesLi, R.; Mo, Y.; Shi, R.; Li, P.; Li, C.; Wang, Z.; Wang, X.; Li, S. Synthesis and Properties of Poly(p-Phenylene Vinylene) Derivatives with Hyperbranched Structure and Containing a Nitro Substituent. Monatshefte fur Chemie 2014, 145, 85–90. https://doi.org/10.1007/s00706-013-1051-2.spa
dc.relation.referencesSong, S.; Park, S. H.; Jung, J.; Kim, I.; Lee, K.; Jin, Y.; Suh, H. Increasing of Stability Depended on the Position of Alkoxy Group in PPV. Synth. Met. 2011, 161, 1186–1193. https://doi.org/10.1016/j.synthmet.2011.03.032.spa
dc.relation.referencesRimmele, M.; Ableidinger, K.; Marsh, A. V.; Cheetham, N. J.; Taublaender, M. J.; Buchner, A.; Prinz, J.; Fröhlich, J.; Unterlass, M. M.; Heeney, M.; Glöcklhofer, F. Thioalkyl- and Sulfone-Substituted Poly(p-Phenylene Vinylene)S. Polym. Chem. 2019, 10, 738–750. https://doi.org/10.1039/c8py01717d.spa
dc.relation.referencesLux, A.; Holmes, A. B.; Cervini, R.; Davies, J. E.; Moratti, S. C.; Grüner, J.; Cacialli, F.; Friend, R. H. New CF3-Substituted PPV-Type Oligomers and Polymers for Use as Hole Blocking Layers in LEDs. Synth. Met. 1997, 84, 293–294. https://doi.org/10.1016/s0379-6779(97)80757-6.spa
dc.relation.referencesKim, Y.; Swager, T. M. Ultra-Photostable n-Type PPVs. Chem. Commun. 2005, 372–374. https://doi.org/10.1039/b412948b.spa
dc.relation.referencesTsuji, H.; Nakamura, E. Carbon-Bridged Oligo(Phenylene Vinylene)s: A de Novo Designed, Flat, Rigid, and Stable π-Conjugated System. Acc. Chem. Res. 2019, 52, 2939–2949. https://doi.org/10.1021/acs.accounts.9b00369.spa
dc.relation.referencesMorales-Vidal, M.; Boj, P. G.; Villalvilla, J. M.; Quintana, J. A.; Yan, Q.; Lin, N. T.; Zhu, X.; Ruangsupapichat, N.; Casado, J.; Tsuji, H.; Nakamura, E.; Diáz-Garciá, M. A. Carbon-Bridged Oligo(p-Phenylenevinylene)s for Photostable and Broadly Tunable, Solution-Processable Thin Film Organic Lasers. Nat. Commun. 2015, 6, 1–8. https://doi.org/10.1038/ncomms9458.spa
dc.relation.referencesSong, S.; Jin, Y.; Kim, S. H.; Moon, J.; Kim, K.; Kim, J. Y.; Park, S. H.; Lee, K.; Suh, H. Stabilized Polymers with Novel Indenoindene Backbone against Photodegradation for LEDs and Solar Cells. Macromolecules 2008, 41, 7296–7305. https://doi.org/10.1021/ma801420e.spa
dc.relation.referencesWakabayashi, J.; Gon, M.; Tanaka, K.; Chujo, Y. Near-Infrared Absorptive and Emissive Poly(p-Phenylene Vinylene) Derivative Containing Azobenzene-Boron Complexes. Macromolecules 2020, 53, 4524–4532. https://doi.org/10.1021/acs.macromol.0c00745.spa
dc.relation.referencesNeugebauer, H.; Brabec, C.; Hummelen, J. C.; Sariciftci, N. S. Stability and Photodegradation Mechanisms of Conjugated Polymer/Fullerene Plastic Solar Cells. Sol. Energy Mater. Sol. Cells 2000, 61, 35–42. https://doi.org/10.1016/S0927-0248(99)00094-X.spa
dc.relation.referencesNothaft, M.; Höhla, S.; Jelezko, F.; Pflaum, J.; Wrachtrup, J. The Role of Oxygen-Induced Processes on the Emission Characteristics of Single Molecule Emitters. Phys. Status Solidi Basic Res. 2012, 249, 661–665. https://doi.org/10.1002/pssb.201100794.spa
dc.relation.referencesOzimova, A. E.; Bruevich, V. V.; Dittrich, T.; Paraschuk, D. Y. Enhanced Photostability and Red-NIR Photosensitivity of Conjugated Polymer Charge-Transfer Complexes. Macromol. Symp. 2010, 296, 138–143. https://doi.org/10.1002/masy.201051021.spa
dc.relation.referencesGonçalves, V. C.; Carvalho, A. J.; Balogh, D. T. Polymeric Coatings for Photostability Enhancement of Poly(p-Phenylene Vinylene). Derivative Films. Polym. Int. 2010, 59, 637–641. https://doi.org/10.1002/pi.2741.spa
dc.relation.referencesGonçalves, V. C.; Olivati, C. A.; Carvalho, A. J. F.; Balogh, D. T. Effect of a Polymeric Protective Coating on Optical and Electrical Properties of Poly(p -Phenylene Vinylene) Derivatives. J. Nanomater. 2013, 160464. https://doi.org/10.1155/2013/160464.spa
dc.relation.referencesLe Rendu, P.; Nguyen, T. P.; Carrois, L. Cellulose Acetate and PVDC Used as Protective Layers for Organic Diodes. Synth. Met. 2003, 138, 285–288. https://doi.org/10.1016/S0379-6779(02)01294-8.spa
dc.relation.referencesGedelian, C. A.; Ou, Y.; Li, H.; Lu, T. M. Use of Ultra-Thin Aluminum Oxide Layer to Reduce Photoluminescence Decay in Poly(p-Phenylene Vinylene) Films. Thin Solid Films 2010, 518, 4367–4369. https://doi.org/10.1016/j.tsf.2010.01.031.spa
dc.relation.referencesLee, H. C.; Lee, T. W.; Lim, Y. T.; Park, O. O. Improved Environmental Stability in Poly(p-Phenylene Vinylene)/Layered Silicate Nanocomposite. Appl. Clay Sci. 2002, 21, 287–293. https://doi.org/10.1016/S0169-1317(02)00090-X.spa
dc.relation.referencesJing, C.; Chen, L.; Shi, Y.; Jin, X. Synthesis and Characterization of Exfoliated MEH-PPV/Clay Nanocomposites by in Situ Polymerization. Eur. Polym. J. 2005, 41, 2388–2394. https://doi.org/10.1016/j.eurpolymj.2005.05.007.spa
dc.relation.referencesSaramas, D.; Martin, D. C.; Magaraphan, R. Optical Films Based on Poly(p-Phenylene Vinylene) (PPV) and Its Nanocomposites. Rev. Adv. Mater. Sci. 2003, 5, 199–204.spa
dc.relation.referencesYang, S. H.; Nguyen, T. P.; Le Rendu, P.; Hsu, C. S. Optical and Electrical Investigations of Poly(p-Phenylene Vinylene)/ Silicon Oxide and Poly(p-Phenylene Vinylene)/Titanium Oxide Nanocomposites. Thin Solid Films 2005, 471, 230–235. https://doi.org/10.1016/j.tsf.2004.05.130.spa
dc.relation.referencesYang, S. H.; Le Rendu, P.; Nguyen, T. P.; Hsu, C. S. Fabrication of MEH-PPV/SiO2 and MEH-PPV/TiO2 Nanocomposites with Enhanced Luminescent Stabilities. Rev. Adv. Mater. Sci. 2007, 15, 144–149.spa
dc.relation.referencesŠvrček, V.; Fujiwara, H.; Kondo, M. Improved Transport and Photostability of Poly(Methoxy-Ethylexyloxy- Phenylenevinilene) Polymer Thin Films by Boron Doped Freestanding Silicon Nanocrystals. Appl. Phys. Lett. 2008, 92, 143301. https://doi.org/10.1063/1.2905269.spa
dc.relation.referencesZhang, J.; Wang, B. J.; Ju, X.; Liu, T.; Hu, T. D. New Observations on the Optical Properties of PPV/TiO2 Nanocomposites. Polymer. 2001, 42, 3697–3702. https://doi.org/10.1016/S0032-3861(00)00703-5.spa
dc.relation.referencesVu, T. T. D.; Mighri, F.; Do, T. O.; Ajji, A. Synthesis of Capped TiO2 Nanocrystals of Controlled Shape and Their Use with MEH-PPV to Develop Nanocomposite Films for Photovoltaic Applications. J. Nanosci. Nanotechnol. 2012, 12, 2815–2824. https://doi.org/10.1166/jnn.2012.5792.spa
dc.relation.referencesYang, B. D.; Yoon, K. H.; Chung, K. W. Effect of TiO2 and SiO2 Nanoparticles on the Stability of Poly(p-Phenylene Vinylene) Precursor. Synth. Met. 2004, 143, 25–29. https://doi.org/10.1016/j.synthmet.2003.10.006.spa
dc.relation.referencesVan der Zanden, B.; Goossens, A. Oxygen Doping of TiO2/Poly(Phenylene-Vinylene) Bilayer Solar Cells. J. Appl. Phys. 2003, 94, 6959–6965. https://doi.org/10.1063/1.1621054.spa
dc.relation.referencesNielsen, C. B.; Arnbjerg, J.; Johnsen, M.; Joørgensen, M.; Ogilby, P. R. Molecular Tuning of Phenylene-Vinylene Derivatives for Two-Photon Photosensitized Singlet Oxygen Production. J. Org. Chem. 2009, 74, 9094–9104. https://doi.org/10.1021/jo9020216.spa
dc.relation.referencesPoulsen, T. D.; Frederiksen, P. K.; Jørgensen, M.; Mikkelsen, K. V.; Ogilby, P. R. Two-Photon Singlet Oxygen Sensitizers: Quantifying, Modeling, and Optimizing the Two-Photon Absorption Cross Section. J. Phys. Chem. A 2001, 105, 11488–11495. https://doi.org/10.1021/jp011974w.spa
dc.relation.referencesFrederiksen, P. K.; Jørgensen, M.; Ogilby, P. R. Two-Photon Photosensitized Production of Singlet Oxygen. J. Am. Chem. Soc. 2001, 123, 1215–1221. https://doi.org/10.1021/ja003468a.spa
dc.relation.referencesFrederiksen, P. K.; McIlroy, S. P.; Nielsen, C. B.; Nikolajsen, L.; Skovsen, E.; Jørgensen, M.; Mikkelsen, K. V.; Ogilby, P. R. Two-Photon Photosensitized Production of Singlet Oxygen in Water. J. Org. Chem. 2005, 127, 255–269. https://doi.org/10.1021/jo0482099.spa
dc.relation.referencesNielsen, C. B.; Johnsen, M.; Arnbjerg, J.; Pittelkow, M.; McIlroy, S. P.; Ogilby, P. R.; Jørgensen, M. Synthesis and Characterization of Water-Soluble Phenylene-Vinylene-Based Singlet Oxygen Sensitizers for Two-Photon Excitation. J. Org. Chem. 2005, 70 (18), 7065–7079. https://doi.org/10.1021/jo050507y.spa
dc.relation.referencesDubinina, G. G.; Price, R. S.; Abboud, K. A.; Wicks, G.; Wnuk, P.; Stepanenko, Y.; Drobizhev, M.; Rebane, A.; Schanze, K. S. Phenylene Vinylene Platinum(II) Acetylides with Prodigious Two-Photon Absorption. J. Am. Chem. Soc. 2012, 134, 19346–19349. https://doi.org/10.1021/ja309393c.spa
dc.relation.referencesDubinina, G. G.; Price, R. S.; Wicks, G.; Wnuk, P.; Stepanenko, Y.; Drobizhev, M.; Rebane, A.; Schanze, K. S. Modified p -Phenylene Vinylene Platinum (II) Acetylides with Enhanced Two-Photon Absorption in Solid Host . Org. Photonic Mater. Devices XV 2013, 8622, 86220I. https://doi.org/10.1117/12.2004180.spa
dc.relation.referencesWu, W. High-Performance Conjugated Polymer Photosensitizers. Chem 2018, 4, 1762–1764. https://doi.org/10.1016/j.chempr.2018.07.017.spa
dc.relation.referencesWu, W.; Mao, D.; Xu, S.; Kenry; Hu, F.; Li, X.; Kong, D.; Liu, B. Polymerization-Enhanced Photosensitization. Chem 2018, 4, 1937–1951. https://doi.org/10.1016/j.chempr.2018.06.003.spa
dc.relation.referencesWang, B.; Yuan, H.; Liu, Z.; Nie, C.; Liu, L.; Lv, F.; Wang, Y.; Wang, S. Cationic Oligo(p-Phenylene Vinylene) Materials for Combating Drug Resistance of Cancer Cells by Light Manipulation. Adv. Mater. 2014, 26, 5986–5990. https://doi.org/10.1002/adma.201402183.spa
dc.relation.referencesChen, Y.; Zhou, L.; Wang, J.; Liu, X.; Lu, H.; Liu, L.; Lv, F.; Wang, S. Photoactive Oligo(p-Phenylenevinylene) Functionalized with Phospholipid Units for Control and Visualization of Delivery into Living Cells. ACS Appl. Mater. Interfaces 2018, 10, 27555–27561. https://doi.org/10.1021/acsami.8b07847.spa
dc.relation.referencesLiu, Y.; Tian, L.; Li, Y.; Chen, Y.; Chen, Y.; Liu, L.; Wang, S. Photoactive Oligo(p-Phenylene Vinylene) Material for Functional Regulation of Induced Pluripotent Stem Cells. ACS Appl. Mater. Interfaces 2020, 12, 3438–3444. https://doi.org/10.1021/acsami.9b19331.spa
dc.relation.referencesLi, S.; Yuan, H.; Chen, H.; Wang, X.; Zhang, P.; Lv, F.; Liu, L.; Wang, S. Cationic Poly(p-Phenylene Vinylene) Materials as a Multifunctional Platform for Light-Enhanced SiRNA Delivery. Chem. - An Asian J. 2016, 11, 2686–2689. https://doi.org/10.1002/asia.201600447.spa
dc.relation.referencesZhu, C.; Yang, Q.; Liu, L.; Lv, F.; Li, S.; Yang, G.; Wang, S. Multifunctional Cationic Poly(p-Phenylene Vinylene) Polyelectrolytes for Selective Recognition, Imaging, and Killing of Bacteria over Mammalian Cells. Adv. Mater. 2011, 23, 4805–4810. https://doi.org/10.1002/adma.201102850.spa
dc.relation.referencesYuan, H.; Chong, H.; Wang, B.; Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Chemical Molecule-Induced Light-Activated System for Anticancer and Antifungal Activities. J. Am. Chem. Soc. 2012, 134, 13184–13187. https://doi.org/10.1021/ja304986t.spa
dc.relation.referencesGuo, J.; Xing, C.; Yuan, H.; Chai, R.; Zhan, Y. Oligo (p-Phenylene Vinylene)/Polyisocyanopeptide Biomimetic Composite Hydrogel-Based Three-Dimensional Cell Culture System for Anticancer and Antibacterial Therapeutics. ACS Appl. Bio Mater. 2019, 2, 2520–2527. https://doi.org/10.1021/acsabm.9b00217.spa
dc.relation.referencesLiu, S.; Yuan, H.; Bai, H.; Zhang, P.; Lv, F.; Liu, L.; Dai, Z.; Bao, J.; Wang, S. Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics. J. Am. Chem. Soc. 2018, 140, 2284–2291. https://doi.org/10.1021/jacs.7b12140.spa
dc.relation.referencesJiang, L.; Bai, H.; Liu, L.; Lv, F.; Ren, X.; Wang, S. Luminescent, Oxygen-Supplying, Hemoglobin-Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angew. Chemie - Int. Ed. 2019, 58, 10660–10665. https://doi.org/10.1002/anie.201905884.spa
dc.relation.referencesGuiglion, P.; Butchosa, C.; Zwijnenburg, M. A. Polymer Photocatalysts for Water Splitting: Insights from Computational Modeling. Macromol. Chem. Phys. 2016, 217, 344–353. https://doi.org/10.1002/macp.201500432.spa
dc.relation.referencesMansha, M.; Khan, I.; Ullah, N.; Qurashi, A. Synthesis, Characterization and Visible-Light-Driven Photoelectrochemical Hydrogen Evolution Reaction of Carbazole-Containing Conjugated Polymers. Int. J. Hydrogen Energy 2017, 42, 10952–10961. https://doi.org/10.1016/j.ijhydene.2017.02.053.spa
dc.relation.referencesLanzarini, E.; Antognazza, M. R.; Biso, M.; Ansaldo, A.; Laudato, L.; Bruno, P.; Metrangolo, P.; Resnati, G.; Ricci, D.; Lanzani, G. Polymer-Based Photocatalytic Hydrogen Generation. J. Phys. Chem. C 2012, 116, 10944–10949. https://doi.org/10.1021/jp212107f.spa
dc.relation.referencesBi, S.; Yang, C.; Zhang, W.; Xu, J.; Liu, L.; Wu, D.; Wang, X.; Han, Y.; Liang, Q.; Zhang, F. Two-Dimensional Semiconducting Covalent Organic Frameworks via Condensation at Arylmethyl Carbon Atoms. Nat. Commun. 2019, 10, 2467. https://doi.org/10.1038/s41467-019-10504-6.spa
dc.relation.referencesJin, E.; Lan, Z.; Jiang, Q.; Geng, K.; Li, G.; Wang, X.; Jiang, D. 2D Sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water. Chem 2019, 5, 1632–1647. https://doi.org/10.1016/j.chempr.2019.04.015.spa
dc.relation.referencesWang, Z. J.; Li, R.; Landfester, K.; Zhang, K. A. I. Porous Conjugated Polymer via Metal-Free Synthesis for Visible Light-Promoted Oxidative Hydroxylation of Arylboronic Acids. Polymer. 2017, 126, 291–295. https://doi.org/10.1016/j.polymer.2017.04.052.spa
dc.relation.referencesOppelt, K. T.; Gasiorowski, J.; Egbe, D. A. M.; Kollender, J. P.; Himmelsbach, M.; Hassel, A. W.; Sariciftci, N. S.; Knör, G. Rhodium-Coordinated Poly(Arylene-Ethynylene)- alt -Poly(Arylene-Vinylene) Copolymer Acting as Photocatalyst for Visible-Light-Powered NAD+/NADH Reduction. J. Am. Chem. Soc. 2014, 136, 12721–12729. https://doi.org/10.1021/ja506060u.spa
dc.relation.referencesSoo, H. Sen; Agiral, A.; Bachmeier, A.; Frei, H. Visible Light-Induced Hole Injection into Rectifying Molecular Wires Anchored on Co3O4 and SiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 17104–17116. https://doi.org/10.1021/ja306162g.spa
dc.relation.referencesKatsoukis, G.; Frei, H. Heterobinuclear Light Absorber Coupled to Molecular Wire for Charge Transport across Ultrathin Silica Membrane for Artificial Photosynthesis. ACS Appl. Mater. Interfaces 2018, 10, 31422–31432. https://doi.org/10.1021/acsami.8b11684.spa
dc.relation.referencesEdri, E.; Frei, H. Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer. J. Phys. Chem. C 2015, 119, 28326–28334. https://doi.org/10.1021/acs.jpcc.5b09994.spa
dc.relation.referencesKatsoukis, G.; Jo, W. J.; Frei, H. Structure and Orientation of Molecular Wires Embedded in Ultrathin Silica Membrane for Artificial Photosynthesis Elucidated by Polarized FT-IRRAS. J. Phys. Chem. C 2019, 123, 18905–18913. https://doi.org/10.1021/acs.jpcc.9b02523.spa
dc.relation.referencesErdur, S.; Yilmaz, G.; Goen Colak, D.; Cianga, I.; Yagci, Y. Poly(Phenylenevinylene)s as Sensitizers for Visible Light Induced Cationic Polymerization. Macromolecules 2014, 47, 7296–7302. https://doi.org/10.1021/ma5019457.spa
dc.relation.referencesChang, D. W.; Dai, L. Photo-Induced Formation and Self-Assembling of Gold Nanoparticles in Aqueous Solution of Amphiphilic Dendrimers with Oligo(p-Phenylene Vinylene) Core Branches and Oligo(Ethylene Oxide) Terminal Chains. Nanotechnology 2007, 18, 365605. https://doi.org/10.1088/0957-4484/18/36/365605.spa
dc.relation.referencesGhosh, S.; Kouamé, N. A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P. H.; Remita, H. Conducting Polymer Nanostructures for Photocatalysis under Visible Light. Nat. Mater. 2015, 14, 505–511. https://doi.org/10.1038/nmat4220.spa
dc.relation.referencesSirimanne, P. M.; Premalal, E. V. A. Optical Properties of Poly-[2-Methoxy-5-(2-Ethyl-Hexyloxy)-Phenylene Vinylene and its Application in Photovoltaic Cells. Sri Lankan J. Phys. 2007, 8, 29–37. http://doi.org/10.4038/sljp.v8i0.211.spa
dc.relation.referencesSpitsina, N.; Romanova, I.; Lobach, A.; Yakuschenko, I.; Kapunov, M.; Tolstov, I.; Triebel, M.; Frankevich, E. Poly(2-Methoxy-5-(2’-Ethyl-Hexyloxy)-1,4-Phenylenevinylene)(MEH-PPV)/Nitrogen Containing Derivatives of Fullerene Composites : Optical Characterization and Application in Flexible Polymer Solar Cells. J. Low Temp. Phys. 2006, 142, 201–206. https://doi.org/10.1007/s10909-006-9010-5.spa
dc.relation.referencesLei, T.; Dou, J.-H.; Cao, X.-Y.; Wang, J.-Y.; Pei, J. Electron-Deficient Poly( p -Phenylene Vinylene) Provides Electron Mobility over 1 Cm 2 V –1 s –1 under Ambient Conditions. J. Am. Chem. Soc. 2013, 135, 12168–12171. https://doi.org/10.1021/ja403624a.spa
dc.relation.referencesLee, H.; Vak, D.; Baeg, K.-J.; Nah, Y.-C.; Kim, D.-Y.; Noh, Y.-Y. Synthesis of Poly(p-Phenylene-Vinylene) Derivatives Containing an Oxadiazole Pendant Group and Their Applications to Organic Electronic Devices. J. Nanosci. Nanotechnol. 2013, 13, 3321–3330. https://doi.org/10.1166/jnn.2013.7291.spa
dc.relation.referencesYong, W.-W.; Lu, H.; Li, H.; Wang, S.; Zhang, M.-T. Photocatalytic Hydrogen Production with Conjugated Polymers as Photosensitizers. ACS Appl. Mater. Interfaces 2018, 10, 10828–10834. https://doi.org/10.1021/acsami.7b18917.spa
dc.relation.referencesThomas, S. W.; Joly, G. D.; Swager, T. M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev. 2007, 107, 1339–1386. https://doi.org/10.1021/cr0501339.spa
dc.relation.referencesNoguchi, T.; Roy, B.; Yoshihara, D.; Sakamoto, J.; Yamamoto, T.; Shinkai, S. A Chiral Recognition System Orchestrated by Self-Assembly: Molecular Chirality, Self-Assembly Morphology, and Fluorescence Response. Angew. Chemie - Int. Ed. 2017, 56, 12518–12522. https://doi.org/10.1002/anie.201706142.spa
dc.relation.referencesMcGehee, M. D.; Heeger, A. J. Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers. Adv. Mater. 2000, 12, 1655–1668. https://doi.org/10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2.spa
dc.relation.referencesLaughlin, B. J.; Smith, R. C. Gilch and Horner-Wittig Routes to Poly(p-Phenylenevinylene) Derivatives Incorporating Monoalkyl Defect-Free 9,9-Dialkyl-1,4-Fluorenylene Units. Macromolecules 2010, 43, 3744–3749. https://doi.org/10.1021/ma902346w.spa
dc.relation.referencesSato, S.; Tajima, K.; Hashimoto, K. Synthesis and Characterization of Regioregular Cyano-Substituted Poly(p-Phenylenevinylene). Macromolecules 2009, 42, 1785–1788. https://doi.org/10.1016/0022-3999(83)90056-9.spa
dc.relation.referencesCampbell, T. W.; McDonald, R. N. Synthesis of Hydrocarbon Derivatives by the Wittig Synthesis .1. Distyrylbenzenes. J. Org. Chem. 1959, 24, 1246–1251. https://doi.org/10.1021/jo01091a022.spa
dc.relation.referencesCárdenas, J. C.; Ochoa-Puentes, C.; Gutiérrez-Puebla, E.; Sierra, C. A. Synthesis, Crystal Structure Determination and Photoluminescence Properties of a Pure Anti trans-trans Phenylenevinylene Derivative. Synth. Met. 2016, 215, 194–199. https://doi.org/10.1016/j.synthmet.2016.02.021.spa
dc.relation.referencesDíaz, C.; Alzate, D.; Rodríguez, R.; Ochoa, C.; Sierra, C. A. High Yield and Stereospecific Synthesis of Segmented Poly (p-Phenylene Vinylene) by the Heck Reaction. Synth. Met. 2013, 172, 32–36. https://doi.org/10.1016/j.synthmet.2013.03.023.spa
dc.relation.referencesEstrada-Flórez, S. E.; Moncada, F. S.; Lanterna, A. E.; Sierra, C. A.; Scaiano, J. C. Spectroscopic and Time-Dependent DFT Study of the Photophysical Properties of Substituted 1,4-Distyrylbenzenes. J. Phys. Chem. A 2019, 123, 6496–6505. https://doi.org/10.1021/acs.jpca.9b04492.spa
dc.relation.referencesDu, Z. T.; Liu, R.; Wang, J. R.; Li, A. P. Synthesis of a Diamino Substituted Terphenyldivinyl Chromophore. Molecules 2009, 14, 2111–2117. https://doi.org/10.3390/molecules14062111.spa
dc.relation.referencesDenny, W. A.; Atwell, G. J.; Baguley, B. C.; Cain, B. F. Potential Antitumor Agents. 29. Quantitative Structure-Activity Relationships for the Antileukemic Bisquaternary Ammonium Heterocycles. J. Med. Chem. 1979, 22, 134–150. https://doi.org/10.1021/jm00188a005.spa
dc.relation.referencesCaruso, U.; Casalboni, M.; Fort, A.; Fusco, M.; Panunzi, B.; Quatela, A.; Roviello, A.; Sarcinelli, F. New Side-Chain Polyurethanes with Highly Conjugated Push-Pull Chromophores for Second Order NLO Applications. Opt. Mater. 2005, 27, 1800–1810. https://doi.org/10.1016/j.optmat.2004.11.009.spa
dc.relation.referencesRoviello, A.; Borbone, F.; Carella, A.; Diana, R.; Roviello, G.; Panunzi, B.; Ambrosio, A.; Maddalena, P. High Quantum Yield Photoluminescence of New Polyamides Containing Oligo-PPV Amino Derivatives and Related Oligomers. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2677–2689. https://doi.org/10.1002/pola.23353.spa
dc.relation.referencesZhou, B. Y.; He, Q.; Yang, Y.; Zhong, H.; He, C.; Sang, G.; Liu, W.; Yang, C. Binaphthyl-Containing Green- and Red-Emitting Molecules for Solution-Processable Organic Light-Emitting Diodes. Adv. Funct. Mater. 2008, 18, 3299–3306. https://doi.org/10.1002/adfm.200800375.spa
dc.relation.referencesBrouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). Pure Appl. Chem 2011, 83, 2213–2228. https://doi.org/10.1351/PAC-REP-10-09-31.spa
dc.relation.referencesDenmark, S. E.; Butler, C. R. Vinylation of Aryl Bromides Using an Inexpensive Vinylpolysiloxane. Org. Lett. 2006, 8, 63–66. https://doi.org/10.1021/ol052517rspa
dc.relation.referencesZheng, G. C.; Cai, Z. Bin; Pan, Y. L.; Bai, L.; Zhou, Y. T.; Li, S. L.; Tian, Y. P. Synthesis and Two-Photon Absorption Properties of Novel 2-Substituted-4,5-Diphenyl-1H-Imidazoles. Tetrahedron 2016, 72, 2988–2996. https://doi.org/10.1016/j.tet.2016.04.015.spa
dc.relation.referencesGabr, Y. Studies on the Copolymerization of 4-Aminostyrene with 4-Nitro- and 2,4-Dinitrostyrene. Acta Chim. Slov. 2007, 54, 818–824.spa
dc.relation.referencesChanne Gowda, D.; Mahesh, B.; Gowda, S. Zinc-Catalyzed Ammonium Formate Reductions: Rapid and Selective Reduction of Aliphatic and Aromatic Nitro Compounds. Indian J. Chem. - Sect. B Org. Med. Chem. 2001, 40, 75–77. https://doi.org/10.1002/chin.200123046.spa
dc.relation.referencesHoward, J. L.; Cao, Q.; Browne, D. L. Mechanochemistry as an Emerging Tool for Molecular Synthesis: What Can It Offer? Chem. Sci. 2018, 9, 3080–3094. https://doi.org/10.1039/c7sc05371a.spa
dc.relation.referencesShahabi, D.; Tavakol, H. One-Pot Synthesis of Quinoline Derivatives Using Choline Chloride / Tin (II) Chloride Deep Eutectic Solvent as a Green Catalyst. J. Mol. Liq. 2016, 220, 324–328. https://doi.org/10.1016/j.molliq.2016.04.094.spa
dc.relation.referencesSaikachi, H.; Muto, H. Reaction of Aromatic p-Substituted Biphosphoranes with Bisaldehydes. Chem. Pharm. Bull. 1971, 19, 959–969. https://doi.org/10.1248/cpb.19.959.spa
dc.relation.referencesMurata, T.; Gondo, Y.; Itabashi, K. The Reduction of Aromatic Nitro Compounds with Hydrogen Sulfide. J. Syn. Org. Chem. JPN 1977, 35, 61–63. https://doi.org/10.5059/yukigoseikyokaishi.35.61spa
dc.relation.referencesCope, O. J.; Brown, R. K. The Reduction of Nitrobenzene by Sodium Sulphide in Aqueous Ethanol. Can. J. Chem. 1961, 39, 1695–1710. https://doi.org/10.1139/v61-217.spa
dc.relation.referencesBoys, M. L.; Downs, V. L. Preparation of Primary Thioamides from Nitriles Using Sodium Hydrogen Sulfide and Diethylamine Hydrochloride. Synth. Commun. 2006, 36, 295–298. https://doi.org/10.1080/00397910500377099.spa
dc.relation.referencesShiraishi, Y.; Takeshita, S.; Isobe, T. Two Photoenergy Conversion Modes of YVO4:Eu3+ Nanoparticles: Photoluminescence and Photocatalytic Activity. J. Phys. Chem. C 2015, 119, 13502–13508. https://doi.org/10.1021/acs.jpcc.5b03425.spa
dc.relation.referencesCao, X.; Meng, L.; Li, Z.; Mao, Y.; Lan, H.; Chen, L.; Fan, Y.; Yi, T. Large Red-Shifted Fluorescent Emission via Intermolecular π-π Stacking in 4-Ethynyl-1,8-Naphthalimide-Based Supramolecular Assemblies. Langmuir 2014, 30, 11753–11760. https://doi.org/10.1021/la503299j.spa
dc.relation.referencesZhao, J.; Sun, L.; Canepa, S.; Sun, H.; Yesibolati, M. N.; Sherburne, M.; Xu, R.; Sritharan, T.; Loo, J. S. C. C.; Ager, J. W.; Barber, J.; Mølhave, K.; Xu, Z. J. Phosphate Tuned Copper Electrodeposition and Promoted Formic Acid Selectivity for Carbon Dioxide Reduction. J. Mater. Chem. A 2017, 5, 11905–11916. https://doi.org/10.1039/c7ta01871a.spa
dc.relation.referencesOthman, I.; Mohamed, R. M.; Ibrahem, F. M. Study of Photocatalytic Oxidation of Indigo Carmine Dye on Mn-Supported TiO2. J. Photochem. Photobiol. A Chem. 2007, 189, 80–85. https://doi.org/10.1016/j.jphotochem.2007.01.010.spa
dc.relation.referencesLi, H. X.; Xu, B.; Tang, L.; Zhang, J. H.; Mao, Z. G. Reductive Decolorization of Indigo Carmine Dye with Bacillus Sp. MZS10. Int. Biodeterior. Biodegrad. 2015, 103, 30–37. https://doi.org/10.1016/j.ibiod.2015.04.007.spa
dc.relation.referencesVautier, M.; Guillard, C.; Herrmann, J. M. Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine. J. Catal. 2001, 201, 46–59. https://doi.org/10.1006/jcat.2001.3232.spa
dc.relation.referencesBarka, N.; Assabbane, A.; Nounah, A.; Ichou, Y. A. Photocatalytic Degradation of Indigo Carmine in Aqueous Solution by TiO2-Coated Non-Woven Fibres. J. Hazard. Mater. 2008, 152, 1054–1059. https://doi.org/10.1016/j.jhazmat.2007.07.080.spa
dc.relation.referencesMittal, A.; Mittal, J.; Kurup, L. Batch and Bulk Removal of Hazardous Dye, Indigo Carmine from Wastewater through Adsorption. J. Hazard. Mater. 2006, 137, 591–602. https://doi.org/10.1016/j.jhazmat.2006.02.047.spa
dc.relation.referencesMittal, A.; Mittal, J.; Kurup, L. Utilization of Hen Feathers for the Adsorption of Indigo Carmine from Simulated Effluents. J. Environ. Prot. Sci 2007, 1, 92–100.spa
dc.relation.referencesPrado, A. G. S.; Torres, J. D.; Faria, E. A.; Dias, S. C. L. Comparative Adsorption Studies of Indigo Carmine Dye on Chitin and Chitosan. J. Colloid Interface Sci. 2004, 277, 43–47. https://doi.org/10.1016/j.jcis.2004.04.056.spa
dc.relation.referencesWang, J.; Lu, L.; Feng, F. Improving the Indigo Carmine Decolorization Ability of a Bacillus Amyloliquefaciens Laccase by Site-Directed Mutagenesis. Catalysts 2017, 7, 275. https://doi.org/10.3390/catal7090275.spa
dc.relation.referencesPalma-Goyes, R. E.; Silva-Agredo, J.; González, I.; Torres-Palma, R. A. Comparative Degradation of Indigo Carmine by Electrochemical Oxidation and Advanced Oxidation Processes. Electrochim. Acta 2014, 140, 427–433. https://doi.org/10.1016/j.electacta.2014.06.096.spa
dc.relation.referencesFlox, C.; Ammar, S.; Arias, C.; Brillas, E.; Vargas-Zavala, A. V.; Abdelhedi, R. Electro-Fenton and Photoelectro-Fenton Degradation of Indigo Carmine in Acidic Aqueous Medium. Appl. Catal. B Environ. 2006, 67, 93–104. https://doi.org/10.1016/j.apcatb.2006.04.020.spa
dc.relation.referencesHammami, S.; Oturana, M. A.; Oturana, N.; Bellakhal, N.; Dachraoui, M. Comparative Mineralization of Textile Dye Indigo by Photo-Fenton Process and Anodic Oxidation Using Boron-Doped Diamond Anode. Desalin. Water Treat. 2012, 45, 297–304. https://doi.org/10.1080/19443994.2012.692059.spa
dc.relation.referencesSubramani, A. K.; Byrappa, K.; Ananda, S.; Lokanatha Rai, K. M.; Ranganathaiah, C.; Yoshimura, M. Photocatalytic Degradation of Indigo Carmine Dye Using TiO2 Impregnated Activated Carbon. Bull. Mater. Sci. 2007, 30, 37–41. https://doi.org/10.1007/s12034-007-0007-8.spa
dc.relation.referencesSood, S.; Kumar, S.; Umar, A.; Kaur, A.; Mehta, S. K.; Kansal, S. K. TiO 2 Quantum Dots for the Photocatalytic Degradation of Indigo Carmine Dye. J. Alloys Compd. 2015, 650, 193–198. https://doi.org/10.1016/j.jallcom.2015.07.164.spa
dc.relation.referencesHuo, P.; Kumar, P.; Liu, B. The Mechanism of Adsorption, Diffusion, and Photocatalytic Reaction of Organic Molecules on TiO2 Revealed by Means of On-Site Scanning Tunneling Microscopy Observations. Catalysts 2018, 8, 616. https://doi.org/10.3390/catal8120616.spa
dc.relation.referencesBora, L. V.; Mewada, R. K. Visible/Solar Light Active Photocatalysts for Organic Effluent Treatment: Fundamentals, Mechanisms and Parametric Review. Renew. Sustain. Energy Rev. 2017, 76, 1393–1421. https://doi.org/10.1016/j.rser.2017.01.130.spa
dc.relation.referencesLima, C. S.; Batista, K. A.; García Rodríguez, A.; Souza, J. R.; Fernandes, K. F. Photodecomposition and Color Removal of a Real Sample of Textile Wastewater Using Heterogeneous Photocatalysis with Polypyrrole. Sol. Energy 2015, 114, 105–113. https://doi.org/10.1016/j.solener.2015.01.038.spa
dc.relation.referencesNowakowska, M.; Szczubiałka, K. Photoactive Polymeric and Hybrid Systems for Photocatalytic Degradation of Water Pollutants. Polym. Degrad. Stab. 2017, 145, 120–141. https://doi.org/10.1016/j.polymdegradstab.2017.05.021.spa
dc.relation.referencesWang, Z. J.; Li, R.; Landfester, K.; Zhang, K. A. I. Porous Conjugated Polymer via Metal-Free Synthesis for Visible Light-Promoted Oxidative Hydroxylation of Arylboronic Acids. Polymer. 2017, 126, 291–295. https://doi.org/10.1016/j.polymer.2017.04.052.spa
dc.relation.referencesCárdenas, J. C.; Ochoa-Puentes, C.; Sierra, C. A. Phenylenevinylene Systems: The Oligomer Approach. In Conducting Polymers; 2016; p Ch. 10. https://doi.org/10.5772/63394spa
dc.relation.referencesNath, K.; Chandra, M.; Pradhan, D.; Biradha, K. Supramolecular Organic Photocatalyst Containing a Cubanelike Water Cluster and Donor − Acceptor Stacks: Hydrogen Evolution and Dye Degradation under Visible Light. ACS Appl. Mater. Interfaces 2018, 10, 29417–29424. https://doi.org/10.1021/acsami.8b07437.spa
dc.relation.referencesTakeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H. Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde. J. Phys. Chem. 1995, 99, 9986–9991. https://doi.org/10.1021/j100024a047.spa
dc.relation.referencesBresolí-Obach, R.; Torra, J.; Zanocco, R. P.; Zanocco, A. L.; Nonell, S. Singlet Oxygen Quantum Yield Determination Using Chemical Acceptors. In Reactive Oxygen Species Methods and Protocols; Espada, J., Ed.; Humana: New York, 2020; Vol. 2202, pp 165–188. https://doi.org/10.1007/978-1-0716-0896-8.spa
dc.relation.referencesBeghetto, C.; Renken, C.; Eriksson, O.; Jori, G.; Bernardi, P.; Ricchelli, F. Implications of the Generation of Reactive Oxygen Species by Photoactivated Calcein for Mitochondrial Studies. Eur. J. Biochem. 2000, 267, 5585–5592. https://doi.org/10.1046/j.1432-1327.2000.01625.x.spa
dc.relation.referencesYoung, R. H.; Martin, R. L.; Chinh, N.; Mallon, C.; Kayser, R. H. Substituent Effects in Dye-Sensitized Photooxidation Reactions of Furans. Can. J. Chem. 1972, 50, 932–938. https://doi.org/10.1139/v72-144.spa
dc.relation.referencesXu, H.; Cooper, W. J.; Jung, J.; Song, W. Photosensitized Degradation of Amoxicillin in Natural Organic Matter Isolate Solutions. Water Res. 2011, 45, 632–638. https://doi.org/10.1016/j.watres.2010.08.024.spa
dc.relation.referencesBatista, A. P. S.; Teixeira, A. C. S. C.; Cooper, W. J.; Cottrell, B. A. Correlating the Chemical and Spectroscopic Characteristics of Natural Organic Matter with the Photodegradation of Sulfamerazine. Water Res. 2016, 93, 20–29. https://doi.org/10.1016/j.watres.2015.11.036.spa
dc.relation.referencesPrieto-Montero, R.; Sola-Llano, R.; Montero, R.; Longarte, A.; Arbeloa, T.; López-Arbeloa, I.; Martínez-Martínez, V.; Lacombe, S. Methylthio BODIPY as a Standard Triplet Photosensitizer for Singlet Oxygen Production: A Photophysical Study. Phys. Chem. Chem. Phys. 2019, 21, 20403-20414. https://doi.org/10.1039/c9cp03454d.spa
dc.relation.referencesAdarsh, N.; Avirah, R. R.; Ramaiah, D. Tuning Photosensitized Singlet Oxygen Generation Efficiency of Novel Aza-BODIPY Dyes. Org. Lett. 2011, 12, 5720–5723. https://doi.org/10.1021/ol200572p.spa
dc.relation.referencesOrmond, A. B.; Freeman, H. S. Effects of Substituents on the Photophysical Properties of Symmetrical Porphyrins. Dye. Pigm. 2013, 96, 440–448. https://doi.org/10.1016/j.dyepig.2012.09.011.spa
dc.relation.referencesDelanaye, L.; Bahri, M. A.; Tfibel, F.; Fontaine-Aupart, M. P.; Mouithys-Mickalad, A.; Heine, B.; Piette, J.; Hoebeke, M. Physical and Chemical Properties of Pyropheophorbide-a Methyl Ester in Ethanol, Phosphate Buffer and Aqueous Dispersion of Small Unilamellar Dimyristoyl-L-α-Phosphatidylcholine Vesicles. Photochem. Photobiol. Sci. 2006, 5, 317–325. https://doi.org/10.1039/b513219c.spa
dc.relation.referencesInnocenzi, P.; Kozuka, H.; Yoko, T. Fluorescence Properties of the Ru(Bpy)32+ Complex Incorporated in Sol-Gel-Derived Silica Coating Films. J. Phys. Chem. B 1997, 101, 2285–2291. https://doi.org/10.1021/jp970004z.spa
dc.relation.referencesUrgoitia, G.; Sanmartin, R.; Herrero, M. T.; Domínguez, E. Aerobic Cleavage of Alkenes and Alkynes into Carbonyl and Carboxyl Compounds. ACS Catal. 2017, 7, 3050–3060. https://doi.org/10.1021/acscatal.6b03654.spa
dc.relation.referencesKuang, L.; Zhao, Y.; Zhang, W.; Ge, S. Roles of Reactive Oxygen Species and Holes in the Photodegradation of Cationic and Anionic Dyes by TiO2 under UV Irradiation. J. Environ. Eng. 2015, 142, 04015065. https://doi.org/10.1061/(asce)ee.1943-7870.0001032.spa
dc.relation.referencesDong, G.; Yang, L.; Wang, F.; Zang, L.; Wang, C. Removal of Nitric Oxide through Visible Light Photocatalysis by G-C3N4 Modified with Perylene Imides. ACS Catal. 2016, 6, 6511–6519. https://doi.org/10.1021/acscatal.6b01657.spa
dc.relation.referencesSchneider, J.; Bahnemann, D. W. Undesired Role of Sacrificial Reagents in Photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479–3483. https://doi.org/10.1021/jz4018199.spa
dc.relation.referencesSeraghni, N.; Ghoul, I.; Lemmize, I.; Reguig, A.; Debbache, N.; Sehili, T. Use of Oxalic Acid as Inducer in Photocatalytic Oxidation of Cresol Red in Aqueous Solution under Natural and Artificial Light. Environ. Technol. 2018, 39, 2908–2915. https://doi.org/10.1080/09593330.2017.1369580.spa
dc.relation.referencesOllis, D. F. Kinetics of Photocatalyzed Reactions: Five Lessons Learned. Front. Chem. 2018, 6, 378. https://doi.org/10.3389/fchem.2018.00378.spa
dc.relation.referencesMa, L.; Wang, X.; Wang, B.; Chen, J.; Wang, J.; Huang, K.; Zhang, B.; Cao, Y.; Han, Z.; Qian, S.; Yao, S. Photooxidative Degradation Mechanism of Model Compounds of Poly(p-Phenylenevinylenes) [PPVs]. Chem. Phys. 2002, 285, 85–94. https://doi.org/10.1016/S0301-0104(02)00691-2.spa
dc.relation.referencesNiu, J.; Dai, Y.; Yin, L.; Shang, J.; Crittenden, J. C. Photocatalytic Reduction of Triclosan on Au-Cu2O Nanowire Arrays as Plasmonic Photocatalysts under Visible Light Irradiation. Phys. Chem. Chem. Phys. 2015, 17, 17421–17428. https://doi.org/10.1039/c5cp02244d.spa
dc.relation.referencesNavio, J. A.; Fuentes Mota, J.; Pradera Adrian, M. A.; García Gómez, M. Oxidation of 2-Furoic Acid via Singlet Oxygen Generated Photochemically. J. Photochem. Photobiol. A Chem. 1990, 52, 91–95. https://doi.org/10.1016/1010-6030(90)87094-R.spa
dc.relation.referencesFabregat, V.; Burguete, M. I.; Galindo, F.; Luis, S. V. Singlet Oxygen Generation by Photoactive Polymeric Microparticles with Enhanced Aqueous Compatibility. Environ. Sci. Pollut. Res. 2014, 21, 11884–11892. https://doi.org/10.1007/s11356-013-2311-8.spa
dc.relation.referencesGollnick, K.; Miinchen, D.-; Germany, W. Singlet oxygen photooxygenation of furans: Isolation and reactions of (4+2)-cycloaddition products (unsaturated sec.-ozonides). Tetrahedron 1985, 41, 2057–2068. https://doi.org/10.1016/S0040-4020(01)96576-7.spa
dc.relation.referencesLower, S. K.; El-Sayed, M. A. The Triplet State and Molecular Electronic Processes in Organic Molecules. Chem. Rev. 1966, 66, 199–241. https://doi.org/10.1021/cr60240a004.spa
dc.relation.referencesWitkos̈, K.; Lech, K.; Jarosz, M. Identification of Degradation Products of Indigoids by Tandem Mass Spectrometry. J. Mass Spectrom. 2015, 50, 1245–1251. https://doi.org/10.1002/jms.3641.spa
dc.relation.referencesChacón-Patiño, M. L.; Blanco-Tirado, C.; Hinestroza, J. P.; Combariza, M. Y. Biocomposite of Nanostructured MnO2 and Fique Fibers for Efficient Dye Degradation. Green Chem. 2013, 15, 2920–2928. https://doi.org/10.1039/b000000x.spa
dc.relation.referencesKoppenol, W. H.; Stanbury, D. M.; Bounds, P. L. Electrode Potentials of Partially Reduced Oxygen Species, from Dioxygen to Water. Free Radic. Biol. Med. 2010, 49, 317–322. https://doi.org/10.1016/j.freeradbiomed.2010.04.011.spa
dc.relation.referencesMukthar Ali, M.; Arya Nair, J. S.; Sandhya, K. Y. Role of Reactive Oxygen Species in the Visible Light Photocatalytic Mineralization of Rhodamine B Dye by P25–Carbon Dot Photocatalyst. Dye. Pigment. 2019, 163, 274–284. https://doi.org/10.1016/j.dyepig.2018.11.057.spa
dc.relation.referencesEl-Mansy, M. A. M. Quantum Chemical Studies on Structural, Vibrational, Nonlinear Optical Properties and Chemical Reactivity of Indigo Carmine Dye. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2017, 183, 284–290. https://doi.org/10.1016/j.saa.2017.04.047.spa
dc.relation.referencesLacombe, S.; Pigot, T. Materials for Selective Photo-Oxygenation vs. Photocatalysis: Preparation, Properties and Applications in Environmental and Health Fields. Catal. Sci. Technol. 2016, 6, 1571–1592. https://doi.org/10.1039/c5cy01929j.spa
dc.relation.referencesLi, W.; Zhang, W.; Dong, X.; Yan, L.; Qi, R.; Wang, W.; Xie, Z.; Jing, X. Porous Heterogeneous Organic Photocatalyst Prepared by HIPE Polymerization for Oxidation of Sulfides under Visible Light. J. Mater. Chem. 2012, 22, 17445–17448. https://doi.org/10.1039/c2jm32778c.spa
dc.relation.referencesDervaux, J.; Cormier, P. A.; Struzzi, C.; Scardamaglia, M.; Bittencourt, C.; Petaccia, L.; Cornil, D.; Lasser, L.; Cornil, J.; Lazzaroni, R.; Snyders, R. Probing the Interaction between 2,2′-Bithiophene-5-Carboxylic Acid and TiO2 by Photoelectron Spectroscopy: A Joint Experimental and Theoretical Study. J. Chem. Phys. 2017, 147, 244704. https://doi.org/10.1063/1.5008800.spa
dc.relation.referencesLiu, B.; Terano, M. Investigation of the Physico-Chemical State and Aggregation Mechanism of Surface Cr Species on a Phillips CrOx/SiO2 Catalyst by XPS and EPMA. J. Mol. Catal. A Chem. 2001, 172, 227–240. https://doi.org/10.1016/S1381-1169(01)00121-2.spa
dc.relation.referencesHu, F.; Lei, X. Synthesis of Diaryl Sulfones at Room Temperature: Cu-Catalyzed Cross-Coupling of Arylsulfonyl Chlorides with Arylboronic Acids. ChemCatChem 2015, 7, 1539–1542. https://doi.org/10.1002/cctc.201500174.spa
dc.relation.referencesCastellanos, N. J.; Martínez, F.; Lynen, F.; Biswas, S.; Van Der Voort, P.; Arzoumanian, H. Dioxygen Activation in Photooxidation of Diphenylmethane by a Dioxomolybdenum(VI) Complex Anchored Covalently onto Mesoporous Titania. Transit. Met. Chem. 2013, 38, 119–127. https://doi.org/10.1007/s11243-012-9668-2.spa
dc.relation.referencesJia, X.; Ma, J.; Xia, F.; Xu, Y.; Gao, J.; Xu, J. Carboxylic Acid-Modified Metal Oxide Catalyst for Selectivity-Tunable Aerobic Ammoxidation. Nat. Commun. 2018, 9, 933. https://doi.org/10.1038/s41467-018-03358-x.spa
dc.relation.referencesFrank, O.; Zukalova, M.; Laskova, B.; Kürti, J.; Koltai, J.; Kavan, L. Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18). Phys. Chem. Chem. Phys. 2012, 14, 14567–14572. https://doi.org/10.1039/c2cp42763j.spa
dc.relation.referencesBelekbir, S.; El Azzouzi, M.; El Hamidi, A.; Rodríguez-Lorenzo, L.; Santaballa, J. A.; Canle, M. Improved Photocatalyzed Degradation of Phenol, as a Model Pollutant, over Metal-Impregnated Nanosized TiO2. Nanomaterials 2020, 10, 996. https://doi.org/10.3390/nano10050996.spa
dc.relation.referencesPighini, C.; Aymes, D.; Millot, N.; Saviot, L. Low-Frequency Raman Characterization of Size-Controlled Anatase TiO2 Nanopowders Prepared by Continuous Hydrothermal Syntheses. J. Nanoparticle Res. 2007, 9, 309–315. https://doi.org/10.1007/s11051-005-9061-6.spa
dc.relation.referencesAbdulrazzak, F. H.; Hussein, F. H. Effects of Nanoparticle Size on Catalytic and Photocatalytic Activity of Carbon Nanotubes-Titanium Dioxide Composites. J. Environ. Anal. Chem. 2015, 02, 1000e110. https://doi.org/10.4172/2380-2391.1000e110.spa
dc.relation.referencesHo, W. K. H.; Bao, Z. Y.; Gan, X.; Wong, K. Y.; Dai, J.; Lei, D. Probing Conformation Change and Binding Mode of Metal Ion-Carboxyl Coordination Complex through Resonant Surface-Enhanced Raman Spectroscopy and Density Functional Theory. J. Phys. Chem. Lett. 2019, 10, 4692–4698. https://doi.org/10.1021/acs.jpclett.9b01435.spa
dc.relation.referencesGeisler, T.; Dohmen, L.; Lenting, C.; Fritzsche, M. B. K. Real-Time in Situ Observations of Reaction and Transport Phenomena during Silicate Glass Corrosion by Fluid-Cell Raman Spectroscopy. Nat. Mater. 2019, 18, 342–348. https://doi.org/10.1038/s41563-019-0293-8.spa
dc.relation.referencesNawaz, R.; Kait, C. F.; Chia, H. Y.; Isa, M. H.; Huei, L. W. Glycerol-Mediated Facile Synthesis of Colored Titania Nanoparticles for Visible Light Photodegradation of Phenolic Compounds. Nanomaterials 2019, 9, 1586. https://doi.org/10.3390/nano9111586.spa
dc.relation.referencesLuo, Y. B.; Wang, X. L.; Xu, D. Y.; Wang, Y. Z. Preparation and Characterization of Poly(Lactic Acid)-Grafted TiO 2 Nanoparticles with Improved Dispersions. Appl. Surf. Sci. 2009, 255, 6795–6801. https://doi.org/10.1016/j.apsusc.2009.02.074.spa
dc.relation.referencesSmith, M.; Scudiero, L.; Espinal, J.; McEwen, J. S.; Garcia-Perez, M. Improving the Deconvolution and Interpretation of XPS Spectra from Chars by Ab Initio Calculations. Carbon N. Y. 2016, 110, 155–171. https://doi.org/10.1016/j.carbon.2016.09.012.spa
dc.relation.referencesRuiz-Cañas, M. C.; Quintero, H. I.; Corredor, L. M.; Manrique, E.; Romero Bohórquez, A. R. New Nanohybrid Based on Hydrolyzed Polyacrylamide and Silica Nanoparticles: Morphological, Structural and Thermal Properties. Polymers (Basel). 2020, 12, 1152. https://doi.org/10.3390/POLYM12051152.spa
dc.relation.referencesKaur, A.; Chahal, P.; Hogan, T. Selective Fabrication of SiC/Si Diodes by Excimer Laser under Ambient Conditions. IEEE Electron Device Lett. 2016, 37, 142–145. https://doi.org/10.1109/LED.2015.2508479.spa
dc.relation.referencesVashisth, A.; Khatri, S.; Hahn, S. H.; Zhang, W.; Van Duin, A. C. T.; Naraghi, M. Mechanical Size Effects of Amorphous Polymer-Derived Ceramics at the Nanoscale: Experiments and ReaxFF Simulations. Nanoscale 2019, 11, 7447–7456. https://doi.org/10.1039/c9nr00958b.spa
dc.relation.referencesSosa, N.; Chanlek, N.; Wittayakun, J. Facile Ultrasound-Assisted Grafting of Silica Gel by Aminopropyltriethoxysilane for Aldol Condensation of Furfural and Acetone. Ultrason. Sonochem. 2020, 62, 104857. https://doi.org/10.1016/j.ultsonch.2019.104857.spa
dc.relation.referencesWei, Y.; Rakhatkyzy, M.; Salih, K. A. M.; Wang, K.; Hamza, M. F.; Guibal, E. Controlled Bi-Functionalization of Silica Microbeads through Grafting of Amidoxime/Methacrylic Acid for Sr(II) Enhanced Sorption. Chem. Eng. J. 2020, 402, 125220. https://doi.org/10.1016/j.cej.2020.125220.spa
dc.relation.referencesPost, P.; Wurlitzer, L.; Maus-Friedrichs, W.; Weber, A. P. Characterization and Applications of Nanoparticles Modified In-Flight with Silica or Silica-Organic Coatings. Nanomaterials 2018, 8, 530. https://doi.org/10.3390/nano8070530.spa
dc.relation.referencesPrimo, A.; Corma, A.; García, H. Titania Supported Gold Nanoparticles as Photocatalyst. Phys. Chem. Chem. Phys. 2011, 13, 886–910. https://doi.org/10.1039/c0cp00917b.spa
dc.relation.referencesIUPAC Recommendations for the Characterization of Porous Solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. https://doi.org/10.1351/pac199466081739.spa
dc.relation.referencesThommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117.spa
dc.relation.referencesMakuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.spa
dc.relation.referencesPedone, A.; Bloino, J.; Barone, V. Role of Host-Guest Interactions in Tuning the Optical Properties of Coumarin Derivatives Incorporated in MCM-41: A TD-DFT Investigation. J. Phys. Chem. C 2012, 116, 17807–17818. https://doi.org/10.1021/jp305294u.spa
dc.relation.referencesvan Hal, P. A.; Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Slooff, L. H.; van Gennip, W. J. H.; Jonkheijm, P.; Janssen, R. A. J. Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction. Adv. Mater. 2003, 15, 118–121. https://doi.org/10.1002/adma.200390022.spa
dc.relation.referencesBledowski, M.; Wang, L.; Ramakrishnan, A.; Khavryuchenko, O. V.; Khavryuchenko, V. D.; Ricci, P. C.; Strunk, J.; Cremer, T.; Kolbeck, C.; Beranek, R. Visible-Light Photocurrent Response of TiO2-Polyheptazine Hybrids: Evidence for Interfacial Charge-Transfer Absorption. Phys. Chem. Chem. Phys. 2011, 13, 21511–21519. https://doi.org/10.1039/c1cp22861g.spa
dc.relation.referencesDiStefano, T. H.; Eastman, D. E. The Band Edge of Amorphous SiO2 by Photoinjection and Photoconductivity Measurements. Solid State Commun. 1971, 9, 2259–2261. https://doi.org/10.1016/0038-1098(71)90643-0.spa
dc.relation.referencesAstašauskas, V.; Bellissimo, A.; Kuksa, P.; Tomastik, C.; Kalbe, H.; Werner, W. S. M. Optical and Electronic Properties of Amorphous Silicon Dioxide by Single and Double Electron Spectroscopy. J. Electron Spectros. Relat. Phenomena 2020, 241, 146829. https://doi.org/10.1016/j.elspec.2019.02.008.spa
dc.relation.referencesFatimah, I.; Prakoso, N. I.; Sahroni, I.; Musawwa, M. M.; Sim, Y. L.; Kooli, F.; Muraza, O. Physicochemical Characteristics and Photocatalytic Performance of TiO2/SiO2 Catalyst Synthesized Using Biogenic Silica from Bamboo Leaves. Heliyon 2019, 5, e02766. https://doi.org/10.1016/j.heliyon.2019.e02766.spa
dc.relation.referencesKaiti, S.; Himmelberg, P.; Williams, J.; Abdellatif, M.; Fossum, E. Linear Poly(Arylene Ether)s with Pendant Phenylsulfonyl Groups: Nucleophilic Aromatic Substitution Activated from the Meta Position. Macromolecules 2006, 39, 7909–7914. https://doi.org/10.1021/ma061248x.spa
dc.relation.referencesZhao, Z.; Zhang, H.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew. Chemie - Int. Ed. 2020, 59, 9888–9907. https://doi.org/10.1002/anie.201916729.spa
dc.relation.referencesParrott, E. P. J.; Tan, N. Y.; Hu, R.; Zeitler, J. A.; Tang, B. Z.; Pickwell-Macpherson, E. Direct Evidence to Support the Restriction of Intramolecular Rotation Hypothesis for the Mechanism of Aggregation-Induced Emission: Temperature Resolved Terahertz Spectra of Tetraphenylethene. Mater. Horizons 2014, 1, 251–258. https://doi.org/10.1039/c3mh00078h.spa
dc.relation.referencesLi, S.; Zhao, W.; Zhang, J.; Liu, X.; Zheng, Z.; He, C.; Xu, B.; Wei, Z.; Hou, J. Influence of Covalent and Noncovalent Backbone Rigidification Strategies on the Aggregation Structures of a Wide-Band-Gap Polymer for Photovoltaic Cells. Chem. Mater. 2020, 32, 1993–2003. https://doi.org/10.1021/acs.chemmater.9b04971.spa
dc.relation.referencesPinnock, S. S.; Malele, C. N.; Che, J.; Jones, W. E. The Role of Intermolecular Interactions in Solid State Fluorescent Conjugated Polymer Chemosensors. J. Fluoresc. 2012, 22, 583–589. https://doi.org/10.1007/s10895-011-0993-1.spa
dc.relation.referencesDemyanenko, A. V.; Bogomolov, A. S.; Dozmorov, N. V.; Svyatova, A. I.; Pyryaeva, A. P.; Goldort, V. G.; Kochubei, S. A.; Baklanov, A. V. Singlet Oxygen 1O2 in Photocatalysis on TiO2. Where Does It Come From? J. Phys. Chem. C 2019, 123, 2175–2181. https://doi.org/10.1021/acs.jpcc.8b09381.spa
dc.relation.referencesBerr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Hole Scavenger Redox Potentials Determine Quantum Efficiency and Stability of Pt-Decorated CdS Nanorods for Photocatalytic Hydrogen Generation. Appl. Phys. Lett. 2012, 100, 223903. https://doi.org/10.1063/1.4723575.spa
dc.relation.referencesJohnson, J. W.; Wroblowa, H.; Bockris, J. O. M. The Mechanism of the Electrochemical Oxidation of Oxalic Acid. Electrochim. Acta 1964, 9, 639–651. https://doi.org/10.1016/0013-4686(64)80036-0.spa
dc.relation.referencesArimi, A.; Günnemann, C.; Curti, M.; Bahnemann, D. W. Regarding the Nature of Charge Carriers Formed by Uv or Visible Light Excitation of Carbon-Modified Titanium Dioxide. Catalysts 2019, 9, 697. https://doi.org/10.3390/catal9080697.spa
dc.relation.referencesLeandri, V.; Gardner, J. M.; Jonsson, M. Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis. J. Phys. Chem. C 2019, 123, 6667–6674. https://doi.org/10.1021/acs.jpcc.9b00337.spa
dc.relation.referencesKrieger, W.; Lamsfuß, J.; Zhang, W.; Kockmann, N. Local Mass Transfer Phenomena and Chemical Selectivity of Gas-Liquid Reactions in Capillaries. Chem. Eng. Technol. 2017, 40, 2134–2143. https://doi.org/10.1002/ceat.201700420.spa
dc.relation.referencesPlácido, J.; Chanagá, X.; Ortiz-Monsalve, S.; Yepes, M.; Mora, A. Degradation and Detoxification of Synthetic Dyes and Textile Industry Effluents by Newly Isolated Leptosphaerulina Sp. from Colombia. Bioresour. Bioprocess. 2016, 3, 6. https://doi.org/10.1186/s40643-016-0084-x.spa
dc.relation.referencesFenavi. Caracterización Económica Del Sector Avícola En El Departamento de Santander; 2016. https://fenavi.org/publicaciones-programa-economico/caracterizacion-economica-del-sector-avicola-en-santander/spa
dc.relation.referencesAznar, R.; Albero, B.; Pérez, R. A.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J. L. Analysis of Emerging Organic Contaminants in Poultry Manure by Gas Chromatography–Tandem Mass Spectrometry. J. Sep. Sci. 2018, 41, 940–947. https://doi.org/10.1002/jssc.201700883.spa
dc.relation.referencesHakk, H.; Millner, P.; Larsen, G. Decrease in Water-Soluble 17β-Estradiol and Testosterone in Composted Poultry Manure with Time. J. Environ. Qual. 2005, 34, 943–950. https://doi.org/10.2134/jeq2004.0164.spa
dc.relation.referencesAdeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental Impact of Estrogens on Human, Animal and Plant Life: A Critical Review. Environ. Int. 2017, 99, 107–119. https://doi.org/10.1016/j.envint.2016.12.010.spa
dc.relation.referencesHerman, J. S.; Mills, A. L. Biological and Hydrogeological Interactions Affect the Persistence of 17beta-Estradiol in an Agricultural Watershed. Geobiology 2003, 1, 141–151. https://doi.org/10.1046/j.1472-4669.2003.00011.x.spa
dc.relation.referencesMurcia, J. J.; Cely, Á. C.; Rojas, H. A.; Hidalgo, M. C.; Navío, J. A. Fluorinated and Platinized Titania as Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stainedwastewater Coming from Handicrafts Factories. Catalysts 2019, 9, 179. https://doi.org/10.3390/catal9020179.spa
dc.relation.referencesLima, C. S.; Batista, K. A.; García Rodríguez, A.; Souza, J. R.; Fernandes, K. F. Photodecomposition and Color Removal of a Real Sample of Textile Wastewater Using Heterogeneous Photocatalysis with Polypyrrole. Sol. Energy 2015, 114, 105–113. https://doi.org/10.1016/j.solener.2015.01.038.spa
dc.relation.referencesSun, J.; Qiao, L.; Sun, S.; Wang, G. Photocatalytic Degradation of Orange G on Nitrogen-Doped TiO2 Catalysts under Visible Light and Sunlight Irradiation. J. Hazard. Mater. 2008, 155, 312–319. https://doi.org/10.1016/j.jhazmat.2007.11.062.spa
dc.relation.referencesUpreti, A. R.; Li, Y.; Khadgi, N.; Naraginti, S.; Zhang, C. Efficient Visible Light Photocatalytic Degradation of 17α-Ethinyl Estradiol by a Multifunctional Ag-AgCl/ZnFe2O4 Magnetic Nanocomposite. RSC Adv. 2016, 6, 32761–32769. https://doi.org/10.1039/c6ra00707d.spa
dc.relation.referencesYilmaz, B.; Kadioglu, Y. Determination of 17 β-Estradiol in Pharmaceutical Preparation by UV Spectrophotometry and High Performance Liquid Chromatography Methods. Arab. J. Chem. 2017, 10, S1422–S1428. https://doi.org/10.1016/j.arabjc.2013.04.018.spa
dc.relation.referencesAlqahtani, S. S.; Bin Humaid, D. M.; Alshail, S. H.; Alshammari, D. T.; Al-Showiman, H.; Alzoman, N. Z.; Maher, H. M. Development and Validation of a High Performance Liquid Chromatography/Diode Array Detection Method for Estrogen Determination: Application to Residual Analysis in Meat Products. Open Chem. 2020, 18, 995–1010. https://doi.org/10.1515/chem-2020-0118.spa
dc.relation.referencesSalierno, J. D.; Pollack, S. J.; Van Veld, P. A.; Ottinger, M. A.; Yonkos, L. T.; Kane, A. S. Steroid Hormones and Anthropogenic Contaminants in Poultry Litter Leachate. Water. Air. Soil Pollut. 2012, 223, 2181–2187. https://doi.org/10.1007/s11270-011-1014-3.spa
dc.relation.referencesKumar, A.; Kumar, A.; Sharma, G.; Naushad, M.; Veses, R. C.; Ghfar, A. A.; Stadler, F. J.; Khan, M. R. Solar-Driven Photodegradation of 17-β-Estradiol and Ciprofloxacin from Waste Water and CO2 Conversion Using Sustainable Coal-Char/Polymeric-g-C3N4/RGO Metal-Free Nano-Hybrids. New J. Chem. 2017, 41, 10208–10224. https://doi.org/10.1039/c7nj01580a.spa
dc.relation.referencesMazellier, P.; Méité, L.; De Laat, J. Photodegradation of the Steroid Hormones 17β-Estradiol (E2) and 17α-Ethinylestradiol (EE2) in Dilute Aqueous Solution. Chemosphere 2008, 73, 1216–1223. https://doi.org/10.1016/j.chemosphere.2008.07.046.spa
dc.relation.referencesOhko, Y.; Iuchi, K. I.; Niwa, C.; Tatsuma, T.; Nakashima, T.; Iguchi, T.; Kubota, Y.; Fujishima, A. 17β-Estradiol Degradation by TiO2 Photocatalysis as a Means of Reducing Estrogenic Activity. Environ. Sci. Technol. 2002, 36, 4175–4181. https://doi.org/10.1021/es011500a.spa
dc.relation.referencesShore, L. S.; Shemesh, M. Naturally Produced Steroid Hormones and Their Release into the Environment. Pure Appl. Chem. 2003, 75, 1859–1871. https://doi.org/10.1351/pac200375111859.spa
dc.relation.referencesTakrouri, K.; Chen, T.; Papadopoulos, E.; Sahoo, R.; Kabha, E.; Chen, H.; Cantel, S.; Wagner, G.; Halperin, J. A.; Aktas, B. H.; Chorev, M. Structure-Activity Relationship Study of 4EGI-1, Small Molecule EIF4E/EIF4G Protein-Protein Interaction Inhibitors. Eur. J. Med. Chem. 2014, 77, 361–377. https://doi.org/10.1016/j.ejmech.2014.03.034.spa
dc.relation.referencesCao, J.; Feng, J. X.; Wu, Y. X.; Pei, X. Q.; Yan, J. J.; Liu, Y.; Qin, W. J.; Zhang, X. Bin. An Ion-Responsive Fluorescent Compound Based on NO-Photoisomerisation Styryl Derivative Linked to Monoaza-15-Crown-5. Supramol. Chem. 2011, 23, 407–410. https://doi.org/10.1080/10610278.2010.532215.spa
dc.relation.referencesKlaus, F.; Baudisch, O. Über Die Einwirkung Der Salpetrigen Säure Auf P‐Dimethylamino‐benzoesäure‐methylester Und P‐Dimethylamino Benzaldehyd. (Reaktionen Tertiärer Amine Und Beitrag Zur Sterischen Hinderung). Ber. Dtsch. Chem. Ges. 1918, 51, 1036–1048. https://doi.org/10.1002/cber.191805101127.spa
dc.relation.referencesMuraki, T.; Togo, H.; Yokoyama, M. Reactivity and Synthetic Utility of 1-(Arenesulfonyloxy) Benziodoxolones. J. Org. Chem. 1999, 64, 2883–2889. https://doi.org/10.1021/jo9825207.spa
dc.relation.referencesBerliner, E.; Monack, C. The Nucleophilic Displacement in the Benzene Series. Am. Chem. Soc. 1951, 74, 1574–1579. https://doi.org/10.1021/ja01126a069.spa
dc.relation.referencesYang, Z.; Geise, H. J.; Mehbod, M.; Debrue, G.; Visser, J. W.; Sonneveld, E. J.; Van’t dack, L.; Gijbels, R. Conductivity and Electron Density of Undoped Model Compounds of Poly(Phenylene Vinylene). Synth. Met. 1990, 39, 137–151.spa
dc.relation.referencesMates, T. E.; Ober, C. K.; Norwood, R. Conductivity and Third-Order Nonlinear Optical Measurements of Polymers with Distyrylbenzene and Diphenylbutadiene Segments. Chem. Mater. 1993, 5, 217–221. https://doi.org/10.1021/cm00026a012.spa
dc.relation.referencesDam, N.; Scurlock, R. D.; Wang, B.; Ma, L.; Sundahl, M.; Ogilby, P. R. Singlet Oxygen as a Reactive Intermediate in the Photodegradation of Phenylenevinylene Oligomers. Chem. Mater. 1999, 11, 1302–1305. https://doi.org/10.1021/cm9807687.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposaloligo (phenylene vinylene)eng
dc.subject.proposalheterogeneous photocatalysiseng
dc.subject.proposalstabilityeng
dc.subject.proposalchemical immobilizationeng
dc.subject.proposalphotodegradationeng
dc.subject.proposaloligo (fenilen vinileno)spa
dc.subject.proposalfotocatálisis heterogéneaspa
dc.subject.proposalestabilidadspa
dc.subject.proposalanclaje químicospa
dc.subject.proposalfotodegradaciónspa
dc.titlePhotostability enhancement in oligo (phenylene vinylene) systems and their application as heterogeneous photocatalystseng
dc.title.translatedMejora de la fotoestabilidad en sistemas oligo (fenilen vinileno) y sus aplicaciones como fotocatalizadores heterogéneosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098686388.2022.pdf
Tamaño:
11.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: