Evaluación funcional del péptido EAR-20 como posible agonista de los receptores ionotrópicos de glutamato de tipo NMDA

dc.contributor.advisorReyes Montaño, Edgar Antoniospa
dc.contributor.authorGarcia Diaz, Robertospa
dc.contributor.researchgroupGrupo de Investigación en Proteinas Gripspa
dc.date.accessioned2025-10-21T21:48:16Z
dc.date.available2025-10-21T21:48:16Z
dc.date.issued2023-05-28
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa modulación alostérica de la función proteica supone un importante mecanismo de regulación biológica. Por lo tanto, este tipo de modulación proporciona nuevas dianas para la intervención terapéutica. Los receptores ionotrópicos para el neurotransmisor glutamato tipo N-metil-D-aspartato (NMDARs) son complejos proteicos que desempeñan un papel importante en la función neuronal, siendo claves para la correcta maduración y plasticidad de los contactos sinápticos neuronales, por lo que el control de las propiedades del receptor mediante modulación alostérica podría tener importantes repercusiones sobre los procesos de cognición y comportamiento, lo cual es de especial relevancia en procesos o patologías en las cuales existe una disfunción de los NMDARs. Con el propósito de indagar sobre nuevas dianas de modulación alostérica de los NMDARs, en el grupo de investigación de proteínas (GRIP) de la Universidad Nacional de Colombia se diseñaron una serie de péptidos derivados de la Conantokina-G (Con-G), un documentado antagonista de los NMDARs, como estrategia para regular la actividad de los NMDARs. El objetivo de esta tesis doctoral está basado en la evaluación funcional del péptido EAR-20 (uno de los péptidos diseñados) mediante ensayos electrofisiológicos. Inicialmente nuestros estudios mostraron que el péptido EAR-20 puede activar parcialmente los NMDARs incluso en total ausencia de los co-agonistas naturales (glutamato y glicina). De forma interesante también se vio que EAR-20 actúa como un modulador alostérico positivo (PAM; del inglés positive allosteric modulator), ya que esté es capaz de potenciar la respuesta del NMDAR a sus agonistas, y disminuir la desensibilización del receptor. En relación con lo anterior, se determinó que las EC50 del péptido EAR-20 como PAM de las corrientes mediadas por GluN1-GluN2A y GluN1- GluN2B fueron 88.74 µM y 42.23 µM respectivamente. Además, EAR-20 mostró una potenciación máxima de 153.30 ± 19.90 % en receptores GluN1-GluN2A, 143.75 ± 26.80 % en receptores GluN1-GluN2B y 102.45 ± 11.10 % en receptores GluN1-GluN2D. En cambio, sobre los di-heterómeros GluN1-GluN2C la actividad PAM de EAR-20 fue de tan solo 26.59 ± 7.70 %. Estos resultados muestran que EAR-20 tiene un efecto similar en los receptores di-heteroméricos ensamblados con las subunidades GluN2A ,GluN2B y GluN2D, y una muy baja actividad PAM hacia los NMDARs ensamblados con la subunidad GluN2C. De igual forma cuando ensayamos la actividad PAM de EAR-20 sobre los triheteroméros GluN1-GluN2A-GluN2B encontramos que esta era significativamente menor, alrededor de un 25.84 ± 3.0 %. En relación con esto, la actividad PAM de EAR-20 sobre los NMDARs nativos de neuronas piramidales hipocampales fue considerablemente menor a la encontrada en los di-heterómeros ensamblados con las subunidades GluN2A y GluN2B. Finalmente se estudió el efecto de EAR-20 sobre NMDARs conformados por subunidades con mutaciones que provocan una pérdida de función del receptor, encontrándose que EAR-20 es capaz de potenciar la actividad de este tipo de receptores, lo que indica que la modulación del NMDAR supondría una posible estrategia de cara a mitigar la disfunción del NMDAR. (Texto tomado de la fuente).spa
dc.description.abstractAllosteric modulation of the protein function is an important mechanism of biological regulation. Therefore, this type of modulation provides new targets for therapeutic intervention. The ionotropic receptors for the neurotransmitter glutamate belonging to the N-methyl-D-aspartate (NMDARs) type are protein complexes that play an important role in neuronal function, being key for the correct maturation and plasticity of neuronal synaptic contacts. Thus, the control of the receptor’s properties through allosteric modulation could have important repercussions on the processes of cognition and behavior, which is of special relevance in the development of pathologies associated with NMDARs-dysfunction. With the aim to investigate new targets for allosteric modulation of NMDARs, the protein research group (GRIP) of the National University of Colombia designed a series of peptides derived from Conantokin-G (Con-G), a well-documented antagonist of NMDARs, as a strategy to regulate the NMDARs activity. The objective of this doctoral thesis is based on the functional evaluation of the peptide EAR-20 (one of the peptides designed) through electrophysiological tests. Firstly, our studies showed that the EAR-20 peptide can partially activate NMDARs even in the total absence of natural co-agonists (glutamate and glycine). Interestingly, it has also been seen that EAR-20 acts as a positive allosteric modulator (PAM), since it is able to potentiate the response of the NMDAR to its agonists and to reduce receptor desensitization. The EC50 of the EAR-20 peptide as PAM of the currents mediated by GluN1-GluN2A and GluN1-GluN2B was determined to be 88.74 µM and 42.23 µM, respectively. Additionally, EAR-20 produces a maximal potentiation of 153.30 ± 19.90% on GluN1-GluN2A receptors, 143.75 ± 26.80% on GluN1-GluN2B receptors, and 102.45 ± 11.10% on GluN1-GluN2D receptors. By contrast, on the di-heteromers GluN1-GluN2C, the PAM activity of EAR-20 was only 26.59 ± 7.70%. These results show that EAR-20 has a similar effect on di-heteromeric receptors assembled with the GluN2A, GluN2B and GluN2D subunits, and a very low PAM activity towards NMDARs assembled with the GluN2C subunit. Similarly, when we tested the PAM activity of EAR-20 on the tri-heteromers GluN1-GluN2A-GluN2B, we found that it was significantly lower, around 25.84 ± 3.0%. A similar low PAM activity was found for EAR-20 acting on the native NMDARs of pyramidal hippocampal neurons, which was considerably different to the one found in the di-heteromers assembled with the GluN2A and GluN2B subunits. Finally, it was studied the effect of EAR-20 on NMDARs conformed by subunits with mutations that cause loss of function of the receptor, finding that EAR-20 can enhance the activity of this type of receptor indicating that the modulation of NMDAR might be a possible strategy to mitigate NMDAR dysfunction.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaSintesis de peptidosspa
dc.format.extentxxii, 166 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89052
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedBiremespa
dc.relation.referencesHollmann, M. (1994) ‘Cloned Glutamate Receptors’, Annual Review of Neuroscience, 17(1), pp. 31–108. doi: 10.1146/annurev.neuro.17.1.31.
dc.relation.referencesHorak, M. et al. (2014) ‘ER to synapse trafficking of NMDA receptors’, Frontiers in Cellular Neuroscience, 8(NOV), pp. 1–18. doi: 10.3389/fncel.2014.00394.
dc.relation.referencesHuang, A. C. W., Bo-Han He, A. and Chen, C. C. (2017) ‘An examination of the roles of glutamate and sex in latent inhibition: Relevance to the glutamate hypothesis of schizophrenia?’, Psychiatry Research. Elsevier Ireland Ltd, 256(June), pp. 46–52. doi: 10.1016/j.psychres.2017.06.033.
dc.relation.referencesHuang, H. and Rabenstein, D. L. (1999) ‘A cleavage cocktail for methionine-containing peptides’, Journal of Peptide Research, 53(5), pp. 548–553. doi: 10.1034/j.1399-3011.1999.00059.x.
dc.relation.referencesHubbard, J. A. and Binder, D. K. (2016) ‘Glutamate Metabolism’, Astrocytes and Epilepsy, pp. 197–224. doi: 10.1016/b978-0-12-802401-0.00009-0.
dc.relation.referencesI-TASSER server for protein structure and function prediction (no date). Available at: https://zhanglab.ccmb.med.umich.edu/I-TASSER/ (Accessed: 16 February 2021).
dc.relation.referencesInanobe, A., Furukawa, H. and Gouaux, E. (2005) ‘Mechanism of partial agonist action at the NR1 subunit of NMDA receptors’, Neuron, 47(1), pp. 71–84. doi: 10.1016/j.neuron.2005.05.022.
dc.relation.referencesIwata, Y. et al. (2015) ‘Effects of glutamate positive modulators on cognitive deficits in schizophrenia: A systematic review and meta-Analysis of double-blind randomized controlled trials’, Molecular Psychiatry. Nature Publishing Group, 20(10), pp. 1151–1160. doi: 10.1038/mp.2015.68.
dc.relation.referencesJaradat, D. M. M. (2018) ‘Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation’, Amino Acids. Springer Vienna, 50(1), pp. 39–68. doi: 10.1007/s00726-017-2516-0.
dc.relation.referencesKane, L. T. and Costa, B. M. (2015) ‘Identification of novel allosteric modulator binding sites in NMDA receptors: A molecular modeling study’, Journal of Molecular Graphics and Modelling. Elsevier Inc., 61, pp. 204–213. doi: 10.1016/j.jmgm.2015.06.007.
dc.relation.referencesKarakas, E. and Furukawa, H. (2014) ‘Crystal structure of a heterotetrameric NMDA receptor ion channel’, Science, 344(6187), pp. 992–997. doi: 10.1126/science.1251915.
dc.relation.referencesKarakas, E., Simorowski, N. and Furukawa, H. (2009) ‘Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit’, EMBO Journal. Nature Publishing Group, 28(24), pp. 3910–3920. doi: 10.1038/emboj.2009.338.
dc.relation.referencesKarakas, E., Simorowski, N. and Furukawa, H. (2011) ‘Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors’, Nature. Nature Publishing Group, 475(7355), pp. 249–253. doi: 10.1038/nature10180.
dc.relation.referenceskazu Nakazawa and Kiran Sapkota (2020) ‘The origin of NMDA receptor hypofunction in schizophrenia’, pharmacol Ther, 205(1), pp. 1–33. doi:10.1016/j.pharmthera.2019.107426.
dc.relation.referencesKevin Erreger, Matthew T. Geballe, Shashank M. Dravid, James P. Snyder, David J. A. Wyllie, and Traynelis, S. F. (2005) ‘Mechanism of Partial Agonism at NMDA Receptors for a Conformationally Restricted Glutamate Analog’, Journal of Neuroscience, 25(34), pp. 7858–7866. doi: 10.1523/jneurosci.1613-05.2005.
dc.relation.referencesKew, J. N. C. et al. (1998) ‘Developmental changes in NMDA receptor glycine affinity and ifenprodil sensitivity reveal three distinct populations of NMDA receptors in individual rat cortical neurons’, Journal of Neuroscience, 18(6), pp. 1935–1943. doi: 10.1523/jneurosci.18-06-01935.1998.
dc.relation.referencesKhatri, A. et al. (2014) ‘Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator’, Molecular Pharmacology, 86(5), pp. 548–560. doi: 10.1124/mol.114.094516.
dc.relation.referencesKufareva, I. and Abagyan, R. (2012) ‘Methods of protein structure comparison’, Methods in Molecular Biology, 857, pp. 231–257. doi: 10.1007/978-1-61779-588-6_10.
dc.relation.referencesKussius, C. L. and Popescu, G. K. (2010) ‘NMDA receptors with locked glutamate-binding clefts open with high efficacy’, Journal of Neuroscience, 30(37), pp. 12474–12479. doi: 10.1523/JNEUROSCI.3337-10.2010.
dc.relation.referencesKysilov, B. et al. (2022) ‘Pregnane-based steroids are novel positive NMDA receptor modulators that may compensate for the effect of loss-of-function disease-associated GRIN mutations’, British Journal of Pharmacology, (February), pp. 3970–3990. doi: 10.1111/bph.15841.
dc.relation.referencesLadislav, M. et al. (2018) ‘The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate’, Frontiers in Molecular Neuroscience, 11(April), pp. 1–16. doi: 10.3389/fnmol.2018.00113.
dc.relation.referencesLamiable, A. et al. (2016) ‘PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex’, Nucleic acids research, 44(W1), pp. W449–W454. doi: 10.1093/nar/gkw329.
dc.relation.referencesLauer, J. L., Fields, C. G. and Fields, G. B. (1995) ‘Sequence dependence of aspartimide formation during 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis’, Letters in Peptide Science, 1(4), pp. 197–205. doi: 10.1007/BF00117955.
dc.relation.referencesLazim, R., Suh, D. and Choi, S. (2020) ‘Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems’, International Journal of Molecular Sciences, 21(17), pp. 1–20. doi: 10.3390/ijms21176339.
dc.relation.referencesLee, C. H. et al. (2014) ‘NMDA receptor structures reveal subunit arrangement and pore architecture’, Nature. Nature Publishing Group, 511(7508), pp. 191–197. doi: 10.1038/nature13548.
dc.relation.referencesLerma, J. and Marques, J. M. (2013) ‘Kainate receptors in health and disease’, Neuron. Elsevier Inc., 80(2), pp. 292–311. doi: 10.1016/j.neuron.2013.09.045.
dc.relation.referencesLichnerova, K. et al. (2015) ‘Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-D-aspartate (NMDA) receptors from the endoplasmic reticulum’, Journal of Biological Chemistry, 290(30), pp. 18379–18390. doi: 10.1074/jbc.M115.656546
dc.relation.referencesLodge, D. et al. (1988) ‘A comparison between the in vivo and in vitro activity of five potent and competitive NMDA antagonists’, British Journal of Pharmacology, 95(3), pp. 957–965. doi: 10.1111/j.1476-5381.1988.tb11726.x.
dc.relation.referencesLü, W. et al. (2017) ‘Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation’, Science, 355(6331). doi: 10.1126/science.aal3729.
dc.relation.referencesLussier, M. P., Sanz-Clemente, A. and Roche, K. W. (2015) ‘Dynamic regulation of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by posttranslational modifications’, Journal of Biological Chemistry, 290(48), pp. 28596–28603. doi: 10.1074/jbc.R115.652750.
dc.relation.referencesMacalino, S. J. Y. et al. (2015) ‘Role of computer-aided drug design in modern drug discovery’, Archives of Pharmacal Research. Pharmaceutical Society of Korea, 38(9), pp. 1686–1701. doi: 10.1007/s12272-015-0640-5.
dc.relation.referencesMadry, C., Mesic, I., Bartholomäus, I., et al. (2007) ‘Principal role of NR3 subunits in NR1/NR3 excitatory glycine receptor function’, Biochemical and Biophysical Research Communications, 354(1), pp. 102–108. doi: 10.1016/j.bbrc.2006.12.153.
dc.relation.referencesMadry, C., Mesic, I., Betz, H., et al. (2007) ‘The N-terminal domains of both NR1 and NR2 subunits determine allosteric Zn2+ inhibition and glycine affinity of N-methyl-D-aspartate receptors’, Molecular Pharmacology, 72(6), pp. 1535–1544. doi: 10.1124/mol.107.040071.
dc.relation.referencesMaolanon, A. R. et al. (2017) ‘Subtype-Specific Agonists for NMDA Receptor Glycine Binding Sites’, ACS Chemical Neuroscience, 8(8), pp. 1681–1687. doi: 10.1021/acschemneuro.7b00117.
dc.relation.referencesMarchetti, C., Baranowska-Bosiacka, I. and Gavazzo, P. (2014) ‘Multiple effects of copper on NMDA receptor currents’, Brain Research. Elsevier, 1542, pp. 20–31. doi: 10.1016/j.brainres.2013.10.029.
dc.relation.referencesMaus, A. and Peters, G. J. (2017) ‘Glutamate and α-ketoglutarate: key players in glioma metabolism’, Amino Acids. Springer Vienna, 49(1), pp. 21–32. doi: 10.1007/s00726-016-2342-9.
dc.relation.referencesMayer, M. L. (2006) ‘Glutamate receptors at atomic resolution’, Nature, 440(7083), pp. 456–462. doi: 10.1038/nature04709.
dc.relation.referencesMerrifield, R. B. (1963) ‘Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide’, Journal of the American Chemical Society, 85(14), pp. 2149–2154. doi: 10.1021/ja00897a025.
dc.relation.referencesMesic, I. et al. (2016) ‘The N-terminal domain of the GluN3A subunit determines the efficacy of glycine-activated NMDA receptors’, Neuropharmacology. Elsevier Ltd, 105, pp. 133–141. doi: 10.1016/j.neuropharm.2016.01.014.
dc.relation.referencesMin, M. Y., Melyan, Z. and Kullmann, D. M. (1999) ‘Synaptically released glutamate reduces γ-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors’, Proceedings of the National Academy of Sciences of the United States of America, 96(17), pp. 9932–9937. doi: 10.1073/pnas.96.17.9932.
dc.relation.referencesMODELLER | Bioinformatics Toolkit (no date). Available at: https://toolkit.tuebingen.mpg.de/tools/modeller (Accessed: 16 February 2021).
dc.relation.referencesMony, L. et al. (2009) ‘Allosteric modulators of NR2B-containing NMDA receptors: Molecular mechanisms and therapeutic potential’, British Journal of Pharmacology, 157(8), pp. 1301–1317. doi: 10.1111/j.1476-5381.2009.00304.x.
dc.relation.referencesMori, H. and Mishina, M. (1995) ‘Neurotransmitter receptors VIII. Structure and function of the NMDA receptor channel’, Neuropharmacology, 34(10), pp. 1219–1237.
dc.relation.referencesNeher, E., Sakmann, B. and Steinbach, J. H. (1978) ‘The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes’, Pflügers Archiv European Journal of Physiology, 375(2), pp. 219–228. doi: 10.1007/BF00584247.
dc.relation.referencesNeumann, K. et al. (2020) ‘Prevention of aspartimide formation during peptide synthesis using cyanosulfurylides as carboxylic acid-protecting groups’, Nature Communications. Springer US, 11(1), pp. 1–10. doi: 10.1038/s41467-020-14755-6.
dc.relation.referencesNorris, K. et al. (1971) ‘Stability of Methionyl Residues Towards Oxidation During Solid Phase Peptide Synthesis.’, Acta Chemica Scandinavica, pp. 945–954. doi: 10.3891/acta.chem.scand.25-0945.
dc.relation.referencesNovabiochem (2012) ‘Fmoc resin cleavage protocols’, Millipore is a division of Fmoc resin cleavage protocols, pp. 2–5.
dc.relation.referencesOrtega, A. and Schousboe Editors, A. (no date) Advances in Neurobiology 16 Glial Amino Acid Transporters.
dc.relation.referencesPaoletti, P. et al. (2000) ‘Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit’, Neuron, 28(3), pp. 911–925. doi: 10.1016/S0896-6273(00)00163-X.
dc.relation.referencesPaoletti, P., Bellone, C. and Zhou, Q. (2013) ‘NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease’, Nature Reviews Neuroscience. Nature Publishing Group, 14(6), pp. 383–400. doi: 10.1038/nrn3504.
dc.relation.referencespeptide property molecular weight calculator-GenScript (no date). Available at: https://www.genscript.com/tools/peptide-molecular-weight-calculator (Accessed: 20 May 2020).
dc.relation.referencesPerszyk, R. E. et al. (2020) ‘Biased modulators of NMDA receptors control channel opening and ion selectivity’, Nature Chemical Biology. Springer US, 16(2), pp. 188–196. doi: 10.1038/s41589-019-0449-5.
dc.relation.referencesPopoli, M. et al. (2012) ‘The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission’, Nature Reviews Neuroscience. Nature Publishing Group, 13(1), pp. 22–37. doi: 10.1038/nrn3138.
dc.relation.referencesPyMOL | pymol.org (no date). Available at: https://pymol.org/2/ (Accessed: 16 February 2021).
dc.relation.referencesQiu, S. et al. (2009) ‘An endoplasmic reticulum retention signal located in the extracellular amino-terminal domain of the NR2A subunit of N-methyl-D-aspartate receptors’, Journal of Biological Chemistry, 284(30), pp. 20285–20298. doi: 10.1074/jbc.M109.004960.
dc.relation.referencesQuickChange Primer Design (no date). Available at: https://www.agilent.com/store/primerDesignProgram.jsp (Accessed: 4 September 2022).
dc.relation.referencesRachline, J. (2005) ‘The Micromolar Zinc-Binding Domain on the NMDA Receptor Subunit NR2B’, Journal of Neuroscience, 25(2), pp. 308–317. doi: 10.1523/jneurosci.3967-04.2005.
dc.relation.referencesRauner, C. and Köhr, G. (2011) ‘Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses’, Journal of Biological Chemistry, 286(9), pp. 7558–7566. doi: 10.1074/jbc.M110.182600.
dc.relation.referencesRCSB PDB: Homepage (no date). Available at: https://www.rcsb.org/ (Accessed: 16 February 2021).
dc.relation.referencesReyes-Guzman, E. A. et al. (2017) ‘Antagonistic action on NMDA/GluN2B mediated currents of two peptides that were conantokin-G structure-based designed’, BMC Neuroscience. BioMed Central, 18(1), pp. 1–13. doi: 10.1186/s12868-017-0361-4.
dc.relation.referencesRogawski, M. A. (2015) ‘AMPA Receptors as a Molecular Target in Epilepsy Therapy Michael’, (197), pp. 9–18. doi: 10.1111/ane.12099.AMPA.
dc.relation.referencesRomero-Hernandez, A. et al. (2016) ‘Molecular Basis for Subtype Specificity and High-Affinity Zinc Inhibition in the GluN1-GluN2A NMDA Receptor Amino-Terminal Domain’, Neuron. Elsevier Inc., 92(6), pp. 1324–1336. doi: 10.1016/j.neuron.2016.11.006.
dc.relation.referencesRUCZYNSKI, J, LEWANDOWSKA, B. MUCHA, P and REKOWSKI, P. (2007) ‘Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid’, Journal of peptide science, pp. 335–341. doi: 10.1002/psc.
dc.relation.referencesSamson, D. et al. (2019) ‘The aspartimide problem persists: Fluorenylmethyloxycarbonyl-solid-phase peptide synthesis (Fmoc-SPPS) chain termination due to formation of N-terminal piperazine-2,5-diones’, Journal of Peptide Science, 25(7), pp. 1–11. doi: 10.1002/psc.3193.
dc.relation.referencesSarin, V. K. et al. (1981) ‘Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction’, Analytical Biochemistry, 117(1), pp. 147–157. doi: 10.1016/0003-2697(81)90704-1.
dc.relation.referencesSeshadri, S. et al. (2018) ‘Altered avalanche dynamics in a developmental NMDAR hypofunction model of cognitive impairment’, Translational Psychiatry. Springer US, 8(1). doi: 10.1038/s41398-017-0060-z.
dc.relation.referencesShen, M. and Sali, A. (2006) ‘Statistical potential for assessment and prediction of protein structures’, Protein Science, 15(11), pp. 2507–2524. doi: 10.1110/ps.062416606.
dc.relation.referencesSingh, S. et al. (2015) ‘PEPstrMOD: Structure prediction of peptides containing natural, non-natural and modified residues’, Biology Direct. Biology Direct, 10(1), pp. 1–19. doi: 10.1186/s13062-015-0103-4.
dc.relation.referencesSmothers, C. T., Jin, C. and Woodward, J. J. (2013) ‘Deletion of the N-terminal domain alters the ethanol inhibition of N-methyl-D-aspartate receptors in a subunit-dependent manner’, Alcoholism: Clinical and Experimental Research, 37(11), pp. 1882–1890. doi: 10.1111/acer.12168.
dc.relation.referencesSobolevsky, A. I. (2015) ‘Structure and gating of tetrameric glutamate receptors’, Journal of Physiology, 593(1), pp. 29–38. doi: 10.1113/jphysiol.2013.264911.
dc.relation.referencesSoto, D. et al. (2019) ‘L-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy’, Science Signaling, 12(586), pp. 1–16. doi: 10.1126/scisignal.aaw0936
dc.relation.referencesSrinivasan P. Venkatachalan, Jeremy D. Bushman, José L. Mercado, Feyza Sancar, K. and R. Christopherson, and A. J. B. (2007) ‘Optimized expression vector for ion channel studies in Xenopus oocytes and mammalian cells using alfalfa mosaic virus’, 454(1), pp. 155–163. doi: 10.1007/s00424-006-0183-1.Optimized.
dc.relation.referencesStroebel, D. et al. (2014) ‘Controlling NMDA receptor subunit composition using ectopic retention signals’, Journal of Neuroscience, 34(50), pp. 16630–16636. doi: 10.1523/JNEUROSCI.2736-14.2014.
dc.relation.referencesStroebel, D. et al. (2016) ‘A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists s’, Molecular Pharmacology, 89(5), pp. 541–551. doi: 10.1124/mol.115.103036.
dc.relation.referencesStroebel, D., Casado, M. and Paoletti, P. (2018) ‘Triheteromeric NMDA receptors: from structure to synaptic physiology’, Current Opinion in Physiology, 2, pp. 1–12. doi: 10.1016/j.cophys.2017.12.004.
dc.relation.referencesSwanger, S. A. et al. (2016) ‘Mechanistic Insight into NMDA Receptor Dysregulation by Rare Variants in the GluN2A and GluN2B Agonist Binding Domains’, American Journal of Human Genetics, 99(6), pp. 1261–1280. doi: 10.1016/j.ajhg.2016.10.002.
dc.relation.referencesTabish, M. and Ticku, M. K. (2004) ‘Alternate splice variants of mouse NR2B gene’, Neurochemistry International, 44(5), pp. 339–343. doi: 10.1016/S0197-0186(03)00171-2.
dc.relation.referencesTajima, N. et al. (2016) ‘Activation of NMDA receptors and the mechanism of inhibition by ifenprodil’, Nature. Nature Publishing Group, 534(7605), pp. 63–68. doi: 10.1038/nature17679.
dc.relation.referencesTam, J. P., Riemen, M. W. and Merrifield, R. B. (1988) ‘Mechanisms of aspartimide formation: the effects of protecting groups, acid, base, temperature and time.’, Peptide research, 1(1), pp. 6–18.
dc.relation.referencesTraynelis, S. F. et al. (2010) ‘Glutamate Receptor Ion Channels: Structure, Regulation, and Function’, Pharmacological reviews, 62(3), pp. 406–496. doi: 10.1124/pr.109.002451.405.
dc.relation.referencesTrott, O. and Olson, A. J. (2009) ‘AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading’, Journal of Computational Chemistry, 31(2), p. NA-NA. doi: 10.1002/jcc.21334.
dc.relation.referencesTwomey, E. C. and Sobolevsky, A. I. (2018) ‘Structural Mechanisms of Gating in Ionotropic Glutamate Receptors’, Biochemistry, 57(3), pp. 267–276. doi: 10.1021/acs.biochem.7b00891.
dc.relation.referencesValeur, E. and Bradley, M. (2009) ‘Amide bond formation: Beyond the myth of coupling reagents’, Chemical Society Reviews, 38(2), pp. 606–631. doi: 10.1039/b701677h.
dc.relation.referencesVicini, S. et al. (1998) ‘Functional and pharmacological differences between recombinant N- methyl-D-aspartate receptors’, Journal of Neurophysiology, 79(2), pp. 555–566. doi: 10.1152/jn.1998.79.2.555.
dc.relation.referencesVieira, M. et al. (2020) ‘Regulation of NMDA glutamate receptor functions by the GluN2 subunits’, Journal of Neurochemistry, (September 2019), pp. 1–23. doi: 10.1111/jnc.14970.
dc.relation.referencesVolgraf, M. et al. (2016) ‘Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design’, Journal of Medicinal Chemistry, 59(6), pp. 2760–2779. doi: 10.1021/acs.jmedchem.5b02010.
dc.relation.referencesVolk, L. et al. (2015) ‘Glutamate Synapses in Human Cognitive Disorders’, Annual Review of Neuroscience, 38(1), pp. 127–149. doi: 10.1146/annurev-neuro-071714-033821.
dc.relation.referencesWang, H. et al. (2021) ‘Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors’, Neuron. Elsevier Ltd, 109(15), pp. 2443-2456.e5. doi: 10.1016/j.neuron.2021.05.031.
dc.relation.referencesWang, W. (2021) ‘Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins’, Physical Chemistry Chemical Physics. Royal Society of Chemistry, 23(2), pp. 777–784. doi: 10.1039/d0cp05818a.
dc.relation.referencesWaqar, M. and Batool, S. (2017) ‘In silico analysis of binding interaction of conantokins with NMDA receptors for potential therapeutic use in Alzheimer’s disease’, Journal of Venomous Animals and Toxins Including Tropical Diseases. Journal of Venomous Animals and Toxins including Tropical Diseases, 23(1), pp. 1–12. doi: 10.1186/s40409-017-0132-9.
dc.relation.referencesWatford, M. (2015) ‘Glutamine and glutamate: Nonessential or essential amino acids?’, Animal Nutrition. Elsevier, 1(3), pp. 119–122. doi: 10.1016/j.aninu.2015.08.008.
dc.relation.referencesWenthold, R. J. et al. (2003) ‘Trafficking of NMDA Receptors’, Annual Review of Pharmacology and Toxicology, 43, pp. 335–358. doi: 10.1146/annurev.pharmtox.43.100901.135803.
dc.relation.referencesWiederstein, M. and Sippl, M. J. (2007) ‘ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins’, Nucleic Acids Research, 35(SUPPL.2), pp. 407–410. doi: 10.1093/nar/gkm290.
dc.relation.referencesWyllie, D. J. A., Livesey, M. R. and Hardingham, G. E. (2013) ‘Influence of GluN2 subunit identity on NMDA receptor function’, Neuropharmacology. Elsevier Ltd, 74, pp. 4–17. doi: 10.1016/j.neuropharm.2013.01.016.
dc.relation.referencesXianqiang Song, Morten Ø. Jensen, Vishwanath Jogini, Richard A. Stein, Chia-Hsueh Lee, Hassane S. Mchaourab, D. E. S. and E. G. (2018) Mechanism of NMDA receptor channel block by MK-801 and memantine, HHS Public Access. doi: 10.1002/jmri.25711.PET/MRI.
dc.relation.referencesYamamoto, H. et al. (2015) ‘Specific Roles of NMDA Receptor Subunits in Mental Disorders’, Current Molecular Medicine, 15(3), pp. 193–205. doi: 10.2174/1566524015666150330142807.
dc.relation.referencesYashiro, K. and Philpot, B. D. (2008) ‘Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity’, Neuropharmacology, 55(7), pp. 1081–1094. doi: 10.1016/j.neuropharm.2008.07.046.
dc.relation.referencesYi, F. et al. (2020) ‘PTC-174, a positive allosteric modulator of NMDA receptors containing GluN2C or GluN2D subunits’, Neuropharmacology. Elsevier, (January), p. 107971. doi: 10.1016/j.neuropharm.2020.107971.
dc.relation.referencesYu, A. and Lau, A. Y. (2018) ‘Glutamate and Glycine Binding to the NMDA Receptor’, Structure. Elsevier Ltd., 26(7), pp. 1035-1043.e2. doi: 10.1016/j.str.2018.05.004.
dc.relation.referencesYuan, Y. et al. (2016) ‘Discerning the Role of the Hydroxyproline Residue in the Structure of Conantokin Rl-B and Its Role in GluN2B Subunit-Selective Antagonistic Activity toward N-Methyl-d-Aspartate Receptors’, Biochemistry, 55(51), pp. 7112–7122. doi: 10.1021/acs.biochem.6b00962.
dc.relation.referencesZhou, Y. and Danbolt, N. C. (2014) ‘Glutamate as a neurotransmitter in the healthy brain’, Journal of Neural Transmission, 121(8), pp. 799–817. doi: 10.1007/s00702-014-1180-8.
dc.relation.referencesZhu, S. et al. (2016) ‘Mechanism of NMDA Receptor Inhibition and Activation’, Cell. Elsevier Inc., 165(3), pp. 704–714. doi: 10.1016/j.cell.2016.03.028.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.proposalPéptidosspa
dc.subject.proposalAgonistasspa
dc.subject.proposalNMDARspa
dc.subject.proposalPatch-Clampspa
dc.subject.proposalPAMspa
dc.subject.proposalDisfunción del NMDARspa
dc.subject.proposalPeptideseng
dc.subject.proposalNMDAReng
dc.subject.proposalPatch-Clampeng
dc.subject.proposalPAMeng
dc.subject.proposalDysfunction of NMDAReng
dc.subject.unescoProteínaspa
dc.subject.unescoProteinseng
dc.subject.unescoNeurologíaspa
dc.subject.unescoNeurologyeng
dc.subject.unescoBioquímicaspa
dc.subject.unescoBiochemistryeng
dc.subject.unescoTerapiaspa
dc.subject.unescoTherapyeng
dc.subject.unescoCogniciónspa
dc.subject.unescoCognitioneng
dc.titleEvaluación funcional del péptido EAR-20 como posible agonista de los receptores ionotrópicos de glutamato de tipo NMDAspa
dc.title.translatedFunctional evaluation of the EAR-20 peptide as a potential agonist of NMDA-type ionotropic glutamate receptorseng
dc.typeTrabajo de grado - Doctoradoeng
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoreseng
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Evaluación funcional del péptido EAR-20 como posible agonista de los receptores ionotrópicos de glutamato de tipo NMDA.pdf
Tamaño:
6.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: