Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes

dc.contributor.advisorCadavid Rodríguez, Luz Stella
dc.contributor.advisorCadena Chamorro, Edith Marleny
dc.contributor.authorRuiz Bastidas, Rosa Cecilia
dc.contributor.cvlacRuiz-Bastidas, Rosa Ceciliaspa
dc.contributor.orcidRuiz-Bastidas, Rosa Cecilia [0000-0002-1152-4040]spa
dc.contributor.refereeJaime Martí Herrero
dc.contributor.refereeLiliana Del Pilar Castro Molano
dc.contributor.refereeArélis Abalos Rodríguez
dc.contributor.researchgroupGrupo de Investigación Prospectiva Ambientalspa
dc.date.accessioned2024-02-12T15:17:44Z
dc.date.available2024-02-12T15:17:44Z
dc.date.issued2024
dc.descriptionIlustraciones, fotografías, tablasspa
dc.description.abstractEl objetivo de este proyecto de investigación fue contribuir al mejoramiento de la digestión anaerobia (DA) de residuos porcícolas mediante el uso de zeolita natural, buscando potenciar la generación de biogás, la recuperación de nutrientes y la calidad del digestato. Para lo cual, se determinó la capacidad de adsorción de nitrógeno amoniacal total (TAN) por parte de zeolita natural comercializada en Colombia (zeolita ecuatoriana); se evaluó el efecto de zeolita sobre la DA de residuos porcícolas en régimen discontinuo (batch) y semicontinuo; y se realizó un análisis de la DA de residuos porcícolas con uso de zeolita incluyendo análisis energético, de recuperación de nutrientes y costo-beneficio. Como principales resultados se obtuvieron que, la zeolita natural ecuatoriana tiene una capacidad de adsorción entre 37 y 65 mg NH3-N/g-Z cuando se usa residuos porcícolas. La adición de zeolita tuvo un efecto significativo en la producción de metano en régimen discontinuo (p < 0.01), con incremento en la producción de metano de 28% con una dosis de 4 g/L. En el régimen semicontinuo, la adición de zeolita con dosis entre 1 y 4 g/L provocó un aumento en la producción de metano hasta en un 68% durante el arranque y en promedio un 8% en condiciones estables, una disminución en la concentración de H2S presente en el biogás de hasta en un 63%, un digestato con una concentración de TAN hasta un 51% menor y evitó la formación de espumas. La obtención de zeolita enriquecida con nitrógeno, fósforo y potasio constituye una oportunidad para promover el reciclaje de nutrientes. Los resultados evidenciaron que el uso de zeolita natural mejoró la DA de residuos porcícolas, pero se requieren estudios adicionales de valoración del uso agronómico de la zeolita para establecer la viabilidad económica del uso de zeolita. (Texto tomado de la fuente)spa
dc.description.abstractThe objective of this research project was to contribute to the improvement of anaerobic digestion (DA) of pig waste using natural zeolite, seeking to enhance biogas generation, nutrient recovery and digestate quality. For which, the total ammonia nitrogen (TAN) adsorption capacity by natural zeolite marketed in Colombia (Ecuadorian zeolite) was determined; the effect of zeolite on the DA of pig waste in batch and semicontinuous regime was evaluated; and an analysis of the DA of swine residues with the use of zeolite was carried out, including energy, nutrients recovery, and costbenefit analysis. The main results obtained were that the Ecuadorian natural zeolite has an adsorption capacity between 37 and 65 mg NH3-N/g-Z when pig manure was used. The addition of zeolite had a significant effect on the production of methane in the discontinuous regime (p < 0.01), with an increase in methane production of 28% with a dose of 4.0 g/L. In the semi-continuous regime, the addition of zeolite with doses between 1 and 4 g/L caused an increase in methane production of up to 68%, a decrease in the concentration of H2S present in the biogas of up to 63%, a digestate with up to 51% lower TAN concentration and prevented the formation of foams. Obtaining zeolite enriched with nitrogen, phosphorus and potassium constitutes an opportunity for the recycling of nutrients. The results showed that the use of natural zeolite improved the DA of swine waste.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Biotecnologíaspa
dc.description.methodsSe pretendía potenciar la generación de biogás, la recuperación de nutrientes y la calidad del digestato. Para lo cual, se determinó la capacidad de adsorción de nitrógeno amoniacal total (TAN) por parte de zeolita natural comercializada en Colombia (zeolita ecuatoriana); se evaluó el efecto de zeolita sobre la DA de residuos porcícolas en régimen discontinuo (batch) y semicontinuo; y se realizó un análisis de la DA de residuos porcícolas con uso de zeolita incluyendo análisis energético, de recuperación de nutrientes y costo-beneficio.spa
dc.description.researchareaEnergías renovablesspa
dc.format.extentxvi, 101 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85681
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Antioquia, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesAbouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource Technology, 101(16), 6368–6373. https://doi.org/10.1016/j.biortech.2010.03.071spa
dc.relation.referencesAbouelenien, F., Nakashimada, Y., & Nishio, N. (2009). Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. Journal of Bioscience and Bioengineering, 107(3), 293–295. https://doi.org/10.1016/j.jbiosc.2008.10.009spa
dc.relation.referencesAdam, M. R., Othman, M. H. D., Abu Samah, R., Puteh, M. H., Ismail, A. F., Mustafa, A., A. Rahman, M., & Jaafar, J. (2019). Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Separation and Purification Technology, 213, 114–132. https://doi.org/10.1016/j.seppur.2018.12.030spa
dc.relation.referencesAndré, L., Pauss, A., & Ribeiro, T. (2018). Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresource Technology, 247(August 2017), 1027–1037. https://doi.org/10.1016/j.biortech.2017.09.003spa
dc.relation.referencesAngelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, a. J., Kalyuzhnyi, S., Jenicek, P., & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040spa
dc.relation.referencesAngelidaki, Irini, Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011spa
dc.relation.referencesAPHA. (2017). Standard methods for the examination of Water and Wastewater, 23rd ed. American Public Health Assossiation, American Water Works Assossiation, Water Environment Federation. Washington, D.C.spa
dc.relation.referencesArif, S., Liaquat, R., & Adil, M. (2018). Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews, 97(January 2017), 354–366. https://doi.org/10.1016/j.rser.2018.08.039spa
dc.relation.referencesAsociación Colombiana de Porcicultores. (2016). Informe de los proyectos de inversión desarrollados durante el año 2016. Recuperado Julio 20, 2023, de https://porkcolombia.co/wp-content/uploads/2020/08/Informe-de-Gesti%C3%B3n-I-semestre-2016-Porkcolombia.pdfspa
dc.relation.referencesAstals, S., Peces, M., Batstone, D. J., Jensen, P. D., & Tait, S. (2018). Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems. Water Research, 143, 127–135. https://doi.org/10.1016/j.watres.2018.06.021spa
dc.relation.referencesBarampouti, E. M., Mai, S., Malamis, D., Moustakas, K., & Loizidou, M. (2020). Exploring technological alternatives of nutrient recovery from digestate as a secondary resource. Renewable and Sustainable Energy Reviews, 134(September), 110379. https://doi.org/10.1016/j.rser.2020.110379spa
dc.relation.referencesBaykara, H., Martinez, M. C., Rey, D. V., Urbina, D. S., Paredes, C., Rigail-Cedeño, A., & Aviles, M. O. (2018). Preparation and determination of antimicrobial property of cation-exchanged ecuadorian natural zeolite to be used as filler for polyethylene and polypropylene matrices. Journal of Polymers and the Environment, 26(6), 2566–2578. https://doi.org/10.1007/s10924-017-1153-8spa
dc.relation.referencesBayrakdar, A., Sürmeli, R. Ö., & Çalli, B. (2017). Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresource Technology, 244(June), 816–823. https://doi.org/10.1016/j.biortech.2017.08.047spa
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible , interactive , scalable and extensible microbiome data science using QIIME 2. Nature BiotechNology, 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9spa
dc.relation.referencesBuswell, A. M., & Mueller, H. F. (1952). Mechanism of Methane Fermentation. Industrial & Engineering Chemistry, 44(3), 550–552. https://doi.org/10.1021/ie50507a033spa
dc.relation.referencesButti, M. (2018). Introducción a la Digestión anaeróbica. Curso Introductorio de Pequeña Escala, Foz de Iguazú, 18 y 18 de Septiembre de 2018. Recuperado Julio 28, 2019, de http://redbiolac.org/wp-content/uploads/1-Introducci%C3%B3n-a-la-digesti%C3%B3n-anaer%C3%B3bica.pdfspa
dc.relation.referencesCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2 : High-resolution sample inference from Illumina amplicon data. Nature Methods, May, 1–7. https://doi.org/10.1038/nmeth.3869spa
dc.relation.referencesCalli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40(3–4), 1285–1292. https://doi.org/10.1016/j.procbio.2004.05.008spa
dc.relation.referencesCalvo, B., Canoira, L., Morante, F., Martínez-Bedia, J. M., Vinagre, C., García-González, J.-E., Elsen, J., & Alcantara, R. (2009). Continuous elimination of Pb2+,Cu2+,Zn2+,H+ and NH4+ from acidic waters by ionic exchange on natural zeolites. Journal of Hazardous Materials Journal, 166, 619–627. https://doi.org/10.1016/j.jhazmat.2008.11.087spa
dc.relation.referencesCardona, L., Mazéas, L., & Chapleur, O. (2021). Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress. Chemosphere, 262(Article 127932). https://doi.org/10.1016/j.chemosphere.2020.127932spa
dc.relation.referencesCastro, L., Escalante, H., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions : Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317. https://doi.org/10.1016/j.biortech.2017.05.035spa
dc.relation.referencesChen, S., He, J., Wang, H., Dong, B., Li, N., & Dai, X. (2018). Microbial responses and metabolic pathways reveal the recovery mechanism of an anaerobic digestion system subjected to progressive inhibition by ammonia. Chemical Engineering Journal, 350(May), 312–323. https://doi.org/10.1016/j.cej.2018.05.168spa
dc.relation.referencesChen, Y., & Cheng, J. J. (2007). Effect of Potassium Inhibition on the Thermophilic Anaerobic Digestion of Swine Waste. Water Environ. Res., 79, 667–674. https://doi.org/10.2175/106143007X156853spa
dc.relation.referencesCooney, E. L., Booker, N. A., Shallcross, D. C., & Stevens, G. W. (1999). Ammonia Removal from Wastewaters Using Natural Australian Zeolite. I. Characterization of the Zeolite. Separation Science and Technology, 34(12), 2307–2327. https://doi.org/10.1081/SS-100100774spa
dc.relation.referencesCorporación Autónoma Regional del Valle del Cauca, C. (2019). Informe de gestión. Vigencia 2018. Recuperado Julio 28, 2023, de https://www1.upme.gov.co/InformesGestion/Informe_gestion_2018.pdfspa
dc.relation.referencesDe Vrieze, J., Colica, G., Pintucci, C., Sarli, J., Pedizzi, C., Willeghems, G., Bral, A., Varga, S., Prat, D., Peng, L., Spiller, M., Buysse, J., Colsen, J., Benito, O., Carballa, M., & Vlaeminck, S. E. (2019). Resource recovery from pig manure via an integrated approach: A technical and economic assessment for full-scale applications. Bioresource Technology, 272(October 2018), 582–593. https://doi.org/10.1016/j.biortech.2018.10.024spa
dc.relation.referencesDuan, N., Zhang, D., Lin, C., Zhang, Y., Zhao, L., Liu, H., & Liu, Z. (2019). Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. Journal of Environmental Management, 231(July 2018), 646–652. https://doi.org/10.1016/j.jenvman.2018.10.062spa
dc.relation.referencesEscalante, H., Castro, L., Amaya, M. P., Jaimes, L., & Jaimes-Estévez, J. (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711–718. https://doi.org/10.1016/j.wasman.2017.09.026spa
dc.relation.referencesEsteves, E. M. M., Herrera, A. M. N., Esteves, V. P. P., & Morgado, C. do R. V. (2019). Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production, 219, 411–423. https://doi.org/10.1016/j.jclepro.2019.02.091spa
dc.relation.referencesFernandes, T. V., Keesman, K. J., Zeeman, G., & van Lier, J. B. (2012). Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass and Bioenergy, 47, 316–323. https://doi.org/10.1016/j.biombioe.2012.09.029spa
dc.relation.referencesGanidi, N., Tyrrel, S., & Cartmell, E. (2009). Anaerobic digestion foaming causes - A review. Bioresource Technology, 100(23), 5546–5554. https://doi.org/10.1016/j.biortech.2009.06.024spa
dc.relation.referencesGarcía Arbeláez, C. ., Barrera, X., Gómez Castaño, R. ., & Castaño, R. . S. (2015). El ABC de los compromisos de Colombia para la COP21. Recuperado Julio 28, 2019, de http://mvccolombia.co/images/ABC_S3_B24_C8_web.pdfspa
dc.relation.referencesGarcia, M. L., & Angenent, L. T. (2009). Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Research, 43(9), 2373–2382. https://doi.org/10.1016/j.watres.2009.02.036spa
dc.relation.referencesGarfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599–614. https://doi.org/10.1016/j.rser.2016.01.071spa
dc.relation.referencesGelves Diaz, J. F. (2017). Zeolitas naturales colombianas de la formación Combia, municipio de La Pintada: mineralogía, caracterización y aplicaciones. Universidad Nacional de Colombia. Recuperado Julio 29, 2023, de https://repositorio.unal.edu.co/handle/unal/59065?show=fullspa
dc.relation.referencesGerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. Recuperado Julio 29, 2023, de https://www.fao.org/3/i3437e/i3437e.pdfspa
dc.relation.referencesGonzales Rubio, C. H. (2016). Estudio de prefactibilidad para la generación de energía a partir de biomasa residual en granjas de cerdo de una industria porcícola. Recuperado Julio 29, 2023, de https://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/85596/1/T01828.pdfspa
dc.relation.referencesGonzáles, X. (2019). El sector porcícola colombiano mueve al año $2,6 billones en términos de producción. Recuperado Julio 29, 2023, de https://www.agronegocios.co/ganaderia/el-sector-porcicola-colombiano-mueve-al-ano-26-billones-en-terminos-de-produccion-2832964spa
dc.relation.referencesGould, C. M. (2015). Bioenergy and anaerobic digestion. Chapter 18. Bioenergy, 297–317. https://doi.org/10.1016/B978-0-12-407909-0.00018-3spa
dc.relation.referencesHansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic Digestion of Swine Manure: Inhibition by ammonia. Water Research, 32(1), 5–12. https://doi.org/10.1016/S0043-1354(97)00201-7spa
dc.relation.referencesHedström, A. (2001). Ion exchange in zeolites: a literature review. Journal of Environmental Engineering, 127(8), 673–682.spa
dc.relation.referencesHolliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J. C., De Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336spa
dc.relation.referencesHosseini, S. S., Azadi Tabar, M., Vankelecom, I. F. J., & Denayer, J. F. M. (2023). Progress in high performance membrane materials and processes for biogas production, upgrading and conversion. Separation and Purification Technology, 310(September 2022), 123139. https://doi.org/10.1016/j.seppur.2023.123139spa
dc.relation.referencesHristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J., & Oosting, S. (2013). Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera – Una revisión de las opciones técnicas para la reducción de las emisiones de gases diferentes al CO2. FAO, Roma, Italia. Recuperado Julio 29, 2023, de https://www.fao.org/3/i3288s/i3288s.pdfspa
dc.relation.referencesHu, Y., Wu, J., Li, H., Poncin, S., Wang, K. jun, & Zuo, J. (2019). Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property. Bioresource Technology, 282(January), 353–360. https://doi.org/10.1016/j.biortech.2019.03.014spa
dc.relation.referencesHuang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175(1–3), 247–252. https://doi.org/10.1016/j.jhazmat.2009.09.156spa
dc.relation.referencesHuang, J., Kankanamge, N. R., Chow, C., Welsh, D. T., Li, T., & Teasdale, P. R. (2018). Removing ammonium from water and wastewater using cost-effective adsorbents : A review. Journal of Environmental Sciences, 63, 174–197. https://doi.org/10.1016/j.jes.2017.09.009spa
dc.relation.referencesHuang, X., Miao, X., Chu, X., Luo, L., Zhang, H., & Sun, Y. (2023). Enhancement effect of biochar addition on anaerobic co-digestion of pig manure and corn straw under biogas slurry circulation. Bioresource Technology, 372(November 2022), 128654. https://doi.org/10.1016/j.biortech.2023.128654spa
dc.relation.referencesICA. (2022). Censos Pecuarios Nacional. Censo Pecuario Año 2022. Recuperado Julio 29, 2023, de https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018/mapa-no-porcinos-2022.aspxspa
dc.relation.referencesICA. (2023). Número de porcinos por departamento en Colombia año 2023. Recuperado Julio 29, 2023, de https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/mapa-y-grafico-censo-porcinos-2023-1.aspxspa
dc.relation.referencesIEA Bioenergy. (2015). IEA Bioenergy Task 37 - Country Reports Summary 2014. Recuperado Julio 29, 2023, de https://www.ieabioenergy.com/wp-content/uploads/2015/01/IEA-Bioenergy-Task-37-Country-Report-Summary-2014_Final.pdfspa
dc.relation.referencesIocoli, G. A., Zabaloy, M. C., Pasdevicelli, G., & Gómez, M. A. (2019). Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Science of the Total Environment, 647, 11–19. https://doi.org/10.1016/j.scitotenv.2018.07.444spa
dc.relation.referencesJha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169(1–3), 29–35. https://doi.org/10.1016/j.jhazmat.2009.03.052spa
dc.relation.referencesJiang, Y., McAdam, E., Zhang, Y., Heaven, S., Banks, C., & Longhurst, P. (2019). Ammonia inhibition and toxicity in anaerobic digestion: A critical review. Journal of Water Process Engineering, 32(July), 100899. https://doi.org/10.1016/j.jwpe.2019.100899spa
dc.relation.referencesKantiranis, N., Sikalidis, K., Godelitsas, A., Squires, C., Papastergios, G., & Filippidis, A. (2011). Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+. Journal of Environmental Management, 92(6), 1569–1576. https://doi.org/10.1016/j.jenvman.2011.01.013spa
dc.relation.referencesKoszel, M., & Lorencowicz, E. (2015). Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agriculture and Agricultural Science Procedia, 7, 119–124. https://doi.org/10.1016/j.aaspro.2015.12.004spa
dc.relation.referencesKotsopoulos, T. A., Karamanlis, X., Dotas, D., & Martzopoulos, G. G. (2008). The impact of different natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosystems Engineering, 99(1), 105–111. https://doi.org/10.1016/j.biosystemseng.2007.09.018spa
dc.relation.referencesKougias, P. G., Boe, K., Tsapekos, P., & Angelidaki, I. (2014). Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology, 153, 198–205. https://doi.org/10.1016/j.biortech.2013.11.083spa
dc.relation.referencesKozłowski, K., Pietrzykowski, M., Czeka, W., Dach, J., Kowalczyk-ju, A., & Krzysztof, J. (2019). Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy, 183, 1023–1031. https://doi.org/10.1016/j.energy.2019.06.179spa
dc.relation.referencesKwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500. https://doi.org/10.1016/j.rser.2014.03.041spa
dc.relation.referencesLambert, M. (2017). Biogas: A significant contribution to decarbonising gas markets? The Oxford Institute for Energy Studies, June, 1–15. Recuperado Julio 28, 2023, de https://www.oxfordenergy.org/wpcms/wp-content/uploads/2017/06/Biogas-A-significant-contribution-to-decarbonising-gas-markets.pdfspa
dc.relation.referencesLehtomäki, A., Huttunen, S., Lehtinen, T. M., & Rintala, J. A. (2008). Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresource Technology, 99(8), 3267–3278. https://doi.org/10.1016/j.biortech.2007.04.072spa
dc.relation.referencesLei, L., Li, X., & Zhang, X. (2008). Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and Purification Technology, 58, 359–366. https://doi.org/10.1016/j.seppur.2007.05.008spa
dc.relation.referencesLendormi, T., Jaziri, K., Béline, F., Le Roux, S., Bureau, C., Midoux, C., Barrington, S., & Dabert, P. (2022). Methane production and microbial community acclimation of five manure inocula during psychrophilic anaerobic digestion of swine manure. Journal of Cleaner Production, 340(January), 130772. https://doi.org/10.1016/j.jclepro.2022.130772spa
dc.relation.referencesLi, R., Liu, D., Zhang, Y., Duan, N., Zhou, J., Liu, Z., & Zhang, Y. (2019). Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Science of the Total Environment, 651, 61–69. https://doi.org/10.1016/j.scitotenv.2018.09.175spa
dc.relation.referencesLi, Y., Zhang, Y., Sun, Y., Wu, S., Kong, X., Yuan, Z., & Dong, R. (2017). The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition. Bioresource Technology, 231, 94–100. https://doi.org/10.1016/j.biortech.2017.01.068spa
dc.relation.referencesLin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D., & Tay, J. H. (2013). Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Separation and Purification Technology, 103, 15–20. https://doi.org/10.1016/j.seppur.2012.10.005spa
dc.relation.referencesLin, L., Wan, C., Liu, X., Lei, Z., Lee, D. J., Zhang, Y., Tay, J. H., & Zhang, Z. (2013). Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity. Applied Microbiology and Biotechnology, 97(24), 10575–10583. https://doi.org/10.1007/s00253-013-5313-zspa
dc.relation.referencesLiu, L., Pang, C., Wu, S., & Dong, R. (2015). Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure. Process Safety and Environmental Protection, 94(C), 350–357. https://doi.org/10.1016/j.psep.2014.08.006spa
dc.relation.referencesLourinho, G., Rodrigues, L. F. T. G., & Brito, P. S. D. (2020). Recent advances on anaerobic digestion of swine wastewater. International Journal of Environmental Science and Technology, 17(12), 4917–4938. https://doi.org/10.1007/s13762-020-02793-yspa
dc.relation.referencesLu, X., Wang, H., Ma, F., Zhao, G., & Wang, S. (2018). Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: Effects of an iron oxide-zeolite additive. Bioresource Technology, 262, 169–176. https://doi.org/10.1016/j.biortech.2018.04.052spa
dc.relation.referencesMakara, A., & Kowalski, Z. (2018). Selection of pig manure management strategies: Case study of Polish farms. Journal of Cleaner Production, 172, 187–195. https://doi.org/10.1016/j.jclepro.2017.10.095spa
dc.relation.referencesMargeta, K., Zabukovec, N., Šiljeg, M., & Farkaš, A. (2013). Natural zeolites in water treatment - How effective is their use. In Water Treatment (pp. 81–112). https://doi.org/10.5772/2883spa
dc.relation.referencesMartí-Herrero, J., Castro, L., Jaimes-Estévez, J., Grijalva, M., Gualatoña, M., Aldás, M. B., & Escalante, H. (2022). Biomethane potential test applied to psychrophilic conditions: Three issues about inoculum temperature adaptation. Bioresource Technology Reports, 20(November). https://doi.org/10.1016/j.biteb.2022.101279spa
dc.relation.referencesMata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039spa
dc.relation.referencesMcMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217spa
dc.relation.referencesMidden, C. Van, Harris, J., Shaw, L., Sizmur, T., & Pawlett, M. (2023). The impact of anaerobic digestate on soil life : A review. Applied Soil Ecology, 191(July), 105066. https://doi.org/10.1016/j.apsoil.2023.105066spa
dc.relation.referencesMilán, Z., Sánchez, E., Weiland, P., Borja, R., Martín, A., & Ilangovan, K. (2001). Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresource Technology, 80(1), 37–43. https://doi.org/10.1016/S0960-8524(01)00064-5spa
dc.relation.referencesMinisterio del Medio Ambiente, & Sociedad de Agricultores de Colombia. (2002). Guía Ambiental para el subsector porcícola. Recuperado Julio 20, 2023, de https://www.porkcolombia.co/wp-content/uploads/2018/07/GUIA-AMBIENTAL-PORCICOLA-opt.pdfspa
dc.relation.referencesMöller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242–257. https://doi.org/10.1002/elsc.201100085spa
dc.relation.referencesMontalvo, S., Guerrero, L., Borja, R., Travieso, L., Sánchez, E., & Díaz, F. (2006). Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes. Resources, Conservation and Recycling, 47(1), 26–41. https://doi.org/10.1016/j.resconrec.2005.10.001spa
dc.relation.referencesMontalvo, S., Huiliñir, C., Borja, R., Sánchez, E., & Herrmann, C. (2020). Application of zeolites for biological treatment processes of solid wastes and wastewaters – A review. Bioresource Technology, 301(October 2019), 122808. https://doi.org/10.1016/j.biortech.2020.122808spa
dc.relation.referencesMontalvo, Silvio, Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., & De, M. A. (2012). Application of natural zeolites in anaerobic digestion processes : A review. Applied Clay Science, 58, 125–133. https://doi.org/10.1016/j.clay.2012.01.013spa
dc.relation.referencesMuthudineshkumar, R., & Anand, R. (2019). Anaerobic digestion of various feedstocks for second-generation biofuel production. In Advances in Eco-Fuels for a Sustainable Environment (pp. 157–185). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102728-8.00006-1spa
dc.relation.referencesNagarajan, A., Goyette, B., Raghavan, V., Bhaskar, A., & Rajagopal, R. (2023). Nutrient recovery via struvite production from livestock manure-digestate streams : Towards closed loop bio-economy. Process Safety and Environmental Protection, 171(December 2022), 273–288. https://doi.org/10.1016/j.psep.2023.01.006spa
dc.relation.referencesNeshat, S. A., Mohammadi, M., Najafpour, G. D., & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79(May), 308–322. https://doi.org/10.1016/j.rser.2017.05.137spa
dc.relation.referencesNielsen, H. B., & Angelidaki, I. (2008). Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresource Technology, 99(17), 7995–8001. https://doi.org/10.1016/j.biortech.2008.03.049spa
dc.relation.referencesNordgård, A. S. R., Bergland, W. H., Bakke, R., Østgaard, K., & Bakke, I. (2018). Mapping anaerobic sludge bed community adaptations to manure supernatant in biogas reactors. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-34088-1spa
dc.relation.referencesOCDE-FAO. (2022). Perspectivas Agrícolas 2022-2031. OECD Publishing, Paris. Recuperado Julio 20, 2023, de https://doi.org/10.1787/820ef1bb-esspa
dc.relation.referencesPaolini, V., Petracchini, F., Carnevale, M., Gallucci, F., Perilli, M., Esposito, G., Segreto, M., Occulti, L. G., Scaglione, D., Ianniello, A., & Frattoni, M. (2018). Characterisation and cleaning of biogas from sewage sludge for biomethane production. Journal of Environmental Management, 217, 288–296. https://doi.org/10.1016/j.jenvman.2018.03.113spa
dc.relation.referencesPérez-Pérez, T., Pereda-Reyes, I., Correia, G. T., Pozzi, E., Kwong, W. H., Oliva-Merencio, D., Zaiat, M., Montalvo, S., & Huiliñir, C. (2021). Performance of EGSB reactor using natural zeolite as support for treatment of synthetic swine wastewater. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104922spa
dc.relation.referencesPoirier, S., Madigou, C., Bouchez, T., & Chapleur, O. (2017). Improving anaerobic digestion with support media : Mitigation of ammonia inhibition and effect on microbial communities. Bioresource Technology, 235, 229–239. https://doi.org/10.1016/j.biortech.2017.03.099spa
dc.relation.referencesPortejoie, S., Martinez, J., Guiziou, F., & Coste, C. M. (2003). Effect of covering pig slurry stores on the ammonia emission processes. Bioresource Technology, 87(3), 199–207. https://doi.org/10.1016/S0960-8524(02)00260-2spa
dc.relation.referencesQiao, F., Zhang, G., Fan, J., Zhang, H., Shi, B., Yang, J., Zhang, J., & Han, Z. (2023). Hydrothermal pretreatment of protein-rich substrate: Modified phsiochemical properties and consequent responses in its anaerobic digestion. Carbon Resources Conversion, 6(1), 1–10. https://doi.org/10.1016/j.crcon.2022.10.001spa
dc.relation.referencesQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, O. (2013). The SILVA ribosomal RNA gene database project : improved data processing and web-based tools. Nucleic Acids Research, 41(November 2012), 590–596. https://doi.org/10.1093/nar/gks1219spa
dc.relation.referencesRajagopal, R., Massé, D. I., & Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641. https://doi.org/10.1016/j.biortech.2013.06.030spa
dc.relation.referencesRasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q., & Baroutian, S. (2020). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel, 261(Article 116497). https://doi.org/10.1016/j.fuel.2019.116497spa
dc.relation.referencesRizzioli, F., Bertasini, D., Bolzonella, D., Frison, N., & Battista, F. (2023). A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector. Separation and Purification Technology, 306(Article 122690). https://doi.org/10.1016/j.seppur.2022.122690spa
dc.relation.referencesRodrigues, R. P., Rodrigues, D. P., Klepacz-Smolka, A., Martins, R. C., & Quina, M. J. (2019). Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Science of the Total Environment, 649, 1599–1608. https://doi.org/10.1016/j.scitotenv.2018.08.270spa
dc.relation.referencesRodríguez Galindo, M. O. (2019). Informe de sostenibilidad. In Porkcolombia - Fondo Nacional de la Porcicultura (Issue 9). Recuperado Julio 29, 2023, de https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesSafavi, S. M., & Unnthorsson, R. (2018). Enhanced methane production from pig slurry with pulsed electric field pre-treatment. Environmental Technology, 39(4), 479–489. https://doi.org/10.1080/09593330.2017.1304455spa
dc.relation.referencesSeadi, T. Al, Rutz, D., Prassl, H., Kottner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas handbook (T. Al Seadi (ed.)). University of Southern Denmark Esbjerg, Niels Bohrs Vej 9-10, DK-6700 Esbjerg, Denmark.spa
dc.relation.referencesShi, L., Xie, S., Hu, Z., Wu, G., Morrison, L., Croot, P., Hu, H., & Zhan, X. (2019). Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. Journal of Membrane Science, 573(August 2018), 560–569. https://doi.org/10.1016/j.memsci.2018.12.037spa
dc.relation.referencesSidartha Roa, Z., Mendoza Cordoba, J. C., González Muñoz, S. S., Kaiser Caldera, F. L., & Gebauer, A. (2020). Guía de biogás para el sector porcícola en Colombia. Recuperado Julio 29, 2023, de https://economiacircular.minambiente.gov.co/wp-content/uploads/2021/09/guia-biogas-sector-porcicola-ministerio-de-ambiente-desarrollo-sostenible.pdfspa
dc.relation.referencesSouza, I. M. S., Gurgel, G. C. S., Medeiros, A. M., Zonta, E., Ruiz, J. A. C., Paskocimas, C. A., Motta, F. V., & Bomio, M. R. D. (2018). The use of clinoptilolite as carrier of nitrogened fertilizer with controlled release. Journal of Environmental Chemical Engineering, 6(4), 4171–4177. https://doi.org/10.1016/j.jece.2018.06.017spa
dc.relation.referencesSteinmetz, R. (2018). Curso Introductorio de Gran Escala. Bases Bioquímicas de Digestión Anaerobia. Recuperado Julio 28, 2019, de http://redbiolac.org/wp-content/uploads/CIBGE-1-Bases-bioqui%CC%81micas-da-digesta%CC%83o-anaero%CC%81bia.pdfspa
dc.relation.referencesTada, C., Yang, Y., Hanaoka, T., Sonoda, A., Ooi, K., & Sawayama, S. (2005). Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresource Technology, 96(4), 459–464. https://doi.org/10.1016/j.biortech.2004.05.025spa
dc.relation.referencesTao, Z., Chen, C., Yang, Q., Zhong, Z., Wan, Y., Chen, S., Yao, F., Pi, Z., Li, X., & Wang, D. (2021). Understanding the impact of allicin for organic matter release and microorganism community in anaerobic co-digestion of food waste and waste activated sludge. Science of the Total Environment, 776(Article 145598). https://doi.org/10.1016/j.scitotenv.2021.145598spa
dc.relation.referencesTavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173(May 2022). https://doi.org/10.1016/j.rser.2022.113097spa
dc.relation.referencesTimonen, K., Sinkko, T., Luostarinen, S., Tampio, E., & Joensuu, K. (2019). LCA of anaerobic digestion: Emission allocation for energy and digestate. Journal of Cleaner Production, 235, 1567–1579. https://doi.org/10.1016/j.jclepro.2019.06.085spa
dc.relation.referencesUNAL, & TECSOL. (2018). Estimación del potencial de conversión a biogás de la biomasa en colombia y su aprovechamiento. Recuperado Julio 28, 2019, de https://bdigital.upme.gov.co/jspui/bitstream/001/1317/1/Informe final.pdfspa
dc.relation.referencesUnited States Department of Agriculture. (2018). Livestock and Poultry: World Markets and Trade. Recuperado Julio 28, 2023, de https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdfspa
dc.relation.referencesUPME, IREES, & TEP. (2019). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética, Resumen Ejecutivo BEU Sector Residencial y Terciario. In Unidad de Planeación Minero-Energética (Vol. 1). Recuperado Julio 29, 2023, de https://www1.upme.gov.co/DemandayEficiencia/Documents/Balance_energia_util/BEU-Residencial.pdfspa
dc.relation.referencesVarnero Moreno, M. T. (2011). Manual del Biogás. Roma. doi: ISBN 978-95-306892-0. Recuperado Julio 28, 2023, de http://www.fao.org/docrep/019/as400s/as400s.pdfspa
dc.relation.referencesWandera, S. M., Qiao, W., Algapani, D. E., Bi, S., Yin, D., Qi, X., Liu, Y., Dach, J., & Dong, R. (2018). Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renewable Energy, 116, 720–727. https://doi.org/10.1016/j.renene.2017.09.087spa
dc.relation.referencesWang, Q., Yang, Y., Yu, C., Huang, H., Kim, M., Feng, C., & Zhang, Z. (2011). Study on a fixed zeolite bioreactor for anaerobic digestion of ammonium-rich swine wastes. Bioresource Technology, 102(14), 7064–7068. https://doi.org/10.1016/j.biortech.2011.04.085spa
dc.relation.referencesWang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal Journal, 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029spa
dc.relation.referencesWickham, H. (2016). Programming with ggplot2. In ggplot2. Usa R! (pp. 241–253). Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4_12spa
dc.relation.referencesWijesinghe, D. T. N., Dassanayake, K. B., Scales, P., & Chen, D. (2018). Developing an anaerobic digester with external Zeolite filled column for enhancing methane production from swine manure–A feasibility study. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 53(11), 751–760. https://doi.org/10.1080/03601234.2018.1480164spa
dc.relation.referencesWijesinghe, D. T. N., Dassanayake, K. B., Scales, P. J., Sommer, S. G., & Chen, D. (2018a). Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure. Journal of Environmental Chemical Engineering, 6(1), 1233–1241. https://doi.org/10.1016/j.jece.2018.01.028spa
dc.relation.referencesWijesinghe, D. T. N., Dassanayake, K. B., Scales, P., Sommer, S. G., & Chen, D. (2018b). Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53(4), 362–372. https://doi.org/10.1080/10934529.2017.1401398spa
dc.relation.referencesWijesinghe, D. T. N., Dassanayake, K. B., Sommer, S. G., Jayasinghe, G. Y., J. Scales, P., & Chen, D. (2016). Ammonium removal from high-strength aqueous solutions by Australian zeolite. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 51(8), 614–625. https://doi.org/10.1080/10934529.2016.1159861spa
dc.relation.referencesWu, X., Dong, C., Yao, W., & Zhu, J. (2011). Anaerobic digestion of dairy manure influenced by the waste milk from milking operations. Journal of Dairy Science, 94(8), 3778–3786. https://doi.org/10.3168/jds.2010-4129spa
dc.relation.referencesXiao, B., Qin, Y., Wu, J., Chen, H., Yu, P., Liu, J., & Li, Y. Y. (2018). Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: Performance, energy balance and reaction process. Energy Conversion and Management, 156(November 2017), 215–223. https://doi.org/10.1016/j.enconman.2017.10.092spa
dc.relation.referencesXiaodong, P., Liangwei, D., Yong, Y., Li, S., & Zhiyong, W. (2010). Economic benefit analysis on large and middle-scale biogas plants with different heating methods. Journal of Agricultural Engineering, 26(7), 281–284.spa
dc.relation.referencesYang, Z., Wang, W., Liu, C., Zhang, R., & Liu, G. (2019). Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: Selection of strains and reactor performance evaluation. Water Research, 155, 214–224. https://doi.org/10.1016/j.watres.2019.02.048spa
dc.relation.referencesYenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion : A review. Process Biochemistry, 48(5–6), 901–911. https://doi.org/10.1016/j.procbio.2013.04.012spa
dc.relation.referencesZha, X., Tsapekos, P., Alvarado-morales, M., Lu, X., & Angelidaki, I. (2020). Potassium inhibition during sludge and biopulp co-digestion ; experimental and model-based approaches. Waste Management, 113, 304–311. https://doi.org/10.1016/j.wasman.2020.06.007spa
dc.relation.referencesZhang, N., Stanislaus, M. S., Hu, X., Zhao, C., Zhu, Q., Li, D., & Yang, Y. (2016). Strategy of mitigating ammonium-rich waste inhibition on anaerobic digestion by using illuminated bio-zeolite fixed-bed process. Bioresource Technology, 222, 59–65. https://doi.org/10.1016/j.biortech.2016.09.053spa
dc.relation.referencesZhang, Q., Hu, J., & Lee, D. J. (2016). Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 98, 108–119. https://doi.org/10.1016/j.renene.2016.02.029spa
dc.relation.referencesZhao, J., Liu, Y., Wang, D., Chen, F., Li, X., & Zeng, G. (2017). Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management, 67, 308–314. https://doi.org/10.1016/j.wasman.2017.05.016spa
dc.relation.referencesZheng, H., Li, D., Stanislaus, M. S., Zhang, N., Zhu, Q., Hu, X., & Yang, Y. (2015). Development of a bio-zeolite fixed-bed bioreactor for mitigating ammonia inhibition of anaerobic digestion with extremely high ammonium concentration livestock waste. Chemical Engineering Journal, 280, 106–114. https://doi.org/10.1016/j.cej.2015.06.024spa
dc.relation.referencesZilio, M., Pigoli, A., Rizzi, B., Geromel, G., Meers, E., Schoumans, O., Giordano, A., & Adani, F. (2021). Measuring ammonia and odours emissions during full field digestate use in agriculture. Science of the Total Environment, 782(Article 146882). https://doi.org/10.1016/j.scitotenv.2021.146882spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocTratamiento anaeróbico
dc.subject.agrovocAnaerobic treatment
dc.subject.agrovocDigestores
dc.subject.agrovocDigesters
dc.subject.agrovocBiodigestores
dc.subject.agrovocBiodigesters
dc.subject.agrovocBiogás
dc.subject.agrovocBiogas
dc.subject.agrovocEnergía renovable
dc.subject.agrovocRenewable energy
dc.subject.agrovocGeneración de energía
dc.subject.agrovocEnergy generation
dc.subject.agrovocFuente de energía
dc.subject.agrovocEnergy sources
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.proposalResiduos porcícolasspa
dc.subject.proposalAmoníacospa
dc.subject.proposalInhibiciónspa
dc.subject.proposalZeolitaspa
dc.subject.proposalAdsorciónspa
dc.subject.proposalMetanospa
dc.subject.proposalPig wasteeng
dc.subject.proposalAmmoniaeng
dc.subject.proposalInhibitioneng
dc.subject.proposalZeoliteeng
dc.subject.proposalAdsorptioneng
dc.subject.proposalMethaneeng
dc.titleDigestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientesspa
dc.title.translatedAnaerobic digestion of swine waste using natural zeolite as a biotechnological alternative for the generation of renewable energy and nutrients recoveryeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030534938.2024.pdf
Tamaño:
1.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: