Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva

dc.contributor.advisorFernández Morales, Gloria Patricia
dc.contributor.advisorRamírez Patiño, Juan Fernando
dc.contributor.authorÁlvarez Gil, Laura Carolina
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001637449spa
dc.contributor.orcidÁlvarez Gil, Laura Carolina [0000000182196366]spa
dc.contributor.researchgroupGIBIRspa
dc.date.accessioned2024-05-29T20:53:39Z
dc.date.available2024-05-29T20:53:39Z
dc.date.issued2019-08-04
dc.description.abstractLos derrames de hidrocarburos en fuentes de agua son eventos de alta afectación ambiental, lo que conduce al desarrollo de métodos que faciliten la respuesta ante estas eventualidades, donde es prioritario maximizar la selectividad y minimizar los tiempos de recolección. Los materiales porosos con superficie modificada se han presentado como una alternativa para la atención de derrames de hidrocarburos en fuentes de agua, debido a su aplicabilidad como barrera selectiva. En esta tesis se desarrolló una metodología para el uso de espumas de aluminio obtenidas por infiltración de moldes solubles y su alteración superficial por inmersión en solución de ácido dodecanoico, obteniendo un material con características hidrófobas que favorecen su aplicación en procesos de separación de mezclas agua/hidrocarburos. Se obtuvieron probetas de tamaños de poro de entre 425 y 1200 μm, las cuales fueron empleadas en un proceso de separación dinámica de agua/aceite por succión. El material mostró repelencia por el agua y eficiencias de separación superiores al 98%, posicionando al aluminio dentro de los materiales de alto potencial de uso en la obtención de barreras selectivas de fluidos.spa
dc.description.abstractLos derrames de hidrocarburos en fuentes de agua son eventos de alta afectación ambiental, lo que conduce al desarrollo de métodos que faciliten la respuesta ante estas eventualidades, donde es prioritario maximizar la selectividad y minimizar los tiempos de recolección. Los materiales porosos con superficie modificada se han presentado como una alternativa para la atención de derrames de hidrocarburos en fuentes de agua, debido a su aplicabilidad como barrera selectiva. En esta tesis se desarrolló una metodología para el uso de espumas de aluminio obtenidas por infiltración de moldes solubles y su alteración superficial por inmersión en solución de ácido dodecanoico, obteniendo un material con características hidrófobas que favorecen su aplicación en procesos de separación de mezclas agua/hidrocarburos. Se obtuvieron probetas de tamaños de poro de entre 425 y 1200 μm, las cuales fueron empleadas en un proceso de separación dinámica de agua/aceite por succión. El material mostró repelencia por el agua y eficiencias de separación superiores al 98%, posicionando al aluminio dentro de los materiales de alto potencial de uso en la obtención de barreras selectivas de fluidos. (tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.format.extent118 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86184
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacionalspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.referencesM. Lombo, “Una tragedia silenciosa,” ACP Hidrocarburos, vol. 14, pp. 87–89, 2015.spa
dc.relation.referencesP. Scholz D. K., Kucklick, J. H., Pond, R., Walker, A. H.., Bostrom, A., and Fischbeck, “Fate of spilled oil in marine water,” Health and Environment Science Department, API, vol. 4691. pp. 1–57, 1999.spa
dc.relation.referencesY. Murakami, S. I. Kitamura, K. Nakayama, S. Matsuoka, and H. Sakaguchi, “Effects of heavy oil in the developing spotted halibut, Verasper variegatus,” Mar. Pollut. Bull., vol. 57, no. 6–12, pp. 524–528, 2008.spa
dc.relation.referencesI. The International Tanker Owner Pollution Federation Limited, “Efectos de la contaminación por hidrocarburos en el medio marino,” in Documento de información técnica, 2015.spa
dc.relation.referencesA. D. Venosa and X. Zhu, “Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands,” Spill Sci. Technol. Bull., vol. 8, no. 2, pp. 163–178, 2003.spa
dc.relation.referencesV. Broje and A. A. Keller, “Interfacial interactions between hydrocarbon liquids and solid surfaces used in mechanical oil spill recovery,” J. Colloid Interface Sci., vol. 305, no. 2, pp. 286–292, 2007.spa
dc.relation.referencesL. H. Carvajal Ortiz and F. Jara Gutierrez, “Aspectos técnicos sobre derrames de crudo,” 2005.spa
dc.relation.referencesI. The International Tanker Owner Pollution Federation Limited, “Uso de materiales adsorventes en la respuesta a derrames de hidrocarburos,” Doc. Inf. técnica, vol. 8, pp. 1, 12, 2011.spa
dc.relation.referencesI. The International Tanker Owner Pollution Federation Limited, “Uso de barreras en la respuestaa a la contaminación por hidrocarburos,” Doc. Inf. técnica, vol. 3, pp. 1, 12, 2011.spa
dc.relation.referencesS. Yavari, A. Malakahmad, and N. B. Sapari, “A Review on Phytoremediation of Crude Oil Spills,” Water, Air, Soil Pollut., vol. 226, no. 8, p. 279, 2015.spa
dc.relation.referencesS. A. Zengel, J. Michel, and J. A. Dahlin, “Environmental effects of in situ burning of oil spills in inland and upland habitats,” Spill Sci. Technol. Bull., vol. 8, no. 4, pp. 373–377, 2003.spa
dc.relation.referencesI. The International Tanker Owner Pollution Federation Limited, “Uso de skimmers en la respuesta a la contaminanción por hidrocarburos,” Doc. Inf. técnica, vol. 5, pp. 1, 16, 2011.spa
dc.relation.referencesI. The International Tanker Owner Pollution Federation Limited, “Use of Dispersants to Treat Oil Spills,” Impact PR Des. Ltd., vol. 4, p. 12, 2011.spa
dc.relation.referencesM. Zheng, M. Ahuja, D. Bhattacharya, T. P. Clement, J. S. Hayworth, and M. Dhanasekaran, “Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500,” Life Sci., vol. 95, no. 2, pp. 108–117, 2014.spa
dc.relation.referencesA. M. Chakrabarty, “Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof,” US4259444 A, 1981.spa
dc.relation.referencesR. Boopathy, “Factors limiting bioremediation technologies,” Bioresour. Technol., vol. 74, no. 1, pp. 63–67, 2000.spa
dc.relation.referencesX. Qi, Z. Jia, Y. Yang, and H. liu, “Sorption Capacity of New Type Oil Absorption Felt for Potential Application to Ocean Oil Spill,” Procedia Environ. Sci., vol. 10, pp. 849–853, 2011.spa
dc.relation.referencesR. Gao et al., “Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture,” Appl. Surf. Sci., vol. 289, pp. 417–424, 2014.spa
dc.relation.referencesY. Hu et al., “Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation,” Chem. Eng. J., vol. 322, pp. 157–166, 2017.spa
dc.relation.referencesM. Patowary, R. Ananthakrishnan, and K. Pathak, “Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water,” Appl. Surf. Sci., vol. 320, pp. 294–300, 2014.spa
dc.relation.referencesQ. Zhu and Q. Pan, “Mussel-Inspired Direct Immobilization of Nanoparticles and Application for Oil À Water Separation,” ACS Nano, vol. 8, no. 2, pp. 1402–1409, 2014.spa
dc.relation.referencesF. Beshkar, H. Khojasteh, and M. Salavati-niasari, “Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil / water separation,” J. Colloid Interface Sci., vol. 497, pp. 57–65, 2017.spa
dc.relation.referencesA. Fragouli, D; Calcagnile, P; Anyfantis, G.C; Cingolani, R; Bayer, I; Athanassiou, “Selective separation of oil from water via superhydrophobic magnetic foams,” in Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech, 2011, pp. 387–390.spa
dc.relation.referencesX. Zhang, Z. Li, K. Liu, and L. Jiang, “Bioinspired Multifunctional Foam with Self-Cleaning and Oil / Water Separation,” Adv. Funct. Mater., vol. 23, no. 22, pp. 1–6, 2013.spa
dc.relation.referencesQ. Liu, H.-D; Gu, B; Yuan, W.-F; He, “Fabrication of a superhydrophobic polyurethane foam and its application for continuous oil removal,” Mater. Res. Express, vol. 5, no. 2, 2018.spa
dc.relation.referencesB. Wang, Y; Zhu, Y; Yang, C; Liu, J; Jiang, W; Liang, “A Facile Two-Step Strategy for the Construction of a Mechanically Stable 3D Superhydrophobic Structure for Continuous Oil-Water Separation,” Appl. Mater. Interfaces, vol. 451, pp. 24149–24156, 2018.spa
dc.relation.referencesY. Zang, D; Wu, C; Zhu, R; Zhang, W; Yu, X; Zhang, “Porous copper surfaces with improved superhydrophobicity under oil and their application in oil separation and capture from water,” Chem. Commun., vol. 49, no. 75, pp. 8410–8412, 2013.spa
dc.relation.referencesJ. Zhang, K. Ji, J. Chen, Y. Ding, and Z. Dai, “A three-dimensional porous metal foam with selective-wettability for oil – water separation,” J. Mater. Sci., vol. 50, no. 16, pp. 5371–5377, 2015.spa
dc.relation.referencesY. Wang, Y; Lin, F; Peng, J., Dong, Y; Li, W; Huang, “A robust bilayer nanofilm fabricated on copper foam for oil-water separation with improved performances,” J. Mater., vol. 26, pp. 10294–10303, 2016.spa
dc.relation.referencesH. Zhu, L. Gao, X. Yu, C. Liang, and Y. Zhang, “Durability evaluation of superhydrophobic copper foams for long-term oil-water separation,” Appl. Surf. Sci., vol. 407, pp. 145–155, 2017.spa
dc.relation.referencesY. Song et al., “Fabrication of Bioinspired Structured Superhydrophobic and Superoleophilic Copper Mesh for Efficient Oil-water Separation,” J. Bionic Eng., vol. 14, no. 3, pp. 497–505, 2017.spa
dc.relation.referencesW. Zhou, G. Li, L. Wang, Z. Chen, and Y. Lin, “A Facile Method for the Fabrication of a Superhydrophobic polydopamine-coated copper foam for oil/water separation,” Appl. Surf. Sci., vol. 413, pp. 140–148, 2017.spa
dc.relation.referencesJ. Rong et al., “Design and preparation of efficient , stable and superhydrophobic copper foam membrane for selective oil absorption and consecutive oil – water separation,” Mater. Des., vol. 142, pp. 83–92, 2018.spa
dc.relation.referencesL. Liu, Y; Zhang, K; Son, Y., Zhang, W; Spindler, L.M; Han, Z; Ren, “A smart switchable bioinspired copper foam responding to different pH droplets for reversible oil-water separation,” J. Mater. Chem., vol. 6, pp. 2603–2612, 2017.spa
dc.relation.referencesX. Jin et al., “Bio-Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions,” Adv. Funct. Mater., vol. 24, no. 18, pp. 2721–2726, 2014.spa
dc.relation.referencesE. Wang, H. Wang, Z. Liu, and R. Yuan, “One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil – water separation,” J. Mater. Sci., vol. 50, no. 13, pp. 4707–4716, 2015.spa
dc.relation.referencesQ. Wang et al., “Synthesis of vertically aligned composite microcone membrane fi lter for water / oil separation,” Mater. Des., vol. 111, pp. 9–16, 2016.spa
dc.relation.referencesX. Chen, Y. He, Y. Fan, Q. Yang, G. Zeng, and H. Shi, “Facile fabrication of a robust superwetting three-dimensional ( 3D ) nickel foam for oil / water separation,” J. Mater. Sci., vol. 52, no. 4, pp. 2169–2179, 2016.spa
dc.relation.referencesC. Zhang, Y. Li, N. Bai, C. Tan, P. Cai, and Q. Li, “Fabrication of robust 3D superhydrophobic material by a simple and low-cost method for oil-water separation and oil absorption,” Mater. Sci. Eng. B, vol. 224, pp. 117–124, 2017.spa
dc.relation.referencesZ. Xu, K. Miyazaki, and T. Hori, “Dopamine-Induced Superhydrophobic Melamine Foam for Oil / Water Separation,” Adv. Mater. Interfaces, vol. 2, no. 15, pp. 1–5, 2015.spa
dc.relation.referencesR. Du et al., “Microscopic Dimensions Engineering : Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil / Water Separation,” Advaced Mater., vol. 28, pp. 936–942, 2016.spa
dc.relation.referencesJ. Du, R; Feng, Q; Ren, H; Zhao, Q; Gao, X; Zhang, “Hybrid-dimensional magnetic microstructure based 3D substrates for remote controllable and ultrafast water remediation,” J. Mater. Chem. A, vol. 4, no. 3, pp. 938–943, 2015.spa
dc.relation.referencesA. Stolz et al., “Melamine-derived carbon sponges for oil-water separation,” Carbon N. Y., vol. 107, pp. 198–208, 2016.spa
dc.relation.referencesY. Liu, J. H. Xin, and C. Choi, “Cotton Fabrics with Single-Faced Superhydrophobicity,” Langmuir, vol. 28, no. 50, pp. 17426–17434, 2012.spa
dc.relation.referencesW. Yu, L; Hao, G; Zhou, S; Jiang, “Durable and modified foam for cleanup of oil contamination and separation of oil-water mixtures,” RSC Adv., vol. 6, no. 29, pp. 24773–24779, 2016.spa
dc.relation.referencesS. Yang, L. Chen, C. Wang, M. Rana, and P. Ma, “Surface roughness induced superhydrophobicity of graphene foam for oil-water separation,” J. Colloid Interface Sci., vol. 508, pp. 254–262, 2017.spa
dc.relation.referencesT. Minari, X. Liu, H. Liu, and J. Chen, “Recyclable Oil-Absorption Foams via Secondary Phase Separation,” J. Colloid Interface Sci., vol. 525, pp. 11–20, 2018.spa
dc.relation.referencesP. Wu, S. Zhang, H. Yang, Y. Zhu, and J. Chen, “Preparation of Emulsion-Templated Fluorinated Polymers and Their Application in Oil / Water Separation,” J. Polym. Sci. Part A Polym. Chem., vol. 56, no. 14, pp. 1508–1515, 2018.spa
dc.relation.referencesH. Liu and Y. Kang, “Superhydrophobic and superoleophilic modified EPDM foam rubber fabricated by a facile approach for oil / water separation,” Appl. Surf. Sci., vol. 451, pp. 223–231, 2018.spa
dc.relation.referencesS. Khosravi, Maryam; Azizian, “Fabrication of an Oil Spill Collector Package by Using Polyurethane Foam Wrapped with Superhydrophobic ZnO Microrods/Carbon Cloth,” Chempluschem, vol. 83, no. 5, pp. 455–462, 2018.spa
dc.relation.referencesQ. Chen, N; Pan, “Versatile fabrication of ultralight magnetic foams and application for oil-water separation,” ACS Nano, vol. 7, no. 8, pp. 6875–6883, 2013.spa
dc.relation.references“Scopus - Analyze search results.” [Online]. Available: https://www-scopus-com.ezproxy.unal.edu.co/term/analyzer.uri?sid=e002811e01c9d86aef98c548cd67d439&origin=resultslist&src=s&s=TITLE-ABS-KEY%28oil+water+separation+superhydrophobicity+porous%29&sort=plf-f&sdt=b&sot=b&sl=62&count=76&analyzeResults=Analyze+re. [Accessed: 08-Feb-2019].spa
dc.relation.referencesF. Montoro, Marcos A; Franco, “TRANSPORTE DE FLUIDOS NO MISCIBLES EN MEDIOS POROSOS : PERMEABILIDAD RELATIVA.” San Juan, Argentina, 2006.spa
dc.relation.referencesM. Paris, Fundamentos de Ingenieria de Yacimientos, 1°. Maracaibo, 2009.spa
dc.relation.referencesD. Tiab and E. C. Donaldson, “Porosity and Permeability,” in Petrophysics, 2012, pp. 85–219.spa
dc.relation.referencesJ. S. Buckley, J. Edwards, and E. Fordham, “Los fundamentos de la mojabilidad,” pp. 48–67.spa
dc.relation.referencesA. Lafuma and D. Quéré, “Superhydrophobic states.,” Nat. Mater., vol. 2, no. 7, pp. 457–60, 2003spa
dc.relation.referencesD. Tiab and E. C. Donaldson, “Wettability,” in Petrophysics, 3°., Oxford, 2012, pp. 371–418.spa
dc.relation.referencesY. Zhu, H. Hu, S. Sun, and G. Ding, “Flow boiling of refrigerant in horizontal metal-foam filled tubes: Part 1 – Two-phase flow pattern visualization,” Int. J. Heat Mass Transf., vol. 91, pp. 446–453, Dec. 2015.spa
dc.relation.referencesS. T. Kolaczkowski, S. Awdry, T. Smith, D. Thomas, L. Torkuhl, and R. Kolvenbach, “Potential for metal foams to act as structured catalyst supports in fixed-bed reactors,” Catal. Today, vol. 273, pp. 221–233, 2016.spa
dc.relation.referencesM. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. . Wadley, “Metal foams: a design guide,” Mater. Des., vol. 23, no. 1, p. 119, 2002.spa
dc.relation.referencesJ. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Prog. Mater. Sci., vol. 46, pp. 559–632, 2001.spa
dc.relation.referencesP. Fernández, G. Torres V, J. Cruz R, S. Gaviria G, and E. Ochoa, “Fabrication of aluminium base cellular metals,” Sci. Tech., no. 36, pp. 677–682, 2007.spa
dc.relation.referencesR. Goodall, Porous metals: foams and sponges. 2013.spa
dc.relation.referencesK. A. Yasakau, M. L. Zheludkevich, and M. G. S. Ferreira, Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection. Elsevier Ltd., 2018.spa
dc.relation.referencesA. Calle Fernandez, “Espumas Pulvimetalurgicas De Aluminio,” p. 136, 2012.spa
dc.relation.referencesJ. C. Elliott, Madison, and Wis, “Method of production metal foams,” US2751289, 1956.spa
dc.relation.referencesB. C. Allen and M. W. Mote, “Method of Making Foamed Metal-Us 3087807,” 1963.spa
dc.relation.referencesJ. W. Ayers, “Method of producing a lightweight foamed metal,” US, 1962.spa
dc.relation.referencesP. Fernández, L. J. Cruz, and J. Coleto, “Manufacturing processes of cellular metals. Part I: Liquid route processes,” Rev. Metal., vol. 44, no. 6, pp. 540–555, 2008.spa
dc.relation.referencesY. Yamada et al., “Processing of cellular magnesium materials,” Adv Eng Mater, vol. 2, no. 4, pp. 184–187, 2000.spa
dc.relation.referencesP. Fernández, L. J. Cruz, and J. Coleto, “Procesos de fabricación de metales celulares. Parte II: Vía sólida, deposición de metales, otros procesos,” Rev. Metal., vol. 45, no. 2, pp. 124–142, 2009.spa
dc.relation.referencesA. Fernández, “Estudio de la Hidrofobicidad y Autolimpieza en Materiales con Nanotratamientos Superficiales,” Universitat Autònoma de Barcelona, 2013.spa
dc.relation.referencesL. Aisa, A. Navarro, J. L. Fuertes, C. O. Dopaz, and J. Gimenez, Coal/Water mixture (CWM) Preparation, Stability, Rheology and Pumping.spa
dc.relation.referencesN. J. Shirtcliffe, G. McHale, S. Atherton, and M. I. Newton, “An introduction to superhydrophobicity,” Adv. Colloid Interface Sci., vol. 161, no. 1–2, pp. 124–138, 2010.spa
dc.relation.referencesS. Shirtcliffe, Neil; Comanns, Philipp; Hamlett, Christopher; Roach, Paul; Atherton, The Effect of Roughness Geometry on Superhydrophobicity and Related Phenomena, 2 nd. Elsevier Ltd., 2018.spa
dc.relation.referencesJ. Ruiz-cabello, “Efecto de la rugosidad y heterogeneidad superficial en fenómenos de mojado,” Universidad de Granada, 2009.spa
dc.relation.referencesP. Liu, Guodong; Zhang, Meiyun; Ridway, Cathy; Ganem, “Pore wall rugosity - The role of extended wetting contact line length during spontaneous liquid imbibition in porous media.pdf,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 443, pp. 286–295, 2014.spa
dc.relation.referencesB. Dehghan-Manshadi, H. Mahmudi, A. Abedian, and R. Mahmudi, “A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method,” Mater. Des., vol. 28, no. 1, pp. 8–15, 2007.spa
dc.relation.referencesJ. Sáenz, “Crudo derramado por atentados a Caño Limón-Coveñas cuesta más de US$277 millones | ELESPECTADOR.COM,” 2018. [Online]. Available: https://www.elespectador.com/economia/crudo-derramado-por-atentados-cano-limon-covenas-cuesta-mas-de-us277-millones-articulo-820320. [Accessed: 18-Mar-2019].spa
dc.relation.referencesEcopetrol, “Transporte,” 2014. [Online]. Available: https://www.ecopetrol.com.co/wps/portal/es/ecopetrol-web/nuestra-empresa/quienes-somos/lo-que-hacemos/transporte. [Accessed: 18-Mar-2019].spa
dc.relation.referencesD. C. Ibañez, “Optimización del tratamiento químico del fluido de producción en una facilidad mediante la simulación y análisis de la distribución de flujos.,” p. 98, 2009.spa
dc.relation.referencesP. Ahmed, Tarek; McKinney, Advanced Reservoir Engineering, vol. 53, no. 9. London, 2005.spa
dc.relation.referencesC. Macosko, Rheology: Principles, Measurements and Applications, vol. 86, no. 3. 1996.spa
dc.relation.referencesD. Tiab and E. C. Donaldson, “Porosity and Permeability,” Petrophysics, pp. 87–202, 2007.spa
dc.relation.referencesA. Y. Dandekar, “Petroleum Reservoir Rock and Fluid Properties (2nd Edition),” Taylor Fr., 2013.spa
dc.relation.referencesE. Lazzarni, “Solubilidad - Las Soluciones Salinas.” [Online]. Available: https://sites.google.com/site/261lassolucionessalinas/lo-nuevo/solubilidad. [Accessed: 19-Mar-2019].spa
dc.relation.referencesJ. M. Martín Martínez, Adsorción física de gases y vapores por carbones. 1990. [89] Dataphysics, OCA product series.spa
dc.relation.referencesC. A. Franco, F. B. Cortés, and N. N. Nassar, “Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue,” J. Colloid Interface Sci., vol. 425, pp. 168–177, 2014.spa
dc.relation.referencesC. A. Franco, F. B. Cortés, and N. N. Nassar, “Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue,” J. Colloid Interface Sci., vol. 425, pp. 168–177, 2014.spa
dc.relation.referencesA. Varshney, P; Lomga, J; Gupta, P; Mohapatra, S; Kumar, “Durable and regenerable superhydropobic coatins for aluminium surfaces with excellent self-cleaning and anti-fogging properties,” Tribol. Int., vol. 119, pp. 38–44, 2018.spa
dc.relation.referencesA. Lomba, J; Varshney, P; Nanda, D; Satapathy, M; Mohapatra, S; Kumar, “Fabrication of durable and regenerable superhydrophobic coatings with excellent self cleaning and anti fogging properties for aluminium surfaces.pdf,” J. Alloys Compd., vol. 702, pp. 161–170, 2017.spa
dc.relation.referencesD. Zhang, J. Creek, A. J. Jamaluddin, A. G. Marshall, R. P. Rodgers, and O. C. Mullins, “Los asfaltenos : Problemáticos pero ricos en potencial,” Oilf. Rev., pp. 24–47, 2007.spa
dc.relation.referencesM. D. Lobato, F. Gámez, S. Lago, and J. M. Pedrosa, “The influence of the polarity of fractionated asphaltenes on their Langmuir-film properties,” Fuel, vol. 200, pp. 162–170, 2017.spa
dc.relation.referencesB. Bienfait and P. Ertl, “JSME : a free molecule editor in JavaScript,” J. Cheminform., vol. 5, no. 24, pp. 1–6, 2013.spa
dc.relation.referencesD. Padilla and K. Watt, “Precipitación de asfaltenos : Técnicas de predicción y control Asphaltene precipitation : Prediction and Control Techniques,” 2012.spa
dc.relation.referencesO. L. Mora, “Ácido láurico : componente bioactivo del aceite de palmiste,” vol. 24, no. 1, pp. 79–83, 2003.spa
dc.relation.references“Químicas: El Grupo Carboxilo.” [Online]. Available: https://www.quimicas.net/2015/05/el-grupo-carboxilo.html. [Accessed: 27-Feb-2019]spa
dc.relation.referencesH. Hu, Z. Lai, G. Ding, and D. Zhuang, “Experimental investigation on water drainage characteristics of open-cell metal foams with different wettabilities,” vol. 79, pp. 101–113, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembDerrame de petróleo
dc.subject.lembMateriales porosos
dc.subject.lembSeparación (tecnología)
dc.subject.lembMetales - Propiedades mecánicas
dc.subject.proposalMateriales celularesspa
dc.subject.proposalTratamiento superficialspa
dc.subject.proposalSaturaciónspa
dc.subject.proposalPresión capilarspa
dc.subject.proposalAluminiospa
dc.subject.proposalMezclas agua/aceitespa
dc.subject.proposalCellular materialseng
dc.subject.proposalSurface treatmenteng
dc.subject.proposalSaturationeng
dc.subject.proposalCapillary pressureeng
dc.subject.proposalFlow capacityeng
dc.subject.proposalAluminumeng
dc.subject.proposalWater/hydrocarbons mixtureseng
dc.titleSeparación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectivaspa
dc.title.translatedSeparation of water/hydrocarbon mixtures from cellular metals with selective surface affinityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Pontificia Bolivarianaspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
11284421182019.pdf
Tamaño:
3.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: