Análisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatorios

dc.contributor.advisorBarbosa Cruz, Edgard Robert
dc.contributor.advisorTapias Camacho, Mauricio Alberto
dc.contributor.authorLozano Vargas, Germán Alberto
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.date.accessioned2023-10-05T20:15:42Z
dc.date.available2023-10-05T20:15:42Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas
dc.description.abstractLa variación espacial de las propiedades medidas de los suelos se debe principalmente a tres causas: la variabilidad inherente del suelo, los errores en la medición y la incertidumbre en la transformación de los datos. El presente trabajo fue enfocado en la variabilidad espacial inherente del suelo. Para estimar esta variabilidad en algunos suelos de la Sabana de Bogotá, fue necesario recolectar y analizar datos continuos de algunas de las zonas geotécnicas existentes en Bogotá, Colombia. Uno de los ensayos in situ que permite la estimación de la variabilidad, debido a la continuidad de sus registros, es el ensayo de penetración con cono (CPT), y por esta razón se recopilaron 487 sondeos de este tipo. Mediante métodos estadísticos como el coeficiente de correlación intraclase CCI, el estadístico T y el estadístico D² se definieron unidades homogéneas de suelo (UHS) para los tres datos de salida del ensayo CPT: la resistencia por punta, la resistencia por fuste y la presión de poros. Cada UHS fue sometida a un análisis de regresión que permitió obtener la línea de tendencia óptima. A partir de los residuales generados del análisis de tendencias y por medio de la teoría de los campos aleatorios, fue posible calcular la función de autocorrelación, generar modelos de autocorrelación y posteriormente estimar la escala de fluctuación de los datos de CPT, mediante la aplicación de los métodos más usuales publicados en la literatura geotécnica. La estacionariedad de cada una de las UHS fue comprobada por medio del estadístico de Bartlett modificado y su validez fue confirmada mediante el ensayo Tau de Kendall y mediante la prueba de rachas. Se definió que la escala de fluctuación de la resistencia por punta, la resistencia por fuste y la presión de poros de CPT para algunos suelos de la Sabana de Bogotá está en un rango entre 0.10 m y 0.40 m. (Texto tomado de la fuente)spa
dc.description.abstractThe spatial variation of soil properties is mainly due to three causes: inherent soil variability, errors in data measurement, and uncertainty in data transformation. This study focused on the inherent spatial variability of soil. To estimate this variability in some soils of the Bogota Savanna (Colombia), continuous data from some of the Bogotá’s geotechnical zones were collected and assessed. One of the tests that allows the estimation of variability, due to the continuity of its records, is the cone penetration test (CPT). In consequence, 487 CPT soundings were collected. Homogeneous soil units (UHS) were defined for the output CPT data: tip resistance, sleeve friction, and pore pressure, based on statistical method such as the intraclass correlation coefficient CCI, the statistic T, and the statistic D². Employing regression analysis, the optimal trendline for each UHS was obtained. From the residuals generated from the trend analysis, using the Random Field Theory, and applying the most common methods published in geotechnical literature, it was possible to calculate the autocorrelation function, generate autocorrelation models, and subsequently estimate the scale of fluctuation of CPT data. The stationarity of each UHS was verified using the modified Bartlett statistic, and their validity was confirmed by the Kendall Tau test and by the runs test. It was determined that the scale of fluctuation of CPT tip resistance, sleeve friction, and pore pressure for some soils of the Bogota Savanna ranges from 0.10 m to 0.40 m.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaModelación y análisis en geotecniaspa
dc.format.extentxxvii, 220 + Anexos( )spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84773
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAgterberg, F.B. (1970). Autocorrelation Functions in Geology. In Geostatistics – a colloquium: Proceedings of a Colloquium on Geostatistics. University of Kansas.spa
dc.relation.referencesAlonso, E. E., Krizek, R.J (1975). Stochastic formulation of soil properties. Proceedings of the 2nd International Conference on Applications of Statistics and Probability to Soil and Structural Engineering, Vol.1, Aachen Germany, pp. 9 – 32.spa
dc.relation.referencesBaecher, G.B. (1987). Statistical Analysis of Geotechnical Data. Report No. GL-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, VA.spa
dc.relation.referencesBarón, M. (2021). Calibración del ensayo CPTu para el depósito lacustre de Bogotá. Maestría en Geotecnia. Universidad Nacional de Colombia. Sede Bogotá.spa
dc.relation.referencesBiswas, A., Si, B. C. (2011). Application of continuous wavelet transform in examining soil spatial variation: A review. In Mathematical Geosciences (Vol. 43, Issue 3, pp. 379–396).spa
dc.relation.referencesStuedlein, A. & Bong, T. (2017). Effect of Spatial Variability on Static and Liquefaction-Induced Differential Settlements. 31-51.spa
dc.relation.referencesBrockwell, P.J., Davis, R.A. (1991). ITSM: An interactive time series modeling package for the PC, Springer-Verlag, New York, 104 p.spa
dc.relation.referencesBury, K.V. (1975). Statistical Models in Applied Science. John Wiley, Hoboken Campanella, R.G., Wickremesinghe, D.S., Robertson, P.K. (1987). Statistical Treatment of Cone Penetrometer Test Data. Proceedings of the 5th International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Vancouver, BC, Canada, Vol. 2, 1011-1019.spa
dc.relation.referencesCami, B. and Javankhoshdel, S. (2020). ARMA Models to Measure the Scale of Fluctuation from CPT Data. The Open Construction and Building Technology Journal, 14(1), pp. 230–236.spa
dc.relation.referencesCao, Z. and Wang, Y. (2014). Bayesian model comparison and selection of spatial correlation functions for soil parameters, Structural Safety, 49, pp. 10–17spa
dc.relation.referencesChenari, R. Seyedeyn M.S., Faraji, S. and Kenarsari, A. (2012). Investigation on inherent variability of soil properties from cone penetration test.spa
dc.relation.referencesChiles, J. P., y Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty (Vol. 497). John Wiley y Sonsspa
dc.relation.referencesDasaka, S.M. and Zhang, L.M. (2012). Spatial variability of in situ weathered soil. Geotechnique, 62(5).spa
dc.relation.referencesDegroot, D.J., Baecher, G.B. (1993). Estimating Autocovariances of In-Situ Soil Properties. Journal of Geotechnical Engineering, Vol. 119, No. 1, 147-166.spa
dc.relation.referencesDiaz, J., Vanmarcke E.H. (1974). Settlement of Structures on Shallow Foundations: A Probabilistic Analysis. Massachusetts Institute of Technology. Department of Civil Engineering, National Science Foundation (U.S.), United States.spa
dc.relation.referencesDíaz Méndez, L. A., Manrique, Á. (2020). Caracterización de la variabilidad espacial de la resistencia al corte no drenado del depósito lacustre “A” ubicado en la escuela colombiana de ingeniería Julio Garavito. Maestría en Ingeniería Civil. Escuela Colombiana Julio Garavito. Bogotá, Colombia.spa
dc.relation.referencesDouglas, B.J. and Olsen, R.S. (1981). Soil Classification Using Electric Cone Penetrometer. Proceedings of Conference on Cone Penetration Testing and Experience, St. Louis, 209-227.spa
dc.relation.referencesFenton, G.A. (1999a). Estimation for Stochastic Soil Models. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 6, 470-485.spa
dc.relation.referencesFenton, G.A. (1999b). Random Field Modeling of CPT Data. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 6, 486-498.spa
dc.relation.referencesFenton, G.A., Vanmarcke, E.H. (2003). Random Field Characterization of NGES Data. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication. No. 121, 61-78.spa
dc.relation.referencesFOPAE. (2010). Zonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones. Fondo de Prevención y Atención de Emergencias. Bogotá, Colombia.spa
dc.relation.referencesGarzón, L. X., Caicedo, B., Sánchez-Silva, M., y Phoon, K. K. (2015). Physical modelling of soil uncertainty. International Journal of Physical Modelling in Geotechnics, 15(1), 19–34.spa
dc.relation.referencesGarzón, L. X. (2019). Physical modeling of soil spatial variability: application to shallow foundation. Doctoral dissertation, Universidad de los Andes, Bogotá, Colombia.spa
dc.relation.referencesHegazy, Y.A. and Mayne, Paul and Rouhani, Shahrok (1996). Geostatistical assessment of spatial variability in piezocone tests. Geotechnical Special Publication. 254-267.spa
dc.relation.referencesINGEOMINAS y Universidad de los Andes (1997). Microzonificacion sismica de santa fe de Bogotá. Bogotá, Colombia.spa
dc.relation.referencesJaksa, M. B. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff Overconsolidated Clay. Ph.D. thesis. The university of Adelaide, Australia.spa
dc.relation.referencesJaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 5, 393-401Jaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 5, 393-401spa
dc.relation.referencesKulatilake, P.H., Ghosh, A. (1988). An Investigation Into Accuracy of Spatial Variation Estimation Using Static Cone Penetrometer Data. Proceedings of the 1st International Symposium on Penetration Testing (ISOPT-1). Orlando, FL, U.S.A.spa
dc.relation.referencesKulatilake, P.H. (1991). Discussion on “Probabilistic Potentiometric Surface Mapping.” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 9, 1458-1459.spa
dc.relation.referencesKulatilake, P.H., UM, J.G. (2003). Spatial Variation of Cone Tip Resistance for the Clay Site at Texas AyM University. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication No. 121, 41-60.spa
dc.relation.referencesKulhawy, F.H., Birgisson, B., Grigoriu, M.D. (1992). Reliability-Based Foundation Design for Transmission Line Structures: Transformation Models for In-Situ Tests. Report No. EL-5507(4), Electric Power Research Institute, Palo Alto, CA.spa
dc.relation.referencesLacasse, S., Nadim, F. (1996). Uncertainties in Characterizing Soil Properties. Uncertainty in the Geologic Environment: From Theory to Practice. ASCE Geotechnical Special Publication No. 58, Madison, WI, U.S.A., 49-75.spa
dc.relation.referencesLi, K. S. and Lee, I. K. (1991). The Assessment of Geotechnical Safety. In Selected Topics in Geotechnical Engineering - Lumb Volume, Li, K. S. (ed.), Dept. Civil and Maritime Engrg., UNSW, ADFA, Canberra, pp. 195-229.spa
dc.relation.referencesLi, K.S. (1991). Probabilistic Potentiometric Surface Mapping. Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 9, 1457-1458.spa
dc.relation.referencesSpacagna, L., de Fouquet, C., y Russo, G. (2015). Interpretation of CPTU Tests with Statistical and Geostatistical Methods.spa
dc.relation.referencesLumb. P. (1966). The variability of Natural Soils. Canadian Geotechnical Journal. 3. 74-97.spa
dc.relation.referencesLumb, P. and Holt, J. K. (1968). The Undrained Shear Strength of a Soft Marine Clay from Hong Kong. Geotechnique, Vol. 18, pp. 25-36.spa
dc.relation.referencesLumb, P. (1971). Precision and Accuracy of Soil Tests. Proceedings of the 1st International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Hong Kong, 329-345.spa
dc.relation.referencesLumb, P. (1974). Application of Statistics in Soil Mechanics, chapter 3 in Soil Mechanics – New Horizons, I.K. Lee (ed.), Newnes-Butterworths, London, U.K., 44-111.spa
dc.relation.referencesLuo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V. (2016). Toward more realistic projections of soil carbondynamics by Earth system models, Global Biogeochem. Cy., 30,40–56.spa
dc.relation.referencesMatheron, G. (1963). Principles of Geostatistics. Economic Geology, 58, 1246-1266.spa
dc.relation.referencesMontenegro, A. (1989). La Función de Autocorrelación y su Empleo en el Análisis de Series de Tiempo. Revista Desarrollo Y Sociedad, 1(23), 117–132.spa
dc.relation.referencesMoya, J., y Rodriguez, J. (1987). El Subsuelo de Bogotá y los Problemas de Cimentaciones The Subsoil of Bogotá and the Problems in Foundations. VIII CPSIF-PCSMFE, Cartagena, Colombia.spa
dc.relation.referencesNSR-10. (marzo de 2010). Reglamento Colombiano de Construcción Sismo Resistente. Bogotá D.C.spa
dc.relation.referencesOnyejekwe, S. (2012). Characterization of soil variability for reliability-based design. Doctoral Dissertations. Missouri University of Science and Technologyspa
dc.relation.referencesOnyejekwe, S. and Ge, L. (2013). Scale of Fluctuation of Geotechnical Parameters Estimated from CPTu and Laboratory Test Data. American Society of Civil Engineers (ASCE).spa
dc.relation.referencesParra L. J. (2019). Spatial geotechnical modeling of a lacustrine deposit using functional geostatistical análisis of CPTu tests. Maestría en Geotecnia. Universidad Nacional de Colombia, Sede Bogotáspa
dc.relation.referencesPieczyńska-Kozłowska, J. M. (2015). Comparison Between Two Methods for Estimating the Vertical Scale of Fluctuation for Modeling Random Geotechnical Problems, Studia Geotechnica et Mechanica, 37(4), pp. 95–103spa
dc.relation.referencesPhoon, K.K., Kulhawy, F.H. (1999). Characterization of Geotechnical Variability. Canadian Geotechnical Journal, Vol. 36, No. 4, 612-624.spa
dc.relation.referencesPhoon, K.-K., Asce, M., Quek, Ser-Tong, and An, P. (2003). Identification of Statistically Homogeneous Soil Layers Using Modified Bartlett Statistics. Journal of Geotechnical and Geoenvironmental Engineering. Vol 129 Issue 7.spa
dc.relation.referencesPúa, L. M. (2020). Reproducing the inherent variability of soils using a three-dimensional printer. International Journal of Physical Modelling in Geotechnics. Universidad de los Andes, Colombia.spa
dc.relation.referencesRipley, B.D. (1981). Spatial statistics, John Wiley y Sons, New York.spa
dc.relation.referencesRobertson, P.K., Campanella, R.G. (1983). Interpretation of Cone Penetration Tests Sands and Clays. Canadian Geotechnical Journal, 20, 719-745.spa
dc.relation.referencesRobertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. (1986) Use of Piezometer Cone Data. Proceedings of American Society of Civil Engineers, ASCE, In-Situ 86 Specialty Conference, Blacksburg, 23-25 June 1986, 1263-1280.spa
dc.relation.referencesRobertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-158.spa
dc.relation.referencesRobertson, P.K. (2010). Soil behaviour type from the CPT: an update. Geotechnical News, 28(1), 35-41.spa
dc.relation.referencesRobertson, P. K. (2013). The James K. Mitchell Lecture: Interpretation of in-situ tests some insights. En C. y. Mayne (Ed.), Geotechnical and Geophysical Site Characterization 4. London: Taylor y Francis Group.spa
dc.relation.referencesRodriguez, J. A., y Azuaje, J. G. (2018). Determinación de perfiles de velocidad de ondas de corte en la Ciudad de Bogotá, a partir de registros acelerográficos. XVI Congreso Colombiano de Geotecnia y IV Seminario Internacional de ingeniería Sismo Geotécnica. Paipa, Colombiaspa
dc.relation.referencesSchnaid, F. (2009). In Situ Testing in Geomechanics: The Main Tests. Taylor and Francis.spa
dc.relation.referencesShinozuka, M. and Deodatis, G. (1991). Simulation of Stochastic Processes by Spectral Representation. American Society of Mechanical Engineers.spa
dc.relation.referencesSong, Y., Shen, Z., Wu, P., y Viscarra Rossel, R. A. (2021). Wavelet geographically weighted regression for spectroscopic modelling of soil properties. Scientific Reports, 11(1).spa
dc.relation.referencesSoulié, M. (1983). Geostatistical applications in geotechnics. In Geostatistics for natural resources characterisation, Part 2, NATO ASI Series: 703-730.spa
dc.relation.referencesSpry, M.J., Kulhawy, F.H., Grigoriu, M.D. (1988). Reliability-Based Foundation Design for Transmission Line Structures: Geotechnical Site Characterization Strategy. Electric Power Research Institute Rpt. EL-5507(1), EPRI, Palo Alto.spa
dc.relation.referencesStuedlein, A., Kramer, S.,Arduino, P & Holtz, R. (2012). Geotechnical Characterization and Random Field Modeling of Desiccated Clay. Journal of Geotechnical and Geoenvironmental Engineeringspa
dc.relation.referencesStuedlein, A. and Bong, T. (2017). Effect of Spatial Variability on Static and Liquefaction-Induced Differential Settlements. 31-51.spa
dc.relation.referencesSulikowska, I., Mlynarek, Z. and Tschuschke, W. (1991). Measurement Errors inEvaluating Relative Density of Postflotation Sediment Using the CPT Method. Proc. 6th Int. Conf. Statistics and Probability in Soil and Struct. Eng., Mexico City, pp. 676-682.spa
dc.relation.referencesTorres, V., Vandenberghe, J., Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, 127–148.spa
dc.relation.referencesUzielli, M. (2004). Variability of stress-normalized CPT parameters and application to seismic liquefaction initiation analysis. Ph.D. thesis. University of Florence, Italy.spa
dc.relation.referencesUzielli, M., Vannucchi, G. and Phoon, K.K. (2005). Random field characterisation of stress-normalised cone penetration testing parameters. Geotechnique No. 1, 55.spa
dc.relation.referencesUzielli, Marco y Lacasse, Suzanne y Nadim, Farrokh y Phoon, Kok-Kwang. (2006). Soil variability analysis for geotechnical practice. 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils. 3. 1653-1752.spa
dc.relation.referencesVanmarcke, E. H. (1977a). Probabilistic Modeling of Soil Profiles. J. Geotech. Engrg. Div., ASCE, Vol. 103, No. GT11, pp. 1227-1246.spa
dc.relation.referencesVanmarcke, E. H. (1977b). Reliability of Earth Slopes. J. Geotech. Engrg. Div., ASCE, Vol. 103, No. GT11, pp. 1247-1265.spa
dc.relation.referencesVanmarcke, E.H. (1978). Probabilistic Characterization of Soil Profiles. In Site Characterization and Exploration. Proceedings of the ASCE Specialty Workshop, Nothwestern University, Evanston, Illinois, 199-216.spa
dc.relation.referencesVanmarcke, E. H. (1983). Random Fields: Analysis and Synthesis, M.I.T. Press, Cambridge, Mass., 382 p.spa
dc.relation.referencesVanmarcke, E. H. (1984). Random Fields: New Concepts and Engineering Applications. Proc. of 4th ASCE Specialty Conf. on Probabilistic Mechanics and Structural Reliability, ASCE, Berkeley, California, pp. 7-17.spa
dc.relation.referencesVivatrat, V. (1978). Cone Penetration in Clays, Doctoral Dissertation, MIT, Massachussettes, USA.spa
dc.relation.referencesWebster, R. y Beckett, P.H.T. (1968). Quality and Usefulness of Soil Maps. Nature, 219: 680-682.spa
dc.relation.referencesWickremesinghe, Damika Sampath. (1989). Statistical Characterization of Soil Profiles Using in Situ Tests. Retrospective Theses and Dissertations, 1919-2007. T, University of British Columbia.spa
dc.relation.referencesWickremesinghe D.S. and Campanella, R.G. (1991). Statistical methods of soil layer boundary location using the cone penetration test. Proc.: 6th Int. Conf. on Application of Statistics and Probability in Civil Engineering, pp. 636-644.spa
dc.relation.referencesWickremesinghe D.S. and Campanella, R.G. (1993). Scale of Fluctuation as a Descriptor of Soil Variability. Proceedings of the Conference on Probabilistic Methods in Geotechnical Engineering, Canberra, Australia, February 10-12, 1993, ed. K.S. Li y S.-C. Lo, Balkema, Rotterdam, 233-239.spa
dc.relation.referencesWu, T.H. (2003). Variations in Clay Deposits of Chicago. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites, ed. G.A. Fenton and E.H. Vanmarcke, ASCE Geotechnical Special Publication No. 121, 13-28.spa
dc.relation.referencesXiao, D., Shi, Y., Brantley, S. L., Forsythe, B., DiBiase, R. A., Davis, K. J., Li, L. (2019). Predominant control of soil properties in storage-discharge relationship and threshold behavior in catchments derived from contrasting lithologies. Water Resources Research. U.S.A.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembUso de la tierra -planificaciónspa
dc.subject.lembLand useend
dc.subject.lembEspacios abiertosspa
dc.subject.lembOpen spaceseng
dc.subject.proposalVariabilidad espacialspa
dc.subject.proposalVariabilidad inherentespa
dc.subject.proposalEscala de fluctuaciónspa
dc.subject.proposalSabana de Bogotáspa
dc.subject.proposalTeoría de los campos aleatoriosspa
dc.subject.proposalModelo y función de autocorrelaciónspa
dc.subject.proposalSpatial variabilityeng
dc.subject.proposalInherent variabilityeng
dc.subject.proposalAutocorrelation functioneng
dc.subject.proposalBogota savannaeng
dc.subject.proposalRandom field theoryeng
dc.subject.proposalTrend analysiseng
dc.subject.proposalScale of fluctuationeng
dc.subject.proposalAnálisis de tendenciasspa
dc.titleAnálisis de la variabilidad inherente de algunos perfiles de suelo de la formación Sabana de Bogotá basado en la teoría de campos aleatoriosspa
dc.title.translatedAnalysis of the inherent variability of some soil profiles of the Bogota Savanna based on random field theoryeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 5 de 17
Cargando...
Miniatura
Nombre:
1024509332.2023.pdf
Tamaño:
9.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia
Cargando...
Miniatura
Nombre:
ANEXO A Recopilación de sondeos.pdf
Tamaño:
918.86 KB
Formato:
Adobe Portable Document Format
Descripción:
Anexo A. Recopilación de sondeos
Cargando...
Miniatura
Nombre:
ANEXO B Registros de exploración.rar
Tamaño:
2.38 GB
Formato:
Unknown data format
Descripción:
Anexo B. Registros de exploración
Cargando...
Miniatura
Nombre:
ANEXO C Perfiles de datos crudos.pdf
Tamaño:
17.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Anexo C. Perfiles de datos crudos
Cargando...
Miniatura
Nombre:
ANEXO D Función autocorrelación ancho de ventana.pdf
Tamaño:
13.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Anexo D. Función autocorrelación ancho de ventana

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: