Modeling of hysteretic structural systems using multilayer perceptrons and physics-guiding techniques

dc.contributor.advisorÁlvarez Marín, Diego Andrés
dc.contributor.advisorBedoya Ruíz, Daniel Alveiro
dc.contributor.authorDelgado Trujillo, Juan Sebastián
dc.contributor.orcidDelgado Trujillo, Juan Sebastián [0000-0001-7135-0460]spa
dc.contributor.researchgroupIngeniería Sísmica y Sismologíaspa
dc.date.accessioned2023-02-27T13:39:58Z
dc.date.available2023-02-27T13:39:58Z
dc.date.issued2022
dc.descriptiongraficas, tablasspa
dc.description.abstractThis research develops a framework for the modeling and identification of hysteretic structural systems, which employs multilayer perceptrons and physical principles of structures. This framework consists of three hysteretic models and their training algorithms, and it is based on two models of the scientific machine learning field, called universal ordinary differential equations (UODEs) and physics-guided neural networks (PGNNs). The proposed hysteretic models are UODEs and correspond to equations of motion with system state dynamics, where multilayer perceptrons approximate the unknown components of the dynamics. The training of the models uses the theory of PGNNs and considers data and the physical principles of structures in order to identify the system dynamics and enforce such principles into the models. The proposed framework is validated on experimental data of ferrocement and recycled plastic lumber walls. (Texto tomado de la fuente)eng
dc.description.abstractEsta investigación desarrolla una metodología para la modelación e identificación de sistemas estructurales histeréticos, la cual emplea perceptrones multicapa y principios físicos de las estructuras. Esta metodología consiste en tres modelos histeréticos y su algoritmo de entrenamiento, y se basa en dos modelos del machine learning científico llamados ecuaciones diferenciales ordinarias universales (UODEs) y redes neuronales guiadas por la física (PGNNs). Los modelos histeréticos propuestos son UODEs y corresponden a ecuaciones de movimiento con dinámicas del estado del sistema, en donde los perceptrones multicapa aproximan los componentes desconocidos de la dinámica. El entrenamiento usa la teoría de las PGNNs y considera los datos y los principios físicos de las estructuras para identificar la dinámica del sistema e inducir dichos principios en los modelos. La metodología propuesta es validada con datos experimentales de muros de ferrocemento y madera plástica reciclada.spa
dc.description.curricularareaIngeniería Civil.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaNonlinear Dynamics Modellingspa
dc.format.extentxv, 110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83560
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesAbbas, Y. and Khan, M. (2016). Influence of fiber properties on shear failure of steel fiber reinforced beams without web reinforcement: ANN modeling. Latin American Journal of Solids and Structures, 13(8):1483–1498. (Cited on page 39.)spa
dc.relation.referencesAbramowitz, M. and Stegun, I. A. (1948). Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55. US Government printing office. (Cited on page 94.)spa
dc.relation.referencesAkazawa, T., Nakashima, M., and Sakaguchi, O. (1996). Simple model for simulating hysteretic behavior involving significant strain hardening. In Eleventh World Conference on Earthquake Engineering, Paper, number 264. (Cited on page 37.)spa
dc.relation.referencesAl-Bermani, F., Li, B., Zhu, K., and Kitipornchai, S. (1994). Cyclic and seismic response of flexibly jointed frames. Engineering Structures, 16(4):249–255. (Cited on page 8.)spa
dc.relation.referencesAppelbe, B., Flynn, D., McNamara, H., O’Kane, P., Pimenov, A., Pokrovskii, A., Rachinskii, D., and Zhezherun, A. (2009). Rate-independent hysteresis in terrestrial hydrology. IEEE Control Systems Magazine, 29(1):44–69. (Cited on page 6.)spa
dc.relation.referencesAsteris, P. and Mokos, V. (2020). Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 32(15):11807–11826. (Cited on page 39.)spa
dc.relation.referencesAsteris, P., Tsaris, A., Cavaleri, L., Repapis, C., Papalou, A., Di Trapani, F., and Karypidis, D. (2016). Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Computational Intelligence and Neuroscience, 2016. (Cited on page 39.)spa
dc.relation.referencesASTM (2011). Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings. ASTM E2126. (Cited on page 68.)spa
dc.relation.referencesAtalay, M. B. and Penzien, J. (1975). The seismic behavior of critical regions of reinforced concrete components as influenced by moment, shear and axial force. Technical Report EERC 75-19, Earthquake Engineering Research Center, University of California Berkeley. (Cited on page 8.)spa
dc.relation.referencesAydin, K. and Kisi, O. (2015). Damage diagnosis in beam-like structures by artificial neural networks. Journal of Civil Engineering and Management, 21(5):591–604. (Cited on page 40.)spa
dc.relation.referencesBaber, T. T. and Noori, M. N. (1985). Random vibration of degrading, pinching systems. Journal of Engineering Mechanics, 111(8):1010–1026. (Cited on pages 10, 11, and 46.)spa
dc.relation.referencesBaber, T. T. and Wen, Y.-K. (1981). Random vibration hysteretic, degrading systems. Journal of the Engineering Mechanics Division, 107(6):1069–1087. (Cited on pages 10 and 11.)spa
dc.relation.referencesBahar, A., Pozo, F., Acho, L., Rodellar, J., and Barbat, A. (2010). Hierarchical semiactive control of base-isolated structures using a new inverse model of magnetorheological dampers. Computers and Structures, 88(7-8):483–496. (Cited on page 37.)spa
dc.relation.referencesBani-Hani, K. and Sheban, M. (2006). Semi-active neuro-control for base-isolation system using magnetorheological (MR) dampers. Earthquake Engineering and Structural Dynamics, 35(9):1119–1144. (Cited on page 41.)spa
dc.relation.referencesBedoya-Ruíz, D., Hurtado, J. E., and Pujades, L. (2010). Experimental and analytical research on seismic vulnerability of low-cost ferrocement dwelling houses. Structure and Infrastructure Engineering, 6(1-2):55–62. (Cited on page 65.)spa
dc.relation.referencesBeko, A., Rosko, P., Wenzel, H., Pegon, P., Markovic, D., and Molina, F. (2015). RC shear walls: Full-scale cyclic test, insights and derived analytical model. Engineering Structures, 102:120–131. (Cited on pages 33 and 37.)spa
dc.relation.referencesBertotti, G. (1998). Hysteresis in magnetism: for physicists, materials scientists, and engineers. Academic Press. (Cited on page 6.)spa
dc.relation.referencesBezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1):65–98. (Cited on pages 2 and 64.)spa
dc.relation.referencesBills, A., Sripad, S., Fredericks, W. L., Guttenberg, M., Charles, D., Frank, E., and Viswanathan, V. (2020). Universal battery performance and degradation model for electric aircraft. arXiv:2008.01527v2. https://arxiv.org/abs/2008.01527. (Cited on page 43.)spa
dc.relation.referencesBlanchard, O. J. and Summers, L. H. (1992). Hysteresis in unemployment. In Economic Models of Trade Unions, chapter Unions and Macroeconimic Performance, pages 235–242. Springer, Dordrecht. (Cited on page 6.)spa
dc.relation.referencesBojorquez Mora, J., Tolentino, D., Ruíz, S. E., and Bojorquez, E. (2016). Diseño sísmico preliminar de edificios de concreto reforzado usando redes neuronales artificiales. Concreto y Cemento. Investigación y Desarrollo, 7:60 – 78. (Cited on page 41.)spa
dc.relation.referencesBonnaffé, W., Sheldon, B., and Coulson, T. (2021). Neural ordinary differential equations for ecological and evolutionary time-series analysis. Methods in Ecology and Evolution, 12. (Cited on page 43.)spa
dc.relation.referencesBorja, R. I. (2013). Plasticity: modeling & computation. Springer. (Cited on pages 17 and 18.)spa
dc.relation.referencesBouc, R. (1971). Modèle mathématique d’hystérésis. Acta Acustica United with Acustica, 24(1):16–25. (Cited on pages 10, 45, and 48.)spa
dc.relation.referencesBousias, S., Verzeletti, G., Fardis, M., and Gutierrez, E. (1995). Load-path effects in column biaxial bending with axial force. Journal of Engineering Mechanics, 121(5):596–605. (Cited on page 34.)spa
dc.relation.referencesBrewick, P., Masri, S., Carboni, B., and Lacarbonara, W. (2016). Data-based nonlinear identification and constitutive modeling of hysteresis in NiTiNOL and steel strands. Journal of Engineering Mechanics, 142(12). (Cited on page 39.)spa
dc.relation.referencesBridgman, P. W. (1953). The effect of pressure on the tensile properties of several metals and other materials. Journal of Applied Physics, 24(5):560–570. (Cited on pages 19 and 20.)spa
dc.relation.referencesBruno, P., Bayreuther, G., Beauvillain, P., Chappert, C., Lugert, G., Renard, D., Renard, J. P., and Seiden, J. (1990). Hysteresis properties of ultrathin ferromagnetic films. Journal of Applied Physics, 68(11):5759–5766. (Cited on page 6.)spa
dc.relation.referencesCha, Y.-J., Choi, W., and B¨uy¨uk¨ozt¨urk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32(5):361–378. (Cited on page 40.)spa
dc.relation.referencesChan, R., Albermani, F., and Williams, M. (2009). Evaluation of yielding shear panel device for passive energy dissipation. Journal of Constructional Steel Research, 65(2):260–268. (Cited on pages 36 and 37.)spa
dc.relation.referencesChan, R., Yuen, J., Lee, E., and Arashpour, M. (2015). Application of nonlinearautoregressive-exogenous model to predict the hysteretic behaviour of passive control systems. Engineering Structures, 85:1–10. (Cited on page 41.)spa
dc.relation.referencesCharalampakis, A. (2015). The response and dissipated energy of Bouc-Wen hysteretic model revisited. Archive of Applied Mechanics, 85(9-10):1209–1223. (Cited on pages 11 and 38.)spa
dc.relation.referencesCharalampakis, A. and Dimou, C. (2010). Identification of Bouc-Wen hysteretic systems using particle swarm optimization. Computers and Structures, 88(21-22):1197–1205. (Cited on page 37.)spa
dc.relation.referencesCharalampakis, A. and Koumousis, V. (2008). Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm. Journal of Sound and Vibration, 314(3-5):571–585. (Cited on page 37.)spa
dc.relation.referencesCharalampakis, A. and Koumousis, V. (2009). A Bouc-Wen model compatible with plasticity postulates. Journal of Sound and Vibration, 322(4):954–968. (Cited on page 38.)spa
dc.relation.referencesChassiakos, A. and Masri, S. F. (1991). Identification of the internal forces of structural systems using feedforward multilayer networks. Computing Systems in Engineering, 2(1):125–134. (Cited on page 41.)spa
dc.relation.referencesChen, G. (2021). Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity. Computational Mechanics, 67(3):1009–1019. (Cited on page 41.)spa
dc.relation.referencesChen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential equations. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc. (Cited on pages 30 and 42.)spa
dc.relation.referencesChen, Z., Liu, J., and Yu, Y. (2017). Experimental study on interior connections in modular steel buildings. Engineering Structures, 147:625–638. (Cited on pages 35 and 36.)spa
dc.relation.referencesChojaczyk, A., Teixeira, A., Neves, L., Cardoso, J., and Guedes Soares, C. (2015). Review and application of artificial neural networks models in reliability analysis of steel structures. Structural Safety, 52(PA):78 – 89. (Cited on page 40.)spa
dc.relation.referencesChopra, A. K. (2012). Dynamics of structures. Pearson Education. (Cited on page 3.)spa
dc.relation.referencesClough, W. and Penzien, J. (2003). Dynamics of structures. Computers & Structures, Inc. (Cited on pages 3 and 16.)spa
dc.relation.referencesCouchaux, M., Alhasawi, A., and Ben Larbi, A. (2020). Monotonic and cyclic tests on beam to column bolted connections with thermal insulation layer. Engineering Structures, 204. (Cited on page 35.)spa
dc.relation.referencesDandekar, R. and Barbastathis, G. (2020). Quantifying the effect of quarantine control in COVID-19 infectious spread using machine learning. medRxiv. (Cited on page 43.)spa
dc.relation.referencesDe Brouwer, E., Simm, J., Arany, A., and Moreau, Y. (2019). GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series. arXiv:1905.12374v2. https://arxiv.org/abs/1905.12374. (Cited on page 43.)spa
dc.relation.referencesDe Jaegher, B., Larumbe, E., De Schepper, W., Verliefde, A., and Nopens, I. (2020). Colloidal fouling in electrodialysis: A neural differential equations model. Separation and Purification Technology, 249. (Cited on page 43.)spa
dc.relation.referencesDing, Y. and Liu, Y. (2020). Cyclic tests of assembled self-centering buckling-restrained braces with pre-compressed disc springs. Journal of Constructional Steel Research, 172. (Cited on page 36.)spa
dc.relation.referencesDing, Y. and Zhao, C. (2021). Cyclic tests for assembled X-shaped buckling restrained brace using two unconnected steel plate braces. Journal of Constructional Steel Research, 182. (Cited on page 36.)spa
dc.relation.referencesDormand, J. and Prince, P. (1980). A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1):19–26. (Cited on page 29.)spa
dc.relation.referencesDosi, G., Pereira, M. C., Roventini, A., and Virgillito, M. E. (2018). Causes and consequences of hysteresis: aggregate demand, productivity, and employment. Industrial and Corporate Change, 27(6):1015–1044. (Cited on page 6.)spa
dc.relation.referencesDowell, R., Seible, F., and Wilson, E. (1998). Pivot hysteresis model for reinforced concrete members. ACI Structural Journal, 95(5):607–617. (Cited on page 8.)spa
dc.relation.referencesDrucker, D. C. (1950). Some implications of work hardening and ideal plasticity. Quarterly of Applied Mathematics, 7(4):411–418. (Cited on page 19.)spa
dc.relation.referencesDrucker, D. C. (1957). A definition of stable inelastic material. Technical Report 2, Brown University, Providence, Rhode Island. (Cited on page 19.)spa
dc.relation.referencesDupont, E., Doucet, A., and Teh, Y. W. (2019). Augmented Neural ODEs. arXiv:1904.01681. https://arxiv.org/abs/1904.01681. (Cited on page 49.)spa
dc.relation.referencesErlicher, S. and Point, N. (2004). Thermodynamic admissibility of Bouc-Wen type hysteresis models. Comptes Rendus Mecanique, 332(1):51–57. (Cited on pages 12 and 38.)spa
dc.relation.referencesFang, Q., Qiu, H., Sun, J., Dal Lago, B., and Jiang, H. (2021). Performance study of precast reinforced concrete shear walls with steel columns containing friction-bearing devices. Archives of Civil and Mechanical Engineering, 21(3). (Cited on page 33.)spa
dc.relation.referencesFarrokh, M., Dizaji, M., and Joghataie, A. (2015). Modeling hysteretic deteriorating behavior using generalized Prandtl neural network. Journal of Engineering Mechanics, 141(8). (Cited on page 41.)spa
dc.relation.referencesFerreira, F., Shamass, R., Limbachiya, V., Tsavdaridis, K., and Martins, C. (2022). Lateral-torsional buckling resistance prediction model for steel cellular beams generated by artificial neural networks (ANN). Thin-Walled Structures, 170. (Cited on page 40.)spa
dc.relation.referencesFiorino, L., Shakeel, S., and Landolfo, R. (2020). Seismic behaviour of a bracing system for LWS suspended ceilings: Preliminary experimental evaluation through cyclic tests. Thin-Walled Structures, 155. (Cited on page 32.)spa
dc.relation.referencesFoliente, G. C. (1995). Hysteresis modeling of wood joints and structural systems. Journal of Structural Engineering, 121(6):1013–1022. (Cited on pages 10 and 11.)spa
dc.relation.referencesFolz, B. and Filiatrault, A. (2001). Cyclic analysis of wood shear walls. Journal of Structural Engineering, 127(4):433–441. (Cited on page 8.)spa
dc.relation.referencesGharari, S. and Razavi, S. (2018). A review and synthesis of hysteresis in hydrology and hydrological modeling: Memory, path-dependency, or missing physics? Journal of Hydrology, 566:500–519. (Cited on page 7.)spa
dc.relation.referencesGhobarah, A., Korol, R. M., and Osman, A. (1992). Cyclic behavior of extended endplate joints. Journal of Structural Engineering, 118(5):1333–1353. (Cited on pages 6, 32, and 34.)spa
dc.relation.referencesGuglielmino, E., Sireteanu, T., Stammers, C. W., Ghita, G., and Giuclea, M. (2008). Semi-active suspension control: improved vehicle ride and road friendliness. Springer. (Cited on page 7.)spa
dc.relation.referencesGuo, L., Wang, J., Wang, W., and Wang, C. (2020). Cyclic tests and analyses of extended endplate composite connections to CFDST columns. Journal of Constructional Steel Research, 167. (Cited on pages 35 and 37.)spa
dc.relation.referencesGórski, J., Klepka, A., Dziedziech, K., Mrówka, J., Radecki, R., and Dworakowski, Z. (2020). Identification of the stick and slip motion between contact surfaces using artificial neural networks. Nonlinear Dynamics, 100(1):225–242. (Cited on pages 39 and 41.)spa
dc.relation.referencesHaghighat, E., Raissi, M., Moure, A., Gomez, H., and Juanes, R. (2021). A physicsinformed deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 379. (Cited on page 43.)spa
dc.relation.referencesHaykin, S. (2009). Neural networks and learning machines. Pearson Education India. (Cited on pages 23, 24, 27, and 28.)spa
dc.relation.referencesHerrera, J., Bedoya-Ruíz, D., and Hurtado, J. (2020). Performance-based seismic assessment of precast ferrocement walls for one and two-storey housing. Engineering Structures, 214. (Cited on pages 37 and 69.)spa
dc.relation.referencesHerrera, J. P., Bedoya-Ruíz, D., and Hurtado, J. E. (2018). Seismic behavior of recycled plastic lumber walls: An experimental and analytical research. Engineering Structures, 177:566–578. (Cited on pages 36, 37, 65, and 69.)spa
dc.relation.referencesHou, H., Wang, C., Qu, B., and Liang, Y. (2021a). Cyclic testing of bolted base connections for wide-flange columns. Engineering Structures, 235. (Cited on page 35.)spa
dc.relation.referencesHou, H., Yan, X., Qu, B., Du, Z., and Lu, Y. (2021b). Cyclic tests of steel tee energy absorbers for precast exterior wall panels in steel building frames. Engineering Structures, 242. (Cited on page 33.)spa
dc.relation.referencesHu, Y., Zhao, J., Zhang, D., and Chen, Y. (2019). Seismic behavior of concretefilled double-skin steel tube/moment-resisting frames with beam-only-connected precast reinforced concrete shear walls. Archives of Civil and Mechanical Engineering, 19(4):967–980. (Cited on page 33.)spa
dc.relation.referencesHu, Y., Zhao, J., Zhang, D., and Zhang, H. (2020). Cyclic tests of fully prefabricated concrete-filled double-skin steel tube/moment-resisting frames with beam-only-connected steel plate shear walls. Thin-Walled Structures, 146. (Cited on page 33.)spa
dc.relation.referencesHuang, C. and Huang, S. (2020). Predicting capacity model and seismic fragility estimation for RC bridge based on artificial neural network. Structures, 27:1930 – 1939. (Cited on page 40.)spa
dc.relation.referencesHuang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1):489–501. (Cited on page 91.)spa
dc.relation.referencesIbarra, L. F., Medina, R. A., and Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 34(12):1489–1511. (Cited on page 8.)spa
dc.relation.referencesIkhouane, F. and Rodellar, J. (2005a). On the hysteretic Bouc-Wen model part I: Forced limit cycle characterization. Nonlinear Dynamics, 42(1):63–78. (Cited on page 38.)spa
dc.relation.referencesIkhouane, F. and Rodellar, J. (2005b). Physical consistency of the hysteretic Bouc-Wen model. IFAC Proceedings Volumes, 38(1):874–879. (Cited on pages 12, 15, 16, and 38.)spa
dc.relation.referencesIkhouane, F. and Rodellar, J. (2007). Systems with hysteresis: analysis, identification and control using the Bouc-Wen model. John Wiley & Sons. (Cited on pages 6, 13, 16, and 38.)spa
dc.relation.referencesIkhouane, F., Rodellar, J., and Hurtado, J. (2006). Analytical characterization of hysteresis loops described by the Bouc-Wen model. Mechanics of Advanced Materials and Structures, 13(6):463–472. (Cited on page 38.)spa
dc.relation.referencesIl’iushin, A. (1961). On the postulate of plasticity. Journal of Applied Mathematics and Mechanics, 25(3):746–752. (Cited on page 20.)spa
dc.relation.referencesIsmail, M., Ikhouane, F., and Rodellar, J. (2009). The hysteresis Bouc-Wen model, a survey. Archives of Computational Methods in Engineering, 16(2):161–188. (Cited on page 16.)spa
dc.relation.referencesIsmail, M., Rodellar, J., and Ikhouane, F. (2010). An innovative isolation device for aseismic design. Engineering Structures, 32(4):1168–1183. (Cited on page 37.)spa
dc.relation.referencesJia, X., Willard, J., Karpatne, A., Read, J., Zwart, J., Steinbach, M., and Kumar, V. (2019). Physics Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake Temperature Profiles, pages 558–566. (Cited on page 43.)spa
dc.relation.referencesJones, R. E., Frankel, A. L., and Johnson, K. L. (2021). A neural ordinary differential equation framework for modeling inelastic stress response via internal state variables. arXiv:2111.14714v1. https://arxiv.org/abs/2111.14714. (Cited on page 43.)spa
dc.relation.referencesKadeethum, T., Jørgensen, T., and Nick, H. (2020). Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations. PLoS ONE, 15(5). (Cited on page 43.)spa
dc.relation.referencesKarpatne, A., Watkins, W., Read, J., and Kumar, V. (2017). Physics-guided neural networks (PGNN): An application in lake temperature modeling. arXiv:1710.11431v2. https://arxiv.org/abs/1710.11431v2. (Cited on page 31.)spa
dc.relation.referencesKhajekaramodin, A., Rowhanimanesh, A., Akbarzadeh, M., and Haji-Kazemi, H. (2007). Semi-active control of structures using a neuro-inverse model of MR dampers. In First joint congress on fuzzy and intelligent systems. (Cited on pages 39 and 41.)spa
dc.relation.referencesKhalid, M., Yusof, R., Joshani, M., Selamat, H., and Joshani, M. (2014). Nonlinear identification of a magneto-rheological damper based on dynamic neural networks. Computer-Aided Civil and Infrastructure Engineering, 29(3):221–233. (Cited on page 41.)spa
dc.relation.referencesKim, T. D., Luo, T. Z., Pillow, J. W., and Brody, C. D. (2021). Inferring latent dynamics underlying neural population activity via neural differential equations. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 5551–5561. PMLR. (Cited on page 42.)spa
dc.relation.referencesKim, W., El-Attar, A., and White, N. (1998). Small-scale modeling techniques for reinforced concrete structures subjected to seismic loads. Tecnichal report NCEER-88-0041, National Center for Earthquake Engineering Research. (Cited on page 32.)spa
dc.relation.referencesKingma, D. P. and Ba, J. (2017). ADAM: A method for stochastic optimization. arXiv:1412.6980v9. https://arxiv.org/abs/1412.6980. (Cited on page 59.)spa
dc.relation.referencesKoeppe, A., Bamer, F., Selzer, M., Nestler, B., and Markert, B. (2021). Explainable artificial intelligence for mechanics: physics-informing neural networks for constitutive models. arXiv:2104.10683v4. https://arxiv.org/abs/2104.10683. (Cited on page 40.)spa
dc.relation.referencesKramer, B. P. and Fussenegger, M. (2005). Hysteresis in a synthetic mammalian gene network. Proceedings of the National Academy of Sciences, 102(27):9517–9522. (Cited on page 6.)spa
dc.relation.referencesKunnath, S., Mander, J., and Fang, L. (1997). Parameter identification for degrading and pinched hysteretic structural concrete systems. Engineering Structures, 19(3):224–232. (Cited on page 37.)spa
dc.relation.referencesKwok, N., Ha, Q., Nguyen, M., Li, J., and Samali, B. (2007). Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Transactions, 46(2):167–179. (Cited on page 37.)spa
dc.relation.referencesLai, Z., Mylonas, C., Nagarajaiah, S., and Chatzi, E. (2021). Structural identification with physics-informed neural ordinary differential equations. Journal of Sound and Vibration, 508. (Cited on pages 44 and 73.)spa
dc.relation.referencesLatour, M., D’Aniello, M., Zimbru, M., Rizzano, G., Piluso, V., and Landolfo, R. (2018). Removable friction dampers for low-damage steel beam-to-column joints. Soil Dynamics and Earthquake Engineering, 115:66–81. (Cited on page 36.)spa
dc.relation.referencesLee, C.-H., Kim, J., Kim, D.-H., Ryu, J., and Ju, Y. (2016). Numerical and experimental analysis of combined behavior of shear-type friction damper and non-uniform strip damper for multi-level seismic protection. Engineering Structures, 114:75–92. (Cited on pages 35 and 37.)spa
dc.relation.referencesLi, C., Bi, K., Hao, H., Zhang, X., and Van Tin, D. (2019a). Cyclic test and numerical study of precast segmental concrete columns with BFRP and TEED. Bulletin of Earthquake Engineering, 17(6):3475–3494. (Cited on pages 34 and 36.)spa
dc.relation.referencesLi, W., Bazant, M., and Zhu, J. (2021). A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches. Computer Methods in Applied Mechanics and Engineering, 383. (Cited on page 43.)spa
dc.relation.referencesLi, Z., Albermani, F., Chan, R., and Kitipornchai, S. (2011). Pinching hysteretic response of yielding shear panel device. Engineering Structures, 33(3):993–1000. (Cited on page 37.)spa
dc.relation.referencesLi, Z., Shu, G., and Huang, Z. (2019b). Development and cyclic testing of an innovative shear-bending combined metallic damper. Journal of Constructional Steel Research, 158:28–40. (Cited on page 35.)spa
dc.relation.referencesLim, J. and Psaltis, D. (2022). MaxwellNet: Physics-driven deep neural network training based on Maxwell’s equations. APL Photonics, 7(1). (Cited on page 43.)spa
dc.relation.referencesLin, Y.-Z., Nie, Z.-H., and Ma, H.-W. (2017). Structural damage detection with automatic feature-extraction through deep learning. Computer-Aided Civil and Infrastructure Engineering, 32(12):1025–1046. (Cited on page 40.)spa
dc.relation.referencesMa, Y., Dixit, V., Innes, M., Guo, X., and Rackauckas, C. (2021). A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions. arXiv:1812.01892v2. https://arxiv.org/abs/1812.01892. (Cited on page 30.)spa
dc.relation.referencesMander, J., Priestley, M., and Park, R. (1983). Behaviour of ductile hollow reinforced concrete columns. Bulletin of the New Zealand National Society for Earthquake Engineering, 16(4):273–290. (Cited on page 34.)spa
dc.relation.referencesMasi, F., Stefanou, I., Vannucci, P., and Maffi-Berthier, V. (2021). Thermodynamicsbased artificial neural networks for constitutive modeling. Journal of the Mechanics and Physics of Solids, 147. (Cited on page 40.)spa
dc.relation.referencesMasri, S., Chassiakos, A., and Caughey, T. (1993). Identification of nonlinear dynamic systems using neural networks. Journal of Applied Mechanics, Transactions ASME, 60(1):123 – 133. (Cited on page 41.)spa
dc.relation.referencesMasri, S., Chassiakos, S., and Caughey, T. (1992). Structure-unknown non-linear dynamic systems: identification through neural networks. Smart Materials and Structures, 1(1):45–56. (Cited on page 41.)spa
dc.relation.referencesMassaroli, S., Poli, M., Park, J., Yamashita, A., and Asama, H. (2020). Dissecting Neural ODEs. arXiv.2002.08071v3. https://arxiv.org/abs/2002.08071. (Cited on page 49.)spa
dc.relation.referencesMenegotto, M. and Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In Proc. of IABSE symposium on resistance and ultimate deformability of structures acted on by well defined repeated loads, pages 15–22. (Cited on page 10.)spa
dc.relation.referencesMontaño, J., Maury, R., Almazán, J. L., Estrella, X., and Guindos, P. (2020). Development of an amplified added stiffening and damping system for wood-frame shear walls. Latin American Journal of Solids and Structures, 17. (Cited on page 35.)spa
dc.relation.referencesMorandi, P., Hak, S., and Magenes, G. (2018). Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills. Engineering Structures, 156:503–521. (Cited on page 32.)spa
dc.relation.referencesMorfidis, K. and Kostinakis, K. (2018). Approaches to the rapid seismic damage prediction of R/C buildings using artificial neural networks. Engineering Structures, 165:120– 141. (Cited on page 40.)spa
dc.relation.referencesMostaghel, N. (1999). Analytical description of pinching, degrading hysteretic systems. Journal of Engineering Mechanics, 125(2):216–224. (Cited on pages 1 and 8.)spa
dc.relation.referencesMuralidhar, N., Bu, J., Cao, Z., He, L., Ramakrishnan, N., Tafti, D., and Karpatne, A. (2020). Physics-guided deep learning for drag force prediction in dense fluid-particulate systems. Big Data, 8(5):431–449. (Cited on page 43.)spa
dc.relation.referencesMuralidhar, N., Islam, M., Marwah, M., Karpatne, A., and Ramakrishnan, N. (2019). Incorporating prior domain knowledge into deep neural networks. In Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, pages 36–45. (Cited on page 43.)spa
dc.relation.referencesNguyen, H., Dao, N., and Shin, M. (2021). Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting. Engineering Structures, 242. (Cited on page 39.)spa
dc.relation.referencesNikbakht, S., Anitescu, C., and Rabczuk, T. (2021). Optimizing the neural network hyperparameters utilizing genetic algorithm. Journal of Zhejiang University: Science A, 22(6):407–426. (Cited on page 43.)spa
dc.relation.referencesNing, C.-L., Wang, L., and Du, W. (2019). A practical approach to predict the hysteresis loop of reinforced concrete columns failing in different modes. Construction and Building Materials, 218:644–656. (Cited on page 39.)spa
dc.relation.referencesNiu, S., Luo, Y., Fei, S., Montagnani, L., Bohrer, G., Janssens, I. A., Gielen, B., Rambal, S., Moors, E., and Matteucci, G. (2011). Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biology, 17(10):3102–3114. (Cited on page 6.)spa
dc.relation.referencesNoori, H. R. (2014). Hysteresis phenomena in biology, volume 1. Springer. (Cited on page 6.)spa
dc.relation.referencesNoori, M. (1984). Random vibration of degrading systems with general hysteretic behavior. PhD thesis, University of Virginia. (Cited on pages 7 and 44.)spa
dc.relation.referencesOldfield, M., Ouyang, H., and Mottershead, J. (2005). Simplified models of bolted joints under harmonic loading. Computers and Structures, 84(1-2):25–33. (Cited on page 37.)spa
dc.relation.referencesOrtiz, G. A., Alvarez, D. A., and Bedoya-Ruíz, D. (2015). Identification of Bouc-Wen type models using the Transitional Markov Chain Monte Carlo method. Computers & Structures, 146:252–269. (Cited on pages 37 and 69.)spa
dc.relation.referencesPachoumis, D., Galoussis, E., Kalfas, C., and Efthimiou, I. (2010). Cyclic performance of steel moment-resisting connections with reduced beam sections - experimental analysis and finite element model simulation. Engineering Structures, 32(9):2683–2692. (Cited on pages 35 and 36.)spa
dc.relation.referencesPang, W., Rosowsky, D., Pei, S., and Van de Lindt, J. (2007). Evolutionary parameter hysteretic model for wood shear walls. Journal of Structural Engineering, 133(8):1118–1129. (Cited on page 8.)spa
dc.relation.referencesPark, Y.-J. and Ang, A. H.-S. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, 111(4):722–739. (Cited on page 46.)spa
dc.relation.referencesOrtiz, G. A., Alvarez, D. A., and Bedoya-Ruíz, D. (2013). Identification of Bouc-Wen type models using multi-objective optimization algorithms. Computers & Structures, 114-115:121–132. (Cited on pages 37 and 69.)spa
dc.relation.referencesOzcebe, G. and Saatcioglu, M. (1989). Hysteretic shear model for reinforced concrete members. Journal of Structural Engineering, 115(1):132–148. (Cited on page 8.)spa
dc.relation.referencesPaevere, P. J. (2002). Full-scale testing, modelling and analysis of light-frame structures under lateral loading. PhD thesis, Department of Civil and Environmental Engineering - University of Melbourne. (Cited on page 32.)spa
dc.relation.referencesPark, R. and Thompson, K. J. (1977). Cyclic load tests on prestressed and partially prestressed beam-column joints. PCI Journal, 22(5):84–110. (Cited on page 36.)spa
dc.relation.referencesPessiki, S. P., Conley, C., Gergely, P., and White, R. N. (1990). Seismic behavior of lightly-reinforced concrete column and beam-column joint details. Technical report NCEER-90-0014, National Center for Earthquake Engineering Research. (Cited on page 32.)spa
dc.relation.referencesPozo, F. and Zapateiro, M. (2015). On the passivity of hysteretic systems with double hysteretic loops. Materials, 8(12):8414–8422. (Cited on page 14.)spa
dc.relation.referencesPradhan, N., Paraskeva, T., and Dimitrakopoulos, E. (2020). Quasi-static reversed cyclic testing of multi-culm bamboo members with steel connectors. Journal of Building Engineering, 27. (Cited on page 36.)spa
dc.relation.referencesQiu, F., Li, W., Pan, P., and Qian, J. (2002). Experimental tests on reinforced concrete columns under biaxial quasi-static loading. Engineering Structures, 24(4):419–428. (Cited on page 34.)spa
dc.relation.referencesRachedi, M., Matallah, M., and Kotronis, P. (2021). Seismic behavior & risk assessment of an existing bridge considering soil-structure interaction using artificial neural networks. Engineering Structures, 232. (Cited on page 39.)spa
dc.relation.referencesRackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., and Ramadhan, A. (2020). Universal differential equations for scientific machine learning. arXiv:2001.04385v3. https://arxiv.org/abs/2001.04385. (Cited on pages 29 and 64.)spa
dc.relation.referencesRackauckas, C. and Nie, Q. (2017). Differentialequations.jl-a performant and feature-rich ecosystem for solving differential equations in julia. Journal of Open Research Software, 5(1). (Cited on page 64.)spa
dc.relation.referencesRaissi, M., Perdikaris, P., and Karniadakis, G. E. (2017a). Physics informed deep learning (part I): Data-driven solutions of nonlinear partial differential equations. arXiv:1711.10561v1. https://arxiv.org/abs/1711.10561. (Cited on pages 31 and 42.)spa
dc.relation.referencesRaissi, M., Perdikaris, P., and Karniadakis, G. E. (2017b). Physics informed deep learning (part II): Data-driven discovery of nonlinear partial differential equations. arXiv.1711.10566v1. https://arxiv.org/abs/1711.10566. (Cited on page 42.)spa
dc.relation.referencesRaissi, M., Yazdani, A., and Karniadakis, G. E. (2018). Hidden fluid mechanics: A Navier-Stokes informed deep learning framework for assimilating flow visualization data. arXiv:1808.04327v1. https://arxiv.org/abs/1808.04327. (Cited on pages 39 and 43.)spa
dc.relation.referencesRamberg, W. and Osgood, W. (1943). Description of stress-strain curves by three parameters. NASA Technical Note 902. (Cited on pages 1 and 10.)spa
dc.relation.referencesReggiani Manzo, N. and Vassiliou, M. (2022). Cyclic tests of a precast restrained rocking system for sustainable and resilient seismic design of bridges. Engineering Structures, 252. (Cited on page 34.)spa
dc.relation.referencesRoehrl, M., Runkler, T., Brandtstetter, V., Tokic, M., and Obermayer, S. (2020). Modeling system dynamics with physics-informed neural networks based on Lagrangian mechanics. In IFAC-PapersOnLine, volume 53, pages 9195 – 9200. (Cited on page 43.)spa
dc.relation.referencesSadeghi Eshkevari, S., Takáˇc, M., Pakzad, S., and Jahani, M. (2021). DynNet: Physics based neural architecture design for nonlinear structural response modeling and prediction. Engineering Structures, 229. (Cited on pages 41 and 73.)spa
dc.relation.referencesSaiidi, M. and Sozen, M. A. (1979). Simple and complex models for nonlinear seismic response of reinforced concrete structures. Technical report, University of Illinois. (Cited on page 8.)spa
dc.relation.referencesSamaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V., Guo, H., Hamdia, K., Zhuang, X., and Rabczuk, T. (2020). An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362. (Cited on page 43.)spa
dc.relation.referencesSarti, F., Palermo, A., and Pampanin, S. (2016). Quasi-static cyclic testing of twothirds scale unbonded posttensioned rocking dissipative timber walls. Journal of Structural Engineering (United States), 142(4). (Cited on page 36.)spa
dc.relation.referencesSasani, M. and Popov, E. (2001). Seismic energy dissipators for RC panels: Analytical studies. Journal of Engineering Mechanics, 127(8):835–843. (Cited on pages 11, 19, and 38.)spa
dc.relation.referencesSengupta, P. and Li, B. (2017). Hysteresis modeling of reinforced concrete structures: State of the art. ACI Structural Journal, 114(1):25–38. (Cited on page 37.)spa
dc.relation.referencesSeo, J.-M., Choi, I.-K., and Lee, J.-R. (1999). Static and cyclic behavior of wooden frames with tenon joints under lateral load. Journal of Structural Engineering, 125(3):344–349. (Cited on page 6.)spa
dc.relation.referencesShen, Y., Liu, X., Li, Y., and Li, J. (2021). Cyclic tests of precast post-tensioned concrete filled steel tubular (PCFT) columns with internal energy-dissipating bars. Engineering Structures, 229. (Cited on page 34.)spa
dc.relation.referencesShi, J., Guo, L., and Qu, B. (2022). In-plane cyclic tests of double-skin composite walls with concrete-filled steel tube boundary elements. Engineering Structures, 250. (Cited on page 33.)spa
dc.relation.referencesSimpson, T., Dervilis, N., and Chatzi, E. N. (2021). Machine learning approach to model order reduction of nonlinear systems via autoencoder and LSTM networks. arXiv:2109.11213v1. https://arxiv.org/abs/2109.11213. (Cited on pages 39 and 41.)spa
dc.relation.referencesSivaselvan, M. V. and Reinhorn, A. M. (2000). Hysteretic models for deteriorating inelastic structures. Journal of Engineering Mechanics, 126(6):633–640. (Cited on pages 7, 10, and 46.)spa
dc.relation.referencesStoffel, M., Bamer, F., and Markert, B. (2018). Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Structures, 131:102–106. (Cited on page 40.)spa
dc.relation.referencesSucuoglu, H. and Erberik, A. (2004). Energy-based hysteresis and damage models for deteriorating systems. Earthquake Engineering & Structural Dynamics, 33(1):69–88. (Cited on page 8.)spa
dc.relation.referencesTakeda, T., Sozen, M. A., and Nielsen, N. N. (1970). Reinforced concrete response to simulated earthquakes. Journal of the Structural Division, 96(12):2257–2573. (Cited on pages 1 and 8.)spa
dc.relation.referencesTanabashi, R. and Kaneta, K. (1962). On the relation between the restoring force characteristics of structures and the pattern of earthquake ground motion. In Proceedings of Japan National Symposium of Earthquake Engineering, pages 1085–1104. (Cited on page 8.)spa
dc.relation.referencesTapia Hernández, E., Santiago Flores, A., Guerrero Bobadilla, H., and Chávez Cano, M. M. (2020). Comportamiento experimental de conexiones de marcos de acero ante demandas sísmicas. Ingeniería Sísmica, 103:37–55. (Cited on page 34.)spa
dc.relation.referencesTazarv, M. and Saiidi, M. (2015). UHPC-filled duct connections for accelerated bridge construction of RC columns in high seismic zones. Engineering Structures, 99:413–422. (Cited on page 34.)spa
dc.relation.referencesThornton, S. T. and Marion, J. B. (2004). Classical dynamics of particles and systems. Thomson Brooks/Cole. (Cited on page 12.)spa
dc.relation.referencesThyagarajan, R. S. (1989). Modeling and analysis of hysteretic structural behavior. PhD thesis, California Institute of Technology, Pasadena, California. (Cited on page 11.)spa
dc.relation.referencesTsitouras, C. (2011). Runge-Kutta pairs of order 5(4) satisfying only the first column simplifying assumption. Computers & Mathematics with Applications, 62(2):770–775. (Cited on page 29.)spa
dc.relation.referencesTullini, N. and Minghini, F. (2016). Grouted sleeve connections used in precast reinforced concrete construction - experimental investigation of a column-to-column joint. Engineering Structures, 127:784–803. (Cited on page 34.)spa
dc.relation.referencesTullini, N. and Minghini, F. (2020). Cyclic test on a precast reinforced concrete columnto-foundation grouted duct connection. Bulletin of Earthquake Engineering, 18(4):1657–1691. (Cited on page 34.)spa
dc.relation.referencesVeletsos, A., Newmark, N., and Chelapati, C. (1965). Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions. In Van Roekel, J., editor, Proceedings of the 3rd world conference on earthquake engineering, volume 2, pages 663–682. (Cited on page 8.)spa
dc.relation.referencesVerner, J. H. (2010). Numerically optimal Runge-Kutta pairs with interpolants. Numerical Algorithms, 53(2-3):383–396. (Cited on page 29.)spa
dc.relation.referencesVisintin, A. (1994). Differential models of hysteresis, volume 111. Springer. (Cited on page 6.)spa
dc.relation.referencesWang, C.-H. and Chang, S.-Y. (2007). Development and validation of a generalized biaxial hysteresis model. Journal of Engineering Mechanics, 133(2):141–152. (Cited on page 37.)spa
dc.relation.referencesWang, C.-H. and Wen, Y.-K. (2000). Evaluation of pre-Northridge low-rise steel buildings. I: Modeling. Journal of Structural Engineering, 126(10):1160–1168. (Cited on page 37.)spa
dc.relation.referencesWang, D. and Liao, W. (2005). Modeling and control of magnetorheological fluid dampers using neural networks. Smart Materials and Structures, 14(1):111 – 126. (Cited on page 41.)spa
dc.relation.referencesWang, J., Wang, W., Xiao, Y., and Yu, B. (2019). Cyclic test and numerical analytical assessment of cold-formed thin-walled steel shear walls using tube truss. Thin-Walled Structures, 134:442–459. (Cited on page 33.)spa
dc.relation.referencesWang, R. and Yu, R. (2021). Physics-guided deep learning for dynamical systems. arXiv:107.01272v4. https://arxiv.org/abs/2107.01272v4. (Cited on page 58.)spa
dc.relation.referencesWen, Y.-K. (1976). Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics Division, 102(2):249–263. (Cited on pages 1 and 10.)spa
dc.relation.referencesWhalen, E. J. (2021). Enhancing surrogate models of engineering structures with graphbased and physics-informed learning. PhD thesis, Massachusetts Institute of Technology. (Cited on page 43.)spa
dc.relation.referencesWilliams, M. and Albermani, F. (2003). Monotonic and cyclic tests on shear diaphragm dissipators for steel frames. Civil engineering research bulletin 23, University of Queensland. (Cited on page 36.)spa
dc.relation.referencesXie, S., Zhang, Y., Chen, C., and Zhang, X. (2013). Identification of nonlinear hysteretic systems by artificial neural network. Mechanical Systems and Signal Processing, 34(1-2):76–87. (Cited on page 39.)spa
dc.relation.referencesYan, J.-B., Hu, H.-T., and Wang, T. (2021). Cyclic tests on concrete-filled composite plate shear walls with enhanced C-channels. Journal of Constructional Steel Research, 179. (Cited on page 33.)spa
dc.relation.referencesYan, J.-B., Yan, Y.-Y., and Wang, T. (2020). Cyclic tests on novel steel-concretesteel sandwich shear walls with boundary CFST columns. Journal of Constructional Steel Research, 164. (Cited on page 33.)spa
dc.relation.referencesYang, C. and Fan, J. (2021). Artificial neural network-based hysteresis model for circular steel tubes. Structures, 30:418–439. (Cited on page 39.)spa
dc.relation.referencesYang, T.-S. and Popov, E. P. (1995). Behavior of pre-Northridge moment resisting steel connections. Earthquake Engineering Research Center, University of California. (Cited on pages 34 and 36.)spa
dc.relation.referencesYe, J., Wang, X., Jia, H., and Zhao, M. (2015). Cyclic performance of cold-formed steel shear walls sheathed with double-layer wallboards on both sides. Thin-Walled Structures, 92:146–159. (Cited on page 33.)spa
dc.relation.referencesYu, Y., Yao, H., and Liu, Y. (2020). Structural dynamics simulation using a novel physics-guided machine learning method. Engineering Applications of Artificial Intelligence, 96. (Cited on page 41.)spa
dc.relation.referencesZeynalian, M., Ronagh, H. R., and Dux, P. (2012). Analytical description of pinching, degrading, and sliding in a bilinear hysteretic system. Journal of Engineering Mechanics, 138(11):1381–1387. (Cited on page 38.)spa
dc.relation.referencesZhang, R., Liu, Y., and Sun, H. (2020a). Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling. Engineering Structures, 215. (Cited on page 44.)spa
dc.relation.referencesZhang, R., Liu, Y., and Sun, H. (2020b). Physics-informed multi-LSTM networks for metamodeling of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 369. (Cited on page 44.)spa
dc.relation.referencesZhao, Y., Noori, M., Altabey, W., and Awad, T. (2019). A comparison of three different methods for the identification of hysterically degrading structures using BWBN model. Frontiers in Built Environment, 4. (Cited on page 43.)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalHysteresis modelingeng
dc.subject.proposalNonlinear structural identificationeng
dc.subject.proposalPhysical consistencyeng
dc.subject.proposalScientific machine learningeng
dc.subject.proposalUniversal ordinary differential equationseng
dc.subject.proposalPhysics-guided neural networkseng
dc.subject.proposalModelación histeréticaspa
dc.subject.proposalIdentificación estructural no linealspa
dc.subject.proposalConsistencia físicaspa
dc.subject.proposalMachine learning científicospa
dc.subject.proposalEcuaciones diferenciales ordinarias universalesspa
dc.subject.proposalRedes neuronales guiadas por la físicaspa
dc.subject.unescoIngeniería de estructurasspa
dc.subject.unescoConstruction engineeringeng
dc.titleModeling of hysteretic structural systems using multilayer perceptrons and physics-guiding techniqueseng
dc.title.translatedModelación de sistemas estructurales histeréticos usando perceptrones multicapa y técnicas de guiado físicospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110582890.2022.pdf
Tamaño:
3.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: