Evaluación de sensibilidad del modelo Cross WLF sobre la etapa de llenado en moldes de inyección

dc.contributor.advisorPerilla Perilla, Jairo Ernestospa
dc.contributor.authorUrbina Ramirez, Andres Franciscospa
dc.contributor.researchgroupGrupo de Procesos Químicos y Bioquímicosspa
dc.date.accessioned2020-07-21T13:42:27Zspa
dc.date.available2020-07-21T13:42:27Zspa
dc.date.issued2020-06-20spa
dc.description.abstractAbstract The development of computational tools has allowed to advance in the tool and part design and establish suitable process parameter to enhance cost effectiveness and answers in real time. The polymers are non-newtonian fluids that have non-lineal behavior depending on temperatures and shear rates that are exposed. According to this, the Cross WLF model has been one of the most important the simulation software’s have used to approximate the mold filling behavior for thermoplastic materials. In this research it will be study in depth how the simulation package Sigmasoft Virtual Molding solves the Navier-Stokes equations for the mold filling stage. Subsequently, it will make a comparative analysis between filling models 2.5D and 3D, forecasting through discretization, the optimal operation point according to pattern geometries that injection molding parts have with the material PC Makrolon 2805. There, it was obtained that, from eight elements in wall thickness, the results converge and have high congruency with the real measurements of previous researchers. Then, sensitivity analysis is performed to figure out the impact that each term of model equation has, based on own raw material characterization of PP Purell HP371P from LyondeBassell and a real and virtual process design of experiments (DoE). As a result: A set of fit equations were performed to get minor difference of simulation and reality in between. The main conclusion was that the terms A1, n, D1 and D2 have sensibility for results of pressure, temperature and viscosity, are suitable for a fir equation and figure out thermal impact with the non-dimensional parameters (n and D1) to correct the Cross WLF model, that didn’t happen for the transition shear stress (D4) and the pressure dependency (D3)spa
dc.description.abstractEl desarrollo de herramientas computacionales ha permitido avanzar con creces en el diseño de piezas y moldes y establecer parámetros de proceso idóneos para lograr efectividad en costos y respuestas en tiempo real. Los polímeros son fluidos no newtonianos que tienen comportamiento no lineal dependiendo de temperaturas y tasas de corte a las que están expuestos. Conforme a esto, el modelo Cross WLF, ha sido uno de los más usados por los softwares de simulación para aproximar el comportamiento de llenado de moldes de materiales termoplásticos. En la presente investigación se estudiará a profundidad cómo un paquete de simulación resuelve las ecuaciones de Navier-Stokes para la fase de llenado de moldes con el software Sigmasoft Virtual Molding. Posteriormente, se hará un análisis comparativo entre modelos de llenado 2.5D y 3D, descifrando a través de la discretización, el punto óptimo de operación con base a geometrías patrón presentes en las piezas de inyección con el material PC Makrolon 2805. Allí se obtuvo que, a partir de ocho elementos en el espesor de pared, los resultados convergen y tienen alta congruencia con mediciones de investigadores previos. Finalmente, se realiza un análisis de sensibilidad con base a la caracterización de laboratorio propia del material PP Purell HP371P de LyondeBassell para establecer el impacto que tiene cada término de la ecuación del modelo con base a un diseño de experimentos de proceso real y computacional (DoE), lo que permitió al final establecer ecuaciones de ajuste para obtener menor brecha entre los datos medidos y la simulación. La conclusión general fue que los términos A1, n, D1 y D2 tienen sensibilidad para resultados de presión, temperatura y viscosidad, encajan en una ecuación de ajuste y determinan un efecto térmico junto a los factores adimensionales (n y D1) para corrección del modelo Cross WLF, situación que no sucedió para los efectos del esfuerzo de corte de transición (D4) y la dependencia de presión (D3).spa
dc.description.additionalLínea de Investigación: Procesamiento de Materiales Poliméricosspa
dc.description.degreelevelMaestríaspa
dc.description.sponsorshipPM-Tec Servicios de Ingeniería S.A.S & SIGMA Engineering GmbHspa
dc.format.extent125spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77804
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesD. Cardozo, “A brief history of the filling simulation of injection moulding,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 223, no. 3, pp. 711–721, 2009.spa
dc.relation.referencesP. Kennedy and R. Zheng, Flow Analysis of Injection Molds. 2013.spa
dc.relation.referencesR. I. T. Rong Zheng and X.-J. Fan, Injection Molding : Integration of theory and modeling methods. 2011.spa
dc.relation.referencesM. Shaw, Introduction to Polymer Rheology. Hoboken: John Wiley & Sons Inc, 2012spa
dc.relation.referencesJ. Dealy and K. Wissbrun, Melt rheology and its role in plastics processing, vol. 49, no. 0. 1999.spa
dc.relation.referencesJ. Shoemaker, Moldflow Design Guide : A Resource for Plastics Engineers. 2006.spa
dc.relation.referencesHuamin Zhou, COMPUTER MODELING FOR INJECTION MOLDING :Simulation, Optimization, and Control. 2013.spa
dc.relation.referencesG. A. A. V. Haagh and F. N. Van De Vosse, “Simulation of three-dimensional polymer mould filling processes using a pseudo-concentration method,” Int. J. Numer. Methods Fluids, vol. 28, no. 9, pp. 1355–1369, 1998.spa
dc.relation.referencesR. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena. 2002.spa
dc.relation.referencesM. L. Williams, R. F. Landel, and J. D. Ferry, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids.,” J. Am. Chem. Soc., vol. 77, no. 12, pp. 3701–3707, 1955.spa
dc.relation.referencesC. A. Hieber and H. H. Chiang, “Shear‐rate‐dependence modeling of polymer melt viscosity,” Polym. Eng. Sci., vol. 32, no. 14, pp. 931–938, 1992.spa
dc.relation.referencesT. A. Osswald and N. Rudolph, Polymer Rheology. 2015.spa
dc.relation.referencesP. Guerrier, G. Tosello, and J. H. Hattel, “Flow visualization and simulation of the filling process during injection molding,” CIRP J. Manuf. Sci. Technol., vol. 16, pp. 12–20, 2017.spa
dc.relation.referencesR. S. Spencer and G. D. Gilmore, “Equation of state for high polymers,” J. Appl. Phys., vol. 21, no. 6, pp. 523–526, 1950.spa
dc.relation.referencesJ. L. Berger and C. G. Gogos, “A numerical simulation of the cavity filling process with PVC in injection molding,” Polym. Eng. Sci., vol. 13, no. 2, pp. 102–112, 1973.spa
dc.relation.referencesG. Williams and H. A. Lord, “Mold filling studies for the injection molding of thermoplastic materials. part 1 : the flow of plastic materials in hot and cold walled circular channels,” Polym Eng Sci, vol. 15, no. 8, pp. 553–568, 1975.spa
dc.relation.referencesG. Menges and P. Thienel, “Mathematical and Experimental Determination of Temperature, Velocity, and Pressure Fields in Flat Molds During the Filling Process in Injection Molding of Thermoplastics,” Polym. Eng. Sci., vol. 18, no. 4, pp. 314–320, 1978.spa
dc.relation.referencesZ. Chen and L. S. Turng, “A review of current developments in process and quality control for injection molding,” Adv. Polym. Technol., vol. 24, no. 3, pp. 165–182, 2005.spa
dc.relation.referencesV. W. Wang, C. A. Hieber, and K. K. Wang, “Dynamic Simulation and Graphics for the Injection Molding of Three-Dimensional Thin Parts.,” J. Polym. Eng., vol. 7, no. 1, pp. 21–45, 1986.spa
dc.relation.referencesH. Zhou, Y. Zhang, and D. Li, “Injection moulding simulation of filling and post-filling stages based on a three-dimensional surface model,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 215, no. 10, pp. 1459–1463, 2001.spa
dc.relation.referencesT. J. Bress and D. R. Dowling, “Simulations and measurements of in-mold melt flow during the injection molding of polystyrene,” Polym. Eng. Sci., vol. 53, no. 4, pp. 770–779, 2013.spa
dc.relation.referencesG. A. A. V. Haagh, G. W. M. Peters, F. N. Van De Vosse, and H. E. H. Meijer, “A 3-D finite element model for gas-assisted injection molding: Simulations and experiments,” Polym. Eng. Sci., vol. 41, no. 3, pp. 449–465, 2001.spa
dc.relation.referencesB. Yan, H. Zhou, and D. Li, “Numerical simulation of the filling stage for plastic injection moulding based on the Petrov-Galerkin methods,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 221, no. 10, pp. 1573–1577, 2007.spa
dc.relation.referencesJ. P. Benitez-Rangel, A. Domínguez-González, G. Herrera-Ruiz, and M. Delgado-Rosas, “Filling process in injection mold: A review,” Polym. - Plast. Technol. Eng., vol. 46, no. 7, pp. 721–727, 2007.spa
dc.relation.referencesS. Jiang, Z. Wang, G. Zhou, and W. Yang, “An implicit control-volume finite element method and its time step strategies for injection molding simulation,” Comput. Chem. Eng., vol. 31, no. 11, pp. 1407–1418, 2007.spa
dc.relation.referencesJ. M. Hyman, “NUMERICAL METHODS FOR TRACKING INTERFACES* James M. HYMAN,” Interface, vol. 12, pp. 396–407, 1984.spa
dc.relation.referencesS. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988.spa
dc.relation.referencesE. Flender, L. Kallien, and E. Hepp, “New developments for process modeling of the thixitropic forming process,” in Magnesium Konferenz der Duerschen Gesellschaft für Metallkunde, 1998.spa
dc.relation.referencesJ. Zachert, “Analyse uns Simulation dreidimensionaler Strömungsvorgänge beim Spritzgießen,” RWTH Aachen, 1998.spa
dc.relation.referencesG. Dibelius, “Änlichkeitsprobleme im Maschinenbau Vorlesungsumdruck des Institutes für Dampf und Gasturbinen an der RWTH Aachen,” 1991.spa
dc.relation.referencesT. Gossel, “Vergleich de Strômungsberechnung mit 2D Schalenelementen und 3D-Volumenelementen,” RWTH Aachen, 1996.spa
dc.relation.referencesJ. P. Hernández-ortiz, Polymer processing: modeling and simulation, vol. 44, no. 05. 2013.spa
dc.relation.referencesF. H. Harlow, “Numerical Study of Large-Amplitude Free-Surface Motions,” Phys. Fluids, vol. 9, no. 5, p. 842, 1966.spa
dc.relation.referencesJ. A. Luoma and V. R. Voller, “An explicit scheme for tracking the filling front during polymer mold filling,” Appl. Math. Model., vol. 24, no. 8–9, pp. 575–590, 2000.spa
dc.relation.referencesD. C. Montgomery, Design and analysis of experiments, vol. 106, no. 11. 2017.spa
dc.relation.referencesG. Menges, W. Michaeli, P. Mohren, G. Menges, W. Michaeli, and P. Mohren, How to Make Injection Molds. 2012.spa
dc.relation.referencesJ. M. Piau and J. F. Agassant, Rheology for Polymer Melt Processing. 1996.spa
dc.relation.referencesF. Liu, L. Deng, and H. Zhou, “Residual Stress and Warpage Simulation,” in Computer Modeling for Injection Molding: Simulation, Optimization, and Control, 2013.spa
dc.relation.referencesA. Naranjo, P. Noriega, T. A. Osswald, and A. Roldán-alzate, Plastics Testing and Characterization Industrial Applications.spa
dc.relation.referencesASTM standards, “D792 − 13: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement,” ASTM Int., vol. 15, no. 3, pp. 145–149, 2013.spa
dc.relation.referencesD. T. Ana-, S. Calorimeters, and R. Apparatus, “Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning,” pp. 1–7, 2019.spa
dc.relation.referencesD. S. C. Polyma, “Differential Scanning Calorimetry DSC 214.”spa
dc.relation.referencesJ. E.Mark, Physical Properties of Polymers Handbook, Second ed. ohio. 2007.spa
dc.relation.referencesASTM standards, “Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient,” Changes, vol. 05, pp. 1–5, 2017.spa
dc.relation.referencesJ. Wang, “PVT Properties of Polymers for Injection Molding,” Some Crit. Issues Inject. Molding, 2012.spa
dc.relation.referencesASTM standards, “Standard Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer 1,” Annu. B. ASTM Stand., vol. i, no. C, pp. 1–11, 2010.spa
dc.relation.referencesS. E. GmbH, “SIGMASOFT Virtual Molding.” Aachen, Alemania, 1998.spa
dc.relation.referencesA. Saitelli, Sensitivity Analysis in Practice, 1st ed. John Wiley & Sons Inc, 2004.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalFilling simulationeng
dc.subject.proposalsimulación de llenadospa
dc.subject.proposalmoldeo por inyecciónspa
dc.subject.proposalinjection moldingeng
dc.subject.proposalllenado de moldesspa
dc.subject.proposalmolds fillingeng
dc.subject.proposalreologíaspa
dc.subject.proposalrheologyeng
dc.subject.proposalCross WLFeng
dc.subject.proposalCross WLFspa
dc.subject.proposalcaracterización de polímerosspa
dc.subject.proposalpolymers characterizationeng
dc.subject.proposalSigmasoft Virtual Moldingspa
dc.subject.proposalSigmasoft Virtual Moldingeng
dc.titleEvaluación de sensibilidad del modelo Cross WLF sobre la etapa de llenado en moldes de inyecciónspa
dc.title.alternativeSensitivity assessment of the Cross WLF model at the filling stage on injection moldsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Urbina_1026274786_CrossWLF_MagisterMat.pdf
Tamaño:
11.4 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: