Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal

dc.contributor.advisorEspinosa Oviedo, Jairo José
dc.contributor.authorGonzález Alzate, Juan Pablo
dc.contributor.cvlacGonzález Alzate, Juan Pablo [0001823119]spa
dc.contributor.orcidEspinosa Oviedo, Jairo José [0000-0002-0969-741X]spa
dc.contributor.orcidGonzález Alzate, Juan Pablo [0000-0003-0449-4194]spa
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional Gaunalspa
dc.date.accessioned2023-06-27T15:38:12Z
dc.date.available2023-06-27T15:38:12Z
dc.date.issued2023-05-17
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEn esta tesis se propone un sistema de toma de decisiones para la ubicación, el dimensionamiento y el despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal, que impacte positivamente la movilidad, el transporte y el medio ambiente. El sistema se compone por motocicletas híbridas, embarcaciones eléctricas y estaciones de carga con generación de energía fotovoltaica, respaldo energético de baterías y conexión a la red eléctrica. La ubicación y el dimensionamiento de estaciones de carga se basa en la programación lineal entera mixta (MILP por sus siglas en inglés) que integra costos de inversión, mantenimiento y energía no suministrada, perfiles de demanda, precios de energía, radiación y variables binarias que describen la carga y la descarga del respaldo energético. Además, para el desarrollo del despacho de energía en la estación de carga, se empleó un modelo discreto de predicción y se soluciona por medio del método de programación cuadrática (QP por sus siglas en inglés) para la maximización del beneficio del operador de la estación de carga. Dicha implementación requirió un software de simulación de movilidad urbana para validar el sistema de transporte eléctrico multimodal. Este software cuenta con la herramienta TraCI que permite la conexión con Python y dispone de una alta variedad de redes de tráfico de todo el mundo. Con esta herramienta se simularon 5 escenarios donde se obtuvieron ventajas a favor de los usuarios de la estación y ganancias considerables para los operadores de la estación de carga, además, los errores respecto al suministro y la demanda son menores al 1%. Además, El método óptimo propuesto para la ubicación y el dimensionamiento óptimo de estaciones, establece una cantidad de 4 estaciones de carga, cada una con 22 paneles solares y 10 puntos de carga. Así mismo, para un escenario que incluye conexión a la red eléctrica, se encontraron dimensiones para 1 día de operación de 10000 W de capacidad de la red. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis, a decision-making system is proposed for the location, sizing and optimal dispatch of charging stations for the energy supply of a multimodal electric transport system, which positively impacts mobility, transport and the environment. The system is made up of hybrid motorcycles, electric boats and charging stations with photovoltaic energy generation, battery backup energy and connection to the electricity grid. The location and sizing of charging stations is based on mixed integer linear programming (MILP) that integrates investment, maintenance and non-supplied energy costs, demand profiles, energy prices, radiation and binary variables that describe the charging and discharging of the energy backup. In addition, for the development of the energy dispatch in the charging station, a discrete prediction model was used and it is solved by means of the quadratic programming (QP) method to maximize the benefit of the station operator of load. This implementation required urban mobility simulation software to validate the multimodal electric transport system. This software has the TraCI tool that allows connection with Python and has a wide variety of traffic networks from around the world. With this tool, 5 scenarios were simulated where advantages were obtained in favor of station users and considerable profits for charging station operators with errors regarding supply and demand of less than 1%. In addition, the optimal method proposed for the location and optimal sizing of stations establishes a number of 4 charging stations, each with 22 solar panels and 10 charging points. Likewise, for a scenario that includes connection to the electrical network, dimensions were found for 1 day of operation of 10000 W of network capacity.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.methodsEl desarrollo de esta tesis de maestría está enmarcado dentro de una aproximación metodológica cuantitativa, teórica y práctica, basada en simulación.spa
dc.description.researchareaMatemáticas aplicadasspa
dc.format.extentxvi, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84078
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA. K. Mathur, S. Charan T. ; Yemula, P. K.: Optimal Charging Schedule for Electric Vehicles in Parking Lot with Solar Power Generation. En: Int. Conf. Innov. Smart Grid Technol (2018)spa
dc.relation.referencesA. Sciarretta, P. Dewangan P. C.and Tona E. N.D. Bergshoeff C. Bordons L. Charmpa Ph Elbert L. Eriksson T. Hofman M. Hubacher P. Isenegger F. Lacandia A. Laveau H. Li D. Marcos T. N ̈uesch S. Onori P. Pisu J. Rios E. Silvas M. Sivertsson L. Tribiolivan der A. J. H. ; Wu, M.: A control benchmark on the energy management of a plug-in hybrid electric vehicle. En: Control Engineering Practice (2014)spa
dc.relation.referencesAbdulla Al Wahedi, Yusuf B.: Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar. En: Energy 243 (2022). ISSN 0360–5442spa
dc.relation.referencesAhmadreza Moradipari, Mahnoosh A.: Pricing and Routing Mechanisms for Differentiated Services in an Electric Vehicle Public Charging Station Network. En: IEEE TRANSACTIONS ON SMART GRID (2019)spa
dc.relation.referencesAhn, Kyoungho ; Rakha, Hesham A.: A simple hybrid electric vehicle fuel consumption model for transpor- tation applications. En: Applied Electromechanical Devices and Machines for Electric Mobility Solutions (2020), p. 1–15spa
dc.relation.referenceset al, G. L. Z.: Fast Charging Lithium Batteries: Recent Progress and Future Prospects. En: Small (2019)spa
dc.relation.referencesAli Wirasingha, Sanjaka G.and E.: Classification and review of control strategies for plug-in hybrid electricles vehicles. En: IEEE Transactions on Vehicular Technology (2011)spa
dc.relation.referencesAnatole Desreveaux, Rochdi Trigui Elodie C. ; Klein, John: Impact of the Velocity Profile on Energy Consumption of Electric Vehicles. En: IEEE Transactions on Vehicular Technology 68 (2019), p. 1–1spa
dc.relation.referencesAndrea Di Martino, Seyed Mahdi Miraftabzadeh. ; Longo, Michela: Review Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review. En: Energies (2022)spa
dc.relation.referencesBahrami, Ali: EV Charging Definitions, Modes, Levels, Communication Protocols and Applied Standards Technical Report. En: Technical report, BorgWarner Corporate (2020)spa
dc.relation.referencesBakirtzis A. G. Vagropoulos, S. I.: Optimal bidding strategy for electric vehicle aggregators in electricity markets. En: IEEE Transactions on Power Systems (2013)spa
dc.relation.referencesBaris Yildiz, Ahmet S.: The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations. En: Transportation Research Part B (2019)spa
dc.relation.referencesBayram, George Devetsikiotis M.: Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees. En: IEEE Transactions on Smart Grid 6 (2015), p. 1292–1302. – ISSN 19493053spa
dc.relation.referencesC. Bian, F. Wallin A. Avelin L. L. ; Yu, Z.: Finding the optimal location for public charging stations - A GIS-based MILP approach. En: Energy Procedia, (2019)spa
dc.relation.referencesCaicedo, C. R. P. ; Oviedo, J. J. E.: Desarrollo de un modelo dinámico de tráfico multimodal (automóviles, articulados, peatones y bicicletas) con fines de control. (2015)spa
dc.relation.referencesCamilo Vélez, Daniel V. ; Montoya, Alejandro: Infrastructure Estimation for a Freight/Personal Transport peration with an Electric Boat on the Magdalena River. En: Springer Nature Switzerland AG 2020 (2020)spa
dc.relation.referencesCandela. The journey how we redefined boating. https://candelaspeedboat.com/company/spa
dc.relation.referencesCaron, Stéphane. Quadratic programming in Pythonspa
dc.relation.referencesCedric De Cauwer, Thierry Coosemans Saphir F. ; Mierlo, Joeri V.: A data driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. En: Energies 10 (2017)spa
dc.relation.referencesChen, Xiao XuWeihao HuWen LiuYuefang DuRui HuangQi H.: Risk management strategy for a renewable power supply system in commercial buildings considering thermal comfort and stochastic electric vehicle behaviors. En: Energy Conversion and Management (2021)spa
dc.relation.referencesChiara Fiori, Kyoungho A. ; Rakha, Hesham A.: Microscopic series plug-in hybrid electric vehicle energy consumption model: Model development and validation. En: Transportation Research Part D: Transport and Environment (2018), p. 175–185spa
dc.relation.referencesClara Marina Martinez, Dongpu Cao Efstathios Velenis Bo G. ; Wellers, Matthias: Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective. En: IEEE Transactions on Vehicular Technology (2016)spa
dc.relation.referencesCumbal Simba, J. R.: Análisis del desempeño de una vanet mediante el uso de protocolos de enrutamiento y la ubicación óptima de la infraestructura rsu para alcanzar un throughput eficiente en escenarios urbanos. (2017)spa
dc.relation.referencesCáceres, J. A. C. ; Castellanos, J. A.: Simulación Microscópica De Tráfico Urbano Y Su Aplicación En Un Área De La Ciudad De Zaragoza. En: Cea-Ifac.Es, (2004)spa
dc.relation.referencesD. A. Howey, B. C. ; Lytton, L.: Comparative measurements of the energy consumption of 51 electric, hybrid and internal combustion engine vehicles. En: Transportation Research Part D: Transport and Environment (2011), p. 459–464spa
dc.relation.referencesDaniel Villa, Alejandro M. ; Herrera, Aura M.: The Electric Riverboat Charging Station Location Problem. En: Journal of Advanced Transportation (2020)spa
dc.relation.referencesDavid Jiménez, Jesús Fraile-Ardanuy Javier Serrano Rubén F. ; Álvarez, Federico: Modelling the effect of driving events on electrical vehicle energy consumption using inertial sensors in smartphones. En: Energies 11 (2018), p. 412spa
dc.relation.referencesDe Lorenzo M. G. Consolidani M. Muzi, F.: New concepts on microgrid-prosumer nodes interaction. En: 2019 AEIT International Annual Conference (2019)spa
dc.relation.referencesDuncan E. Smith, Diana-Andra Borca-Tasciuc: Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics. En: Renewable Energy (2022)spa
dc.relation.referencesE.Grossmann, José A. Caballero. I.: Una revisión del estado del arte en optimización. En: Revista Iberoamericana de Automática e Informática Industrial RIAI (2007spa
dc.relation.referencesErdelic, T ; Caric, T: A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches. En: Journal of Advanced Transportation (2019), p. 1–48spa
dc.relation.referencesG. Piazza, F. D. ; Siri, S.: Optimal design of electric mobility services for a Local Energy Community. En: Sustain. Energy, Grids Networks, (2021)spa
dc.relation.referencesGiyeon Hwang, Jongmyung Kim Kyu-Jin Lee-Sangyul L. ; 1, Minjae K.: Energy management optimization of series hybrid electric bus using an ultra-capacitor and novel efficiency improvement factor. En: Sustainability (2020), p. 7345spa
dc.relation.referencesGlynn, Gary W Escalona-H J.: Ingeniería ambiental. En: Environmental Science and Engineering (1999). ISBN 970–17–0266–2spa
dc.relation.referencesGómez, Isabel C.: Coordinated Charging Strategy for a Network of Photovoltaic Charging Stations (PVCSs): a trade-off between Stations Operator and Electric Vehicles (EVs) users. (2020)spa
dc.relation.referencesH. Jamshidi, J. T. van E. ; N ̈okel, K.: Dynamic planning for simultaneous recharging and relocation of shared electric taxies: A sequential MILP approach. En: Transp. Res. Part C Emerg. Technol (2020)spa
dc.relation.referencesH. Vincent Poor, H. D. Tuan A. V. S. ; Duong, T. Q.: Model predictive control for smart grids with multiple electric-vehicle charging stations. En: IEEE Trans. Smart Grid, (2019)spa
dc.relation.referencesHaodong Wang, Zan Liu Songwei Zhang Zhiguo Li Tie Q.: Multi-parameters dynamic scheduling with energy management for electric vehicle charging stations. (2022)spa
dc.relation.referencesI. Sagaama, W. T. ; Kamoun, F.: Evaluation of the Energy Consumption Model Performance for Electric Vehicles in SUMO. En: Proc. - 2019 IEEE/ACM 23rd Int. Symp. Distrib. Simul. Real Time Appl. DS-RT 2019, (2019)spa
dc.relation.referencesJ. Salas, A. Torrente: Mínimos cuadrados. 2021. http://ocw.uc3m.es/matematicas/ algebralineal.spa
dc.relation.referencesJiangbo Wang, and Toshiyuki Y.: Improving electricity consumption estimation for electric vehicles based on sparse GPS observations. En: Energies 10 (2017), p. 19–22spa
dc.relation.referencesJin Li, Feng W. ; He, Yu: Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions. En: Sustainability (2020), p. 10537spa
dc.relation.referencesJuan-David Mira, Esteban B. ; Mejía-Gutiérrez, Ricardo: Preliminary Sizing of a Propulsion Unit for an Electrically-Powered Vessel Using a Screw Propellers Performance Comparison Tool. En: WEA 2020. Communications in Computer and Information Science (2018)spa
dc.relation.referencesJuan-David Mira, Esteban B. ; Mejía-Gutiérrez, Ricardo: Preliminary Sizing of a Propulsion Unit for an Electrically-Powered Vessel Using a Screw Propellers Performance Comparison Tool. En: Applied Computer Sciences in Engineering (2020)spa
dc.relation.referencesKai Liu, Toshiyuki Yamamoto Takayuki M.: Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption. En: Applied Energy 227 (2018), p. 324–331spa
dc.relation.referencesKasprzyk, Leszek: Modelling and analysis of dynamic states of the lead-acid batteries in electric vehicles. En: Maintenance and Reliability 19 (2017), p. 229–236spa
dc.relation.referencesKong, Bhaskar Prasad Bhattarai Bishnu P. Devetsikiotis M.: Cloud-Based Charging Management of Electric Vehicles in a Network of Charging Stations. En: IEEE International Conference on Communications (2018). – ISBN 9781538631805spa
dc.relation.referencesKonstantinos N.Genikomsakis, Georgios M.: A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. En: Transportation Research Part D: Transport and Environment 50 (2017), p. 98–118spa
dc.relation.referencesKurczveil, López P.A. Schnieder E.: Implementation of an Energy Model and a Charging Infrastructure in SUMO. In: Behrisch, M., Krajzewicz, D., Weber, M. (eds.) Simulation of Urban Mobility. Lecture Notes in Computer Science. En: Springer (2014), p. 33–43spa
dc.relation.referencesLi Peng Zhang, Wei L. ; Qi, Bing N.: Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction. En: Energy (2020)spa
dc.relation.referencesLiu, Wenqian Yuan Xiaoling Niu M.: Reserving Charging Decision-Making Model and Route Plan for Electric Vehicles Considering Information of Traffic and Charging Station. En: Sustainability 2018 10 (2018), p. 1324. – ISSN 2071–1050spa
dc.relation.referencesLuin, Petelin S. ; Al-Mansour, F: Microsimulation of Electric Vehicle Energy Consumption. En: Energy 174 (2019)spa
dc.relation.referencesLuis Eduardo Chavez Perdomo, José Luis Alba A.: Ministerio de transporte superintendencia de puertos y transporte superintendencia delegada de puertos proyecto de investigación infraestructura fluvialspa
dc.relation.referencesManuel Molina: La distancia más corta. El método de los mínimos cuadrados. 2020. – https://anestesiar. org/2020/la-distancia-mas- corta-el-metodo-de-los-minimos-cuadradosspa
dc.relation.referencesÁngela María Orozco Gómez, Camilo Pabón Almanza Clara Margarita Montilla Herrera Edith Aristide Galvis Fredy David Gil R.: Transporte en Cifras 2021 Anuario Nacional de Transporte. (2022). – ISSN 2954–5730spa
dc.relation.referencesMatos M. A. Bessa, R. J.: Global against divided optimization for the participation of an ev aggregator in the day-ahead electricity market. En: Part I: Theory. Electric Power Systems Research (2013)spa
dc.relation.referencesMd Abdul Quddus, Mohammad M.: Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources. En: Transportation Research Part E (2019)spa
dc.relation.referencesMillar, Jussi Lehtonen Matti Saarijarvi Eero Degefa Merkebu Koivisto M.: Probabilistic prosumer node modeling for estimating planning parameters in distribution networks with renewable energy sourcess. En: 58th Annual International Scientific Confererence on Power and Electrical Engineering of Riga Technical University, RTUCON 2017 Proceedings (2017), p. 1–8. ISBN 9781538638460spa
dc.relation.referencesMinami, Shigeyuki ; Yamachika, Naoki: A practical theory of the performance of low velocity boat. En: Journal of Asian Electric Vehicles (2004), p. 535–539spa
dc.relation.referencesMiri, Fotouhi A. ; Ewin, N: Electric vehicle energy consumption modelling and estimation—A case study. En: International Journal of Energy Research (2020)spa
dc.relation.referencesMontazeri-Gh, Morteza ; Mahmoodi-K, Mehdi: Optimized predictive energy management of plug-in hybrid electric vehicle based on traffic condition. En: Journal of cleaner production (2016)spa
dc.relation.referencesMuqeet, Intisar Ali Ahmad Aftab Iqbal Muhammad Muzaffar Ali Saqib Guerrero Josep M.: Optimal Operation of Energy Storage System for a Prosumer Microgrid Considering Economical and Environmental Effects. En: RAEE 2019 - International Symposium on Recent Advances in Electrical Engineering (2019), p. 8887002. ISBN 9781728130729spa
dc.relation.referencesNeeraj Rama, Joshua Orlando Darrell R. ; Chen, Bo: Route-optimized energy management of connected and automated multimode plug-in hybrid electric vehicle using dynamic programming. En: SAE Technical Paper (2019)spa
dc.relation.referencesNSRDB: NSRDB Data Viewer. 2020. – https://maps.nrel.gov/nsrdb-viewer, Accedido en septiembre de 2019spa
dc.relation.referencesP. Xu, J. Wang J. Li W. Z. ; Liu, H.: Dynamic pricing at electric vehicle charging stations for waiting time reduction. En: ACM Int. Conf. Proceeding Ser (2018)spa
dc.relation.referencesProgramme D. Nations U. Nations, U.: Energy, the environment and human health. (1973)spa
dc.relation.referencesRicardo Barrero, Xavier T. ; Mierlo, Joeri V.: Quasi-static simulation method for evaluation of energy consumption in hybrid light rail vehicles. En: 2008 IEEE Vehicle Power and Propulsion Conference (2008)spa
dc.relation.referencesRicardo Mejia-Gutierrez, Jorge Hernán Córdoba Morales Mauricio Fernández Montoya Simón Polanía Restrepo Laura María Moreno Durango Federico Tirado Escoba Javier Emilio Sierra Carrillo Boris Alexander Medina Salgado José López Tatiana Manrique Espíndola Gustavo Andrés Moreno Edgar Rincón Gil Juan Camilo Tejada Orjuela Jhon Fernando Vargas Jaramillo Andrés Palacio Velásquez Felipe Henao Ramírez Felipe Mendoza G.: Diseño Preliminar: Kit de conversión a tracción eléctrica para movilidad terrestre / Universidad EAFIT. Medellín, 2023. – Informe de Investigaciónspa
dc.relation.referencesRicardo Mejía-Gutiérrez, Juliana Carolina Acosta Jácome Alejandro Mora C.: Estado del arte y marco teórico - Modelos económicos aplicables a los nodos prosumidores de la red eléctrica / Universidad EAFIT. Medellín, 2022. – Informe de Investigaciónspa
dc.relation.referencesRicardo Mejía-Gutiérrez, Jorge Hernán Córdoba Morales Laura María Moreno Durango Federico Tirado Escobar Mauricio Fernández Montoya Alejandro Castaño Posada Isabella Vera Arias Maria José Gallego Molina Tatiana Manrique Espíndola Jhon Fernando Vargas J.: Diseño de Detalle: Kit de conversión a tracción eléctrica para movilidad terrestre / Universidad EAFIT. Medellín, 2023. – Informe de Investigaciónspa
dc.relation.referencesRicardo Mejía-Gutiérrez, Gilberto Osorio-Gómez, Jorge Hernán Córdoba Morales, Gustavo Andrés Moreno, Juan Camilo Tejada, Javier Emilio Sierra, Boris Alexander Medina, José Lopéz, Esteban Betancur, Mauricio Fernandez, Harvy Correa, Santiago Henao, Alejandro Castaño, Juan Manuel Posada, Felipe Mendoza, Laura María Moreno, Felipe Henao, Federico Tirado. Investigación de las condiciones y necesidades para la implementación del sistema de movilidad eléctrica terrestre en Magangué y Sincelejo / Universidad EAFIT. Medellín, 2021. – Informe de Investigaciónspa
dc.relation.referencesRicardo Mejía-Gutiérrez, Camilo Vélez Erick Santiago Gómez Oviedo Sara López Valentina Gómez juan Pablo González Christian Portilla Felipe V.: Diseño y desarrollo - Sistema integrado de movilidad eléctrica multimodal (Moto+Bote+Estación) / Universidad EAFIT. Medellín, 2021. – Informe de Investigaciónspa
dc.relation.referencesRicardo Mejía-Gutiérrez, Manuela Montoya Rivera Gilberto Osorio Gómez Maria Antonia Zapata Pérez Luisa Fernanda Ruiz Navarrete David Nicolás Márquez Navarrete Sara Restrepo Muñoz Juan Felipe Sanchez Arbeláez Jorge Luis Moreno Sabogal Juan Pablo Palacio Uribe Carlos Arturo Cepeda Coley Juan Camilo Giraldo Cano Juan-David Mira Pineda Felipe Mendoza Giraldo Mauricio Fernández Montoya Laura Flores Llano Maria Alejandra Cervera Robles Camilo Villa Tamayo Andrés Felipe Guerra Jimenez Juan Carlos Osorio M.: Fabricación de prototipo de la Embarcación Eléctro-Solar, parte II. / Universidad EAFIT. Medellín, 2021. – Informe de Investigaciónspa
dc.relation.referencesRuisheng Wang, Qiang Xing Ziqi Z. ; Zhang, Tian: A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station. En: Sustainability (2022)spa
dc.relation.referencesRuiyang Jina, Chao Lub Jie S.: Deep reinforcement learning-based strategy for charging station participating in demand response Author links open overlay panel. En: Applied Energy (2022)spa
dc.relation.referencesS. Sachan, S.N. Singh P.P. Singh D.D. S.: Planning and operation of EV charging stations by chicken swarm optimization driven heuristics. En: Energy Conversion and Economics (2021)spa
dc.relation.referencesS. Suganya, S. C. R. ; Venkatesh, P.: Simultaneous coordination of distinct plugin Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach. En: Energy (2017)spa
dc.relation.referencesSamia Boubaker, Ferid R. ; Kalboussi, Adel.: Estimating energy consumption of hybrid electric vehicle and gazoline classical vehicle. En: 2013 International Conference on Advanced Logistics and Transport, ICALT 2013 (2013), p. 221–226spa
dc.relation.referencesSavitsk, Daniel: Hydrodynamic design of planing hulls. En: Marine Technology and SNAME News 1 (1964), p. 71–95spa
dc.relation.referencesShaobo Xie, Shanwei Qi Xiaolin Tang Kun Lang Zongke Xin James B.: Model Predictive Energy Management for Plug In Hybrid Electric Vehicles Considering Optimal Battery Depth of Discharge. En: Energy 173 (2019)spa
dc.relation.referencesSiddiqui A. Roman T. G. S. Soder L. Momber, I: Risk averse scheduling by a pev aggregator under uncertainty. En: IEEE Transactions on Power Systems (2015)spa
dc.relation.referencesSoini, David Patel Martin K.: Impact of prosumer battery operation on the cost of power supply. En: Journal of Energy Storage 29 (2020). – ISSN 2352152Xspa
dc.relation.referencesTao Zeng, Minghui Hu Yan Chen Changrong Yuan Jingrui C. ; Zhou, Anjian: Modelling and predicting energy consumption of a range extender fuel cell hybrid vehicle. En: Energy (2018), p. 187–197spa
dc.relation.referencesTransporte, MT M. ; BID: Plan maestro de transporte (2010 – 2032). (2022)spa
dc.relation.referencesUnión Andina: ¿Por qué vivir en una ciudad intermedia puede aumentar tu calidad de vida? 2022. –https://www.unionandinacolombia.com/blog/ciudades-intermedias-mejoran-calidad-de-vida/: :text= %C2 %BFQu %C3 %A9 %20son %20las %20ciudades %20intermedias,son %20de %20un %20tama %C3 %B1o %20peque %C3 %B1o.spa
dc.relation.referencesUPME, Unidad de planeación minera e. Plan Energético Nacional 2020-2050. https://www1.upme.gov.co/DemandayEficiencia/Paginas/PEN.aspxspa
dc.relation.referencesVilla, Daniel ; Montoya, Alejandro: A Taxonomy of Energy Consumption Models for Electric Vehicles. En: MOVICI-MOYCOT 2018: Joint Conference for Urban Mobility in the Smart City (2018), p. 1–7spa
dc.relation.referencesW. Xiong, X. Y. ; Yang, Y.: Energy Management Strategy of Photovoltaic Charging Station for Electric Vehicles in Commercial Area. En: IOP Conf. Ser. Mater. Sci. Eng (2018)spa
dc.relation.referencesWang, Liuping: Model Predictive Control System Design and Implementation Using MATLAB. Springer, 2009spa
dc.relation.referencesWong, P. ; Alizadeh, M.: Congestion control and pricing in a network of electric vehicle public charging stations. En: 55th Annu. Allert. Conf. Commun. Control. Comput. Allert. (2018)spa
dc.relation.referencesXingzhen Bai, Lei Zou Hongjian Liu Qiao S. ; Alsaadi, Fuad E.: Electric vehicle charging station planning with dynamic prediction of elastic charging demand: a hybrid particle swarm optimization algorithm. En: Complex Intelligent Systems (2022)spa
dc.relation.referencesXinmei Yuan, Guokai Hong Xueqi Huang L.: Method for evaluating the real-world driving energy consumptions of electric vehicles. En: Energy 141 (2017), p. 1955–1968spa
dc.relation.referencesXuewei Qi, KanokBoriboonsomsin Matthew J.: Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under realworld traffic conditions. En: Transportation Research Part D: Transport and Environment (2017), p. 0–1spa
dc.relation.referencesZ. Moghaddam, D. H. ; Phung, Q. V.: Smart Charging Strategy for Electric Vehicle Charging Stations. En: IEEE Trans. Transp. Electrif (2017)spa
dc.relation.referencesZhan, Dingsong CuiZhenpo WangPeng LiuShuo WangDavid G. DorrellXiaohui L.: Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review. En: Energy (2022)spa
dc.relation.referencesZhang, Wang Z. Liu P. ; Zhang, Z: Energy consumption analysis and prediction of electric vehicles based on real-world driving data. En: Applied Energy 174 (2020)spa
dc.relation.referencesZheng, Yue Hill David J. Meng K.: Online Distributed MPC-Based Optimal Scheduling for EV Charging Stations in Distribution Systems. En: IEEE Transactions on Industrial Informatics 15 (2019), p. 638–649. – ISSN 15513203spa
dc.relation.referencesZonggen Yi, Peter H. B.: Adaptive multiresolution energy consumption prediction for electric vehicles. En: IEEE Transactions on Vehicular Technology 66 (2017), p. 10515–10525spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc380 - Comercio , comunicaciones, transporte::388 - Transportespa
dc.subject.lembVehículos eléctricosspa
dc.subject.lembElectricidad en el transportespa
dc.subject.lembElectricity in transportationeng
dc.subject.lembElectric vehicleseng
dc.subject.proposalTransporteng
dc.subject.proposalMultimodaleng
dc.subject.proposalCharging stationseng
dc.subject.proposalElectric vehicleseng
dc.subject.proposalOptimizationeng
dc.subject.proposalUrban trafficeng
dc.subject.proposalTransportespa
dc.subject.proposalMultimodalspa
dc.subject.proposalEstaciones de cargaspa
dc.subject.proposalVehículos eléctricosspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalTráfico urbanospa
dc.titleSistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodalspa
dc.title.translatedDecision-making system for the optimal location, sizing and dispatching of charging stations for the energy supply of a multimodal electric transport systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036668111.2023.pdf
Tamaño:
29.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: