Metodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)

dc.contributor.advisorCortés Romero, John Alexanderspa
dc.contributor.advisorDorado Rojas, Sergiospa
dc.contributor.authorAguilar Pérez, Santiagospa
dc.date.accessioned2022-06-29T18:30:04Z
dc.date.available2022-06-29T18:30:04Z
dc.date.issued2022
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLas metodologías para diseño de controladores basadas en modelo requieren un alto nivel de conocimiento del sistema dinámico para poder diseñar una ley de control, en contraste de las metodologías basadas en error; estos enfoques pueden limitar la aplicación de metodologías de control óptimo, dado que para ciertas situaciones puede ser difícil establecer un modelo que describa al sistema dinámico adecuadamente, así mismo, para modelos muy rigurosos existen dificultadas asociadas a resolver el problema de optimización y para metodologías basadas en error el desempeño no siempre es el deseado. Como alternativa, este trabajo propone una metodología de control óptimo para sistemas diferencialmente planos no lineales, basado en control por rechazo activo de perturbaciones (ADRC - por sus siglas en inglés active disturbance rejection control), el cual es usado para estimar y rechazar las incertidumbres y perturbaciones (internas y externas) a partir de un modelo simplificado que permite plantear un problema de optimización. Luego, se sintetiza el controlador empleando la metodología de control predictivo basado en modelo (MPC - por sus siglas en inglés model predictive control). A través de distintos casos de estudio, se validan y evalúan algunas características de las estructuras asociadas a la metodología de control propuesta. Finalmente se logra establecer una metodología de control que otorga al sistema dinámico un comportamiento estable y robusto, mientras minimiza una función de costo de desempeño. (Texto tomado de la fuente).spa
dc.description.abstractMethodologies for model-based controller design require a high level of knowledge of the dynamic system in order to design a control law, as opposed to error-based methodologies; these approaches may limit the application of optimal control methodologies, as for certain situations it may be difficult to establish a model that describes the dynamic system properly, also, for very rigorous models there are difficulties associated with solving the optimization problem and for error-based methodologies performance is not always desired. As an alternative, this paper proposes an optimal control methodology for differentially flat non-linear systems, based on active disturbance rejection control (ADRC), which is used to estimate and reject uncertainties and disturbances (internal and external) from a simplified model that allows to pose an optimization problem for design. The controller is then synthesized using model predictive control (MPC). Through different case studies, some characteristics of the structures associated with the proposed control methodology are validated and evaluated. Finally, it is possible to establish a control methodology that gives the dynamic system a stable and robust behavior, while minimizing a performance cost function.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaTeoría y aplicación de controlspa
dc.format.extentxiv, 94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81667
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAboelhassan, A., Diab, A. M., Galea, M., y Bozhko, S. (2020, 11). Investigating electrical drive performance employing model predictive control and active disturbance rejection control algorithms. 2020 23rd International Conference on Electrical Machines and Systems (ICEMS). doi: 10.23919/ICEMS50442.2020.9291218spa
dc.relation.referencesAhmad, S., Deo, B., y Ali, A. (2019, 12). Modified active disturbance rejection control for improved performance. 2019 Sixth Indian Control Conference (ICC), 496-501. doi: 10.1109/ICC47138.2019.9123202spa
dc.relation.referencesAng, K. H., Chong, G., y Li, Y. (2005, 7). Pid control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13, 559-576. doi: 10.1109/TCST .2005.847331spa
dc.relation.referencesBakarac, P., Klauco, M., y Fikar, M. (2018). Comparison of inverted pendulum stabilization with pid, lq, and mpc control. Proceedings of the 29th International Conference on Cybernetics and Informatics, K and I 2018, 2018-Janua, 1-6. doi: 10.1109/CYBERI .2018.8337540spa
dc.relation.referencesBaquero-Suáarez, M., Cortés-Romero, J., Arcos-Legarda, J., y Coral-Enriquez, H. (2019, 1). A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody System Dynamics, 45, 7-35. doi: 10.1007/s11044-018-9614-yspa
dc.relation.referencesBerber, R., y Kravaris, C. (Eds.). (1998). Nonlinear model based process control. Springer Netherlands. doi: 10.1007/978-94-011-5094-1spa
dc.relation.referencesBorase, R. P., Maghade, D. K., Sondkar, S. Y., y Pawar, S. N. (2020). A review of pid control, tuning methods and applications. International Journal of Dynamics and Control. doi: 10.1007/s40435-020-00665-4spa
dc.relation.referencesBorrelli, F., Falcone, P., Keviczky, T., Asgari, J., y Hrovat, D. (2005). Mpc-based approach to active steering for autonomous vehicle systems. International Journal of Vehicle Autonomous Systems, 3, 265. doi: 10.1504/IJVAS.2005.008237spa
dc.relation.referencesChen, C.-T. (1995). Analog and digital control system design: Transfer-function, state-space, and algebraic methods (1.a ed.). Oxford University Press, Incspa
dc.relation.referencesChen, K. (1964, 5). Quasi-linearization design of nonlinear feedback control systems. IEEE Transactions on Applications and Industry, 83, 189-195. doi: 10.1109/TAI.1964 .5407789spa
dc.relation.referencesCheng, D., Hu, X., y Shen, T. (2010). Linearization of nonlinear systems. En (p. 279-313). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-11550-9 10spa
dc.relation.referencesCoral-Enriquez, H., Cortés-Romero, J., y Ramos, G. A. (2013). Robust active disturbance rejection control approach to maximize energy capture in variable-speed wind turbines. Mathematical Problems in Engineering, 2013, 1-12. doi: 10.1155/2013/396740spa
dc.relation.referencesCortes-Romero, J. A., Luviano-Juarez, A., y Sira-Ramirez, H. (2009). Robust gpi controller for trajectory tracking for induction motors. 2009 IEEE International Conference on Mechatronics, 1-6. doi: 10.1109/ICMECH.2009.4957221spa
dc.relation.referencesCortés-Romero, J., Jimenez-Triana, A., Coral-Enriquez, H., y Sira-Ram´ırez, H. (2017, 4). Algebraic estimation and active disturbance rejection in the control of flat systems. Control Engineering Practice, 61. doi: 10.1016/j.conengprac.2017.02.009spa
dc.relation.referencesda xue (1993), D., kuang ye da xue., Z., Chapter., I. S. S. I. E., y Society., I. C. S. (2010). 2010 chinese control and decision conference : New century grand hotel, xuzhou, china, 26-28 may 2010. IEEE Industrial Electronics (IE) Chapter.spa
dc.relation.referencesDorado-Rojas, S. A. (2018). Decentralized Load Frequency Control for a Power System with High Penetration of Wind and Solar Photovoltaic Generation (Tesis Doctoral no publicada). Universidad Nacional de Colombia.spa
dc.relation.referencesDorado-Rojas, S. A., Cortes-Romero, J., Rivera, S., y Mojica-Nava, E. (2019). ADRC for Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE Milan PowerTech. doi: 10.1109/PTC.2019.8810873spa
dc.relation.referencesDu, H. (2006). Application of smartplant pid software in petrochemical projects. Petroleum Refinery Engineering, 36, 50-52.spa
dc.relation.referencesElgazzar, M., y Shamekh, A. (2020). Performance comparison of mpc and pid in cstr process control. ACM International Conference Proceeding Series. doi: 10.1145/ 3410352.3410764spa
dc.relation.referencesFajardo, D. F. (2010). Dynamic systems simulation states space discretization. SIGMA, 1-9.spa
dc.relation.referencesFliess, M., L`evine, J., Martin, P., y Rouchon, P. (1995, 6). Flatness and defect of nonlinear systems: introductory theory and examples. International Journal of Control, 61, 1327-1361. doi: 10.1080/00207179508921959spa
dc.relation.referencesFriedland, B. (1986). Control system design an introduction to state-space methods. McGrawHill.spa
dc.relation.referencesGaluppini, G., Magni, L., y Raimondo, D. M. (2018, 9). Model predictive control of systems with deadzone and saturation. Control Engineering Practice, 78, 56-64. doi: 10.1016/ j.conengprac.2018.06.010spa
dc.relation.referencesGao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. Proceedings of the 2003 American Control Conference., 4989-4996. doi: 10.1109/ACC.2003 .1242516spa
dc.relation.referencesGao, Z. (2006). Active disturbance rejection control: a paradigm shift in feedback control system design. 2006 American Control Conference, 7 pp. doi: 10.1109/ACC.2006 .1656579spa
dc.relation.referencesGao, Z., y Zhao, S. (2010, 9). Active disturbance rejection control for non-minimum phase systems. Proceedings of the 29th Chinese Control Conferencespa
dc.relation.referencesGarcía, C. E., Prett, D. M., y Morari, M. (1989, 5). Model predictive control: Theory and practice|a survey. Automatica, 25. doi: 10.1016/0005-1098(89)90002-2spa
dc.relation.referencesGarriga, J. L., y Soroush, M. (2010, 4). Model predictive control tuning methods: A review. Industrial & Engineering Chemistry Research, 49, 3505-3515. doi: 10.1021/ie900323cspa
dc.relation.referencesGarzon, C. L., Cortes, J. A., y Tello, E. (2017, 4). Active disturbance rejection control for growth of microalgae in a batch culture. IEEE Latin America Transactions, 15, 588-594. doi: 10.1109/TLA.2017.7896342spa
dc.relation.referencesGasparetto, A., Boscariol, P., Lanzutti, A., y Vidoni, R. (2015). Path planning and trajectory planning algorithms: A general overview. En (p. 3-27). doi: 10.1007/978-3-319-14705 -5 1spa
dc.relation.referencesGhoumari, M. E., Tantau, H.-J., y Serrano, J. (2005, 12). Non-linear constrained mpc: Realtime implementation of greenhouse air temperature control. Computers and Electronics in Agriculture, 49. doi: 10.1016/j.compag.2005.08.005spa
dc.relation.referencesGuo, H., Wang, F., Chen, H., y Guo, D. (2012, 7). Stability control of vehicle with tire blowout using differential flatness based mpc method. Proceedings of the 10th World Congress on Intelligent Control and Automation. doi: 10.1109/WCICA.2012.6358216spa
dc.relation.referencesHan, J. (2009, 3). From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56, 900-906. Descargado de http://ieeexplore.ieee.org/ document/4796887/ doi: 10.1109/TIE.2008.2011621spa
dc.relation.referencesHanema, J., Toth, R., y Lazar, M. (2017, 12). Stabilizing non-linear mpc using linear parameter-varying representations. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). doi: 10.1109/CDC.2017.8264185spa
dc.relation.referencesHedengren, J. (2022). Temperature control lab. Descargado de http://apmonitor.com/ pdc/index.php/Main/ArduinoTemperatureControlspa
dc.relation.referencesHuang, Y., y Xue, W. (2014, 7). Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions, 53, 963-976. doi: 10.1016/j.isatra.2014.03.003spa
dc.relation.referencesHuang, Z., Liu, Y., Zheng, H., Wang, S., Ma, J., y Liu, Y. (2018, 7). A self-searching optimal adrc for the pitch angle control of an underwater thermal glider in the vertical plane motion. Ocean Engineering, 159, 98-111. doi: 10.1016/j.oceaneng.2018.04.010spa
dc.relation.referencesJiang, J., Zhen, X., Li, Q., Wang, W., Jin, Q., y Pan, L. (2006). The applications of model pid or imc-pid advanced process control to refinery and petrochemical plants. WMSCI 2006 - The 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Jointly with the 12th International Conference on Information Systems Analysis and Synthesis, ISAS 2006 - Proc., 7, 449-461.spa
dc.relation.referencesJiang, L., Kong, X., Yang, Q., y Shao, F. (2010, 5). Application of compound pid controller in the boiler. 2010 Chinese Control and Decision Conference, 2725-2728. Descargado de http://ieeexplore.ieee.org/document/5498718/ doi: 10.1109/ CCDC.2010.5498718spa
dc.relation.referencesJiang, Y., y Jiang, Z.-P. (2012, 10). Computational adaptive optimal control for continuoustime linear systems with completely unknown dynamics. Automatica, 48, 2699-2704. doi: 10.1016/j.automatica.2012.06.096spa
dc.relation.referencesJichkar, C., y Sondkar, S. (2017). Comparative study of real time implementation of labview based mpc controller and pid controller for flow control loop. 2017 2nd International Conference for Convergence in Technology, I2CT 2017, 2017-Janua, 464-470. doi: 10.1109/I2CT.2017.8226172spa
dc.relation.referencesKang, C., Wang, S., Ren, W., Lu, Y., y Wang, B. (2019). Optimization design and application of active disturbance rejection controller based on intelligent algorithm. IEEE Access, 7 , 59862-59870. doi: 10.1109/ACCESS.2019.2909087spa
dc.relation.referencesKirk, D. E. (1998). Optimal control theory. Dover Publications, Inc.spa
dc.relation.referencesKouvaritakis, B., y Cannon, M. (2016). Mpc with no model uncertainty. En (p. 13-64). doi: 10.1007/978-3-319-24853-0 2spa
dc.relation.referencesKumar, A. S., y Ahmad, Z. (2012, 4). Model predictive control (mpc) and its current issues in chemical engineering. Chemical Engineering Communications, 199 , 472-511. doi: 10.1080/00986445.2011.592446spa
dc.relation.referencesLakshmi, K., Rajesh, T., Anusuya, D., Prowince, P. G., y Pranesh, B. (2019). Design and implementation of multivariable quadruple tank system with different pid tuning control techniques. Proceedings of the 2019 International Conference on Advances in Computing and Communication Engineering, ICACCE 2019 . doi: 10.1109/ ICACCE46606.2019.9079983spa
dc.relation.referencesLi, S., Yang, J., Chen, W.-H., y Chen, X. (2012, 12). Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics, 59 . doi: 10.1109/TIE.2011.2182011spa
dc.relation.referencesLi, Z., Ma, X., Li, Y., Meng, Q., y Li, J. (2019, 12). Adrc-esmpc active heave compensation control strategy for offshore cranes. Ships and Offshore Structures. doi: 10.1080/ 17445302.2019.1703388spa
dc.relation.referencesLiu, G., Shi, P., Han, J., Rees, D., y Xia, Y. (2007, 1). Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theory & Applications, 1 , 75-81. doi: 10.1049/iet-cta:20050138spa
dc.relation.referencesLuenberger, D. (1971, 12). An introduction to observers. IEEE Transactions on Automatic Control, 16 . doi: 10.1109/TAC.1971.1099826spa
dc.relation.referencesLuenberger, D. G. (1964). Observing the state of a linear system. IEEE Transactions on Military Electronics, 8 . doi: 10.1109/TME.1964.4323124spa
dc.relation.referencesLuenberger, D. G. (1979). Introduction to dynamic systems - theory, models, and applications. John Wiley & Sons, Inc.spa
dc.relation.referencesLv, T., Yang, Y., y Chai, L. (2019, 7). Extended state observer based mpc for a quadrotor helicopter subject to wind disturbances. 2019 Chinese Control Conference (CCC), 8206-8211. doi: 10.23919/ChiCC.2019.8865370spa
dc.relation.referencesL´evine, J. (2011, 1). On necessary and sufficient conditions for differential flatness. Applicable Algebra in Engineering, Communication and Computing, 22 , 47-90. doi: 10.1007/ s00200-010-0137-xspa
dc.relation.referencesMagni, L., Raimondo, D. M., y Allg¨ower, F. (Eds.). (2009). Nonlinear model predictive control (Vol. 384). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-01094-1spa
dc.relation.referencesMagni, L., y Scattolini, R. (2005, 6). On the solution of the tracking problem for nonlinear systems with mpc. International Journal of Systems Science, 36 . doi: 10.1080/ 00207720500139666spa
dc.relation.referencesMata, S., Zubizarreta, A., Nieva, I., Cabanes, I., y Pinto, C. (2020, 8). Control mpc basado en un modelo ltv para seguimiento de trayectoria con estabilidad garantizada. XXXVIII Jornadas de Autom´atica: Gij´on, 6, 7, y 8 de septiembre de 2017, 122-129. doi: 10 .17979/spudc.9788497497749.0122spa
dc.relation.referencesMayne, D., Rawlings, J., Rao, C., y Scokaert, P. (2000, 6). Constrained model predictive control: Stability and optimality. Automatica, 36. doi: 10.1016/S0005-1098(99)00214 -9spa
dc.relation.referencesMayne, D. Q. (1995). Optimization in model predictive control. En (p. 367-396). Springer Netherlands. doi: 10.1007/978-94-011-0135-6 15spa
dc.relation.referencesMichalek, M. M. (2016, 7). Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. 2016 American Control Conference (ACC), 1536-1541. doi: 10.1109/ACC.2016.7525134spa
dc.relation.referencesNieuwstadt, M. V., Rathinam, M., y Murray, R. (1994). Differential flatness and absolute equivalence. Proceedings of 1994 33rd IEEE Conference on Decision and Control, 326-332. doi: 10.1109/CDC.1994.410908spa
dc.relation.referencesOgata, K. (2010). Modern control engineering (5th ed.). Pearsonspa
dc.relation.referencesPan, W., Xiao, H., y Wang, C. (2010, 10). Design of ship course controller based on optimal active disturbance rejection technique. 2010 International Conference on Intelligent System Design and Engineering Application, 582-585. doi: 10.1109/ISDEA.2010.294spa
dc.relation.referencesParaskevopoulos, P. (2002). Modern control engineering. CRC Pressspa
dc.relation.referencesParastiwi, A., y Ekojono. (2016, 7). Design of spray dryer process control by maintaining outlet air temperature of spray dryer chamber. 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 619-622. doi: 10.1109/ ISITIA.2016.7828731spa
dc.relation.referencesPark, J., Martin, R. A., Kelly, J. D., y Hedengren, J. D. (2020, 4). Benchmark temperature microcontroller for process dynamics and control. Computers and Chemical Engineering, 135. doi: 10.1016/J.COMPCHEMENG.2020.106736spa
dc.relation.referencesPetersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014a, 10). Application of constrained linear mpc to a spray dryer. 2014 IEEE Conference on Control Applications (CCA), 2120-2126. doi: 10.1109/CCA.2014.6981616spa
dc.relation.referencesPetersen, L. N., Poulsen, N. K., Niemann, H. H., Utzen, C., y Jorgensen, J. B. (2014b, 12). Economic optimization of spray dryer operation using nonlinear model predictive control. 53rd IEEE Conference on Decision and Control, 6794-6800. doi: 10.1109/ CDC.2014.7040456spa
dc.relation.referencesQing, W., Nannan, S., Jaqing, W., y Jing, Y. (2008). On the application of optimal adrc in main steam temperature control system. Proceedings of the 27th Chinese Control Conference, CCC , 763-767. doi: 10.1109/CHICC.2008.4605731spa
dc.relation.referencesRossiter, J. (2005). Model-based predictive control (J. Rossiter, Ed.). CRC Press. doi: 10.1201/9781315272610spa
dc.relation.referencesShengyong, L. (2019). Optimal control of spraying and drying temperature in production line based on active disturbance rejection control technique. International Journal of Performability Engineering, 15 . doi: 10.23940/ijpe.19.10.p20.27352743spa
dc.relation.referencesShi, H.-J., y Nie, X.-C. (2021, 4). Composite control for disturbed direct-driven surfacemounted permanent magnet synchronous generator with model prediction strategy. Measurement and Control. doi: 10.1177/00202940211010829spa
dc.relation.referencesSira-Ramirez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2011, 1). Control lineal robusto de sistemas no lineales. Revista iberoamericana de autom´atica e inform´atica industrial, 8 , 14-28. doi: 10.4995/RIAI.2011.01.04spa
dc.relation.referencesSira-Ram´ırez, H. (2004). Differentially flat systems. CRC Press. doi: 10.1201/ 9781482276640spa
dc.relation.referencesSira-Ram´ırez, H. (2018, 11). From flatness, gpi observers, gpi control and flat filters to observer-based adrc. Control Theory and Technology, 16 . doi: 10.1007/s11768-018 -8134-xspa
dc.relation.referencesSira-Ram´ırez, H., Luviano-Ju´arez, A., y Cort´es-Romero, J. (2012, 5). Flatness-based linear output feedback control for disturbance rejection and tracking tasks on a chua’s circuit. International Journal of Control, 85 , 594-602. doi: 10.1080/00207179.2012.660196spa
dc.relation.referencesSira-ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neira, M., y Zurita-Bustamente, W. (2017). Differential flatness. En (p. 285-297). Elsevier. doi: 10.1016/B978-0-12-849868-2.00015 -0spa
dc.relation.referencesSira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W. (2017a). Generalities of adrc. En (p. 13-50). Elsevier. doi: 10.1016/B978-0-12-849868 -2.00002-2spa
dc.relation.referencesSira-Ram´ırez, H., Luviano-Ju´arez, A., Ram´ırez-Neria, M., y Zurita-Bustamante, E. W. (2017b). Merging flatness, gpi observation, and gpi control with adrc. En (p. 51-107). Elsevier. doi: 10.1016/B978-0-12-849868-2.00003-4spa
dc.relation.referencesSlotine, J.-J. E., y Weiping, L. (1991). Applied nonlinear control. Prentice Hallspa
dc.relation.referencesSuhail, S. A., Bazaz, M. A., y Hussain, S. (2021, 10). Mpc based active disturbance rejection control for automated steering control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235 . doi: 10.1177/09544070211004506spa
dc.relation.referencesSun, L., Hua, Q., Shen, J., Xue, Y., Li, D., y Lee, K. (2017, 8). A combined voltage control strategy for fuel cell. Sustainability, 9 . doi: 10.3390/su9091517spa
dc.relation.referencesTian, G., y Gao, Z. (2007, 10). Frequency response analysis of active disturbance rejection based control system. 2007 IEEE International Conference on Control Applications, 1595-1599. doi: 10.1109/CCA.2007.4389465spa
dc.relation.referencesVarghese, E. S., Vincent, A. K., y Bagyaveereswaran, V. (2017, 11). Optimal control of inverted pendulum system using pid controller, lqr and mpc. IOP Conference Series: Materials Science and Engineering, 263 , 052007. doi: 10.1088/1757-899X/263/5/052007spa
dc.relation.referencesVelasco, F. H., Candelo-Becerra, J., y Santamar´ıa, A. R. (2018, 12). Dynamic analysis of a permanent magnet dc motor using a buck converter controlled by zad-fpic. Energies,11, 3388. doi: 10.3390/en11123388spa
dc.relation.referencesWarren, A., y Marlin, T. (2004). Constrained mpc under closed-loop uncertainty. Proceedings of the 2004 American Control Conference, 4607-4612 vol.5. doi: 10.23919/ACC.2004 .1384037spa
dc.relation.referencesWenjie, W., Zhen, H., Rui, C., Feiteng, J., y Huiming, S. (2018, 8). Trajectory tracking control design for uav based on mpc and active disturbance rejection. 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). doi: 10.1109/GNCC42960 .2018.9019022spa
dc.relation.referencesWu, H., Zhang, L., Yang, J., y Li, S. (2017, 7). Model predictive control for dc-dc buck power converter-dc motor system with uncertainties using a gpi observer. 2017 36th Chinese Control Conference (CCC). doi: 10.23919/ChiCC.2017.8028129spa
dc.relation.referencesYamamoto, T., Kawada, K., Kugemoto, H., y Kutsuwa, Y. (2009). Design and industrial applications of a control performance assessment based pid controller. IFAC Proceedings Volumes (IFAC-PapersOnline), 15, 729-734. doi: 10.3182/20090706-3-FR-2004.0162spa
dc.relation.referencesYan, Y., Yang, J., Sun, Z., Li, S., y Yu, H. (2020, 1). Non-linear-disturbance-observerenhanced mpc for motion control systems with multiple disturbances. IET Control Theory & Applications, 14. doi: 10.1049/iet-cta.2018.5821spa
dc.relation.referencesYang, H., Guo, M., Xia, Y., y Sun, Z. (2020, 1). Dual closed-loop tracking control for wheeled mobile robots via active disturbance rejection control and model predictive control. International Journal of Robust and Nonlinear Control, 30. doi: 10.1002/rnc.4750spa
dc.relation.referencesYang, J., Cui, H., Li, S., y Zolotas, A. (2018a, 2). Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi: 10.1109/TCSI.2017.2725386spa
dc.relation.referencesYang, J., Cui, H., Li, S., y Zolotas, A. (2018b, 2). Optimized active disturbance rejection control for dc-dc buck converters with uncertainties using a reduced-order gpi observer. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 832-841. doi: 10.1109/TCSI.2017.2725386spa
dc.relation.referencesYang, J., Wu, H., Hu, L., y Li, S. (2019, 10). Robust predictive speed regulation of converterdriven dc motors via a discrete-time reduced-order gpio. IEEE Transactions on Industrial Electronics, 66, 7893-7903. doi: 10.1109/TIE.2018.2878119spa
dc.relation.referencesYang, Z., Wang, Z., y Yan, M. (2021, 5). An optimization design of adaptive cruise control system based on mpc and adrc. Actuators, 10, 110. doi: 10.3390/act10060110spa
dc.relation.referencesYoo, D., Yau, S. S.-T., y Gao, Z. (2007, 1). Optimal fast tracking observer bandwidth of the linear extended state observer. International Journal of Control, 80, 102-111. doi: 10.1080/00207170600936555spa
dc.relation.referencesYu, G.-R., y Hwang, R.-C. (2004). Optimal pid speed control of brush less dc motors using lqr approach. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 1, 473-478. doi: 10.1109/ICSMC.2004.1398343spa
dc.relation.referencesZeilinger, M. N., Jones, C. N., y Morari, M. (2010, 12). Robust stability properties of soft constrained mpc. 49th IEEE Conference on Decision and Control (CDC), 5276-5282. doi: 10.1109/CDC.2010.5717488spa
dc.relation.referencesZhang, Z., Cheng, J., y Guo, Y. (2021, 7). Pd-based optimal adrc with improved linear extended state observer. Entropy, 23 . doi: 10.3390/e23070888spa
dc.relation.referencesZhao, Y., y Huang, Y. (2021, 7). Frequency properties of adrc. 2021 40th Chinese Control Conference (CCC), 6628-6633. doi: 10.23919/CCC52363.2021.9549514spa
dc.relation.referencesZhou, W., Shao, S. S. L., y Gao, Z. (2009). A stability study of the active disturbance rejection control problem by a singular perturbation approach. Applied Mathematical Sciences, 3 , 491-508.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembProgrammable controllerseng
dc.subject.lembControladores programablesspa
dc.subject.lembNonlinear systemseng
dc.subject.lembSistemas no linealesspa
dc.subject.lembAutomatic controleng
dc.subject.lembControl automáticospa
dc.subject.proposalDifferential flatnesseng
dc.subject.proposalPlanitud diferencialspa
dc.subject.proposalSistemas no linealesspa
dc.subject.proposalControl por rechazo activo de perturbacionesspa
dc.subject.proposalControl predictivo basado en modelospa
dc.subject.proposalActive disturbance rejection controlspa
dc.subject.proposalModel predictive controlspa
dc.titleMetodología de control óptimo para sistemas no lineales diferencialmente planos, basado en control por rechazo activo de perturbaciones (ADRC) y control predictivo basado en modelo (MPC)spa
dc.title.translatedOptimal control methodology for differentially flat nonlinear systems, based on Active Disturbance Rejection Control (ADRC) and Model Predictive Control (MPC)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032489050.2022.pdf
Tamaño:
4.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: