Spatial modeling of soil organic carbon with NIR and environmental covariates in the municipality of Villavicencio
dc.contributor.advisor | Darghan Contreras, Aquiles Enrique | spa |
dc.contributor.author | Diaz Garcia, Nubia Cristina | spa |
dc.contributor.orcid | Diaz Garcia, Nubia Cristina [0009-0006-1739-0801] | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Villavicencio | spa |
dc.date.accessioned | 2024-10-31T20:29:52Z | |
dc.date.available | 2024-10-31T20:29:52Z | |
dc.date.issued | 2020 | |
dc.description | ilustraciones, diagramas, mapas, tablas | spa |
dc.description.abstract | Soil is the largest reservoir of organic carbon in the biosphere after the ocean. Soil organic carbon accumulation is controlled by several natural and anthropogenic factors including climate, relief, vegetation and intrinsic soil properties. The interaction between these factors significantly modifies the impact of carbon concentration in the atmosphere under the response of CO2 fluxes from the soil. Assessing soil organic carbon content (%) for large areas is costly and time consuming due to its large spatial variability. Near-infrared reflectance spectroscopy is a fast and inexpensive tool to measure this property. In the present study, spatial regression modeling of some environmental covariates was used to estimate topsoil organic carbon (0-30 cm) in the Depositional piedmont of the municipality of Villavicencio (Meta). The georeferenced field observations were cross-referenced with raster information of 15 terrain parameters, climatic data, normalized vegetation index, sand, clay and silt content and soil spectra. The exploratory analysis of the data showed positive spatial autocorrelation for the study area, so it was necessary to consider them in the modeling. Elevation, valley depth, flow direction, vegetation index, soil spectra, and sand and clay contents were the most important predictors of carbon in the study area. With this proposal, the carbon in each of the polygons was estimated, which can be useful for taking actions in those regions where soil quality is compromised (Texto tomado de la fuente). | eng |
dc.description.abstract | El suelo es el mayor reservorio de carbono orgánico en la biosfera después del océano. La acumulación de carbono orgánico del suelo está controlada por varios factores naturales y antropogénicos, incluidos el clima, el relieve, la vegetación y las propiedades intrínsecas del suelo. La interacción entre estos factores modifica significativamente el impacto de la concentración de carbono en la atmósfera bajo la respuesta de los flujos de CO2 del suelo. Evaluar el contenido de carbono orgánico del suelo (%) para grandes áreas es costoso y requiere mucho tiempo debido a su gran variabilidad espacial. La espectroscopia de reflectancia en el infrarrojo cercano es una herramienta rápida y económica para medir esta propiedad. En el presente estudio, se utilizó el modelado de regresión espacial de algunas covariables ambientales para estimar el carbono orgánico del suelo superficial (0-30 cm) en el Piedemonte Depositacional del municipio de Villavicencio (Meta). Las observaciones de campo georreferenciadas se cruzaron con información raster de parámetros de terreno, datos climáticos, índice de vegetación normalizado, contenido de arena, arcilla y limo y espectros de suelos. El análisis exploratorio de los datos mostró autocorrelación espacial positiva para el área de estudio, por lo que fue necesario considerarlos en la modelación. La elevación, la profundidad del valle, la dirección del flujo, el índice de vegetación, los espectros de suelos y los contenidos de arena y arcilla fueron los predictores más importantes del carbono orgánico (%) en el área de estudio. Con esta propuesta se estimó el carbono en cada uno de los puntos muestreados, lo que puede ser útil para tomar acciones en aquellas regiones donde la calidad del suelo se ve comprometida. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestria en Ciencias Agrarias | spa |
dc.description.researcharea | Suelos y Aguas | spa |
dc.format.extent | x, 55 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87137 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services - A global review. Geoderma, 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009 | spa |
dc.relation.references | Alomar, D., & Fuchslocher, R. (1997). Fundamentos de la espectroscopia de reflectancia en el infrarojo cercano (NIRS) como método de análisis de forrajes. Agro Sur, 26, 88–104. | spa |
dc.relation.references | Anselin, L. (1988). Spatial econometrics: Methods and models. Econometrica, Vol. 72, pp. 1899–1925. https://doi.org/10.1111/j.1468-0262.2004.00558.x | spa |
dc.relation.references | Anselin, L. (2003). Spatial econometrics. In Badi H. Baltagi (Ed.), A companion to theoretical econometric (pp. 310–330). https://doi.org/10.1002/9780470996249 | spa |
dc.relation.references | Anselin, L. (2005). Spatial Regression Analysis in R–A Workbook. Urbana, 90. Retrieved from http://www.drs.wisc.edu/documents/articles/curtis/cesoc977- 11/W15_Anselin2007.pdf | spa |
dc.relation.references | Arbia, G. (2014). A Primer for Spatial Econometrics: With Applications in R. https://doi.org/10.1057/9781137317940 | spa |
dc.relation.references | Ashtekar, J. M., Owens, P. R., Brown, R. A., Winzeler, H. E., Dorantes, M., Libohova, Z., … Castro, A. (2014). Digital mapping of soil properties and associated uncertainties in the llanos orientales, south america. GlobalSoilMap: Basis of the Global Spatial Soil Information System - Proceedings of the 1st GlobalSoilMap Conference, (January), 367–372. https://doi.org/10.1201/b16500-67 | spa |
dc.relation.references | Baldock, J. A., & Nelson, P. N. (2000). Soil Organic Matter. In M. E. Summer (Ed.), Handbook of Soil Science (pp. B25–B84). https://doi.org/10.1038/194324b0 | spa |
dc.relation.references | Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777. https://doi.org/10.1366/0003702894202201 | spa |
dc.relation.references | Batjes, N. H. (2014). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65(1), 10–21. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x | spa |
dc.relation.references | Bellon-Maurel, V., & McBratney, A. (2011). Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives. Soil Biology and Biochemistry, 43(7), 1398–1410. https://doi.org/http://dx.doi.org/10.1016/j.soilbio.2011.02.019 | spa |
dc.relation.references | Bhattacharya, S. S., Kim, K.-H., Das, S., Uchimiya, M., Jeon, B. H., Kwon, E., & Szulejko, J. E. (2016). A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem. Journal of Environmental Management, 167, 214–227. https://doi.org/http://dx.doi.org/10.1016/j.jenvman.2015.09.042 | spa |
dc.relation.references | Bishop, M. P., James, L. A., Shroder, J. F., & Walsh, S. J. (2012). Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology, 137(1), 5–26. https://doi.org/10.1016/j.geomorph.2011.06.027 | spa |
dc.relation.references | Blum, W. E. H. (2005). Functions of soil for society and the environment. Reviews in Environmental Science and Biotechnology, 4(3), 75–79. https://doi.org/10.1007/s11157-005-2236-x | spa |
dc.relation.references | Bojko, O., & Kabala, C. (2017). Organic carbon pools in mountain soils — Sources of variability and predicted changes in relation to climate and land use changes. Catena, 149, Part, 209– 220. https://doi.org/http://dx.doi.org/10.1016/j.catena.2016.09.022 | spa |
dc.relation.references | Bonfatti, B. R., Hartemink, A. E., Giasson, E., Tornquist, C. G., & Adhikari, K. (2016). Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma, 261, 204–221. https://doi.org/10.1016/j.geoderma.2015.07.016 | spa |
dc.relation.references | Bongiovanni, R. (2009). Econometría Espacial Aplicada a la Agricultura de Precisión. Actualidad Económica, 19(67), 9–28. | spa |
dc.relation.references | Brunet, D., Barthès, B. G., Chotte, J. L., & Feller, C. (2007). Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: Effects of sample grinding and set heterogeneity. Geoderma, 139(1–2), 106–117. https://doi.org/10.1016/j.geoderma.2007.01.007 | spa |
dc.relation.references | Burns, D. A., & Ciurczak, E. W. (2008). Handbook of Near-Infrared Analysis (Practical Spectroscopy) by (z-lib.org).pdf (Third Edit). CRC Press Taylor & Francis Group. | spa |
dc.relation.references | Canadell, J. G., Pataki, D. E., Gifford, R., Houghton, R. A., Luo, Y., Raupach, M. R., … Steffen, W. (2007). Saturation of the Terrestrial Carbon Sink. Terrestrial Ecosystems in a Changing World, 59–78. https://doi.org/10.1007/978-3-540-32730-1_6 | spa |
dc.relation.references | Cavazzi, S., Corstanje, R., Mayr, T., Hannam, J., & Fealy, R. (2013). Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma, 195–196, 111– 121. https://doi.org/10.1016/j.geoderma.2012.11.020 | spa |
dc.relation.references | Chambers, A., Lal, R., & Paustian, K. (2016). Soil carbon sequestration potential of US croplands andgrasslands: Implementing the 4 per Thousand Initiative. Journal of Soil and Water Conservation, 71(3), 68A-74A. | spa |
dc.relation.references | Chang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R. (2001). Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal, 480–490. https://doi.org/10.2136/sssaj2001.652480x | spa |
dc.relation.references | Chatterjee, A., Lal, R., Wielopolski, L., Martin, M. Z., & Ebinger, M. H. (2009). Evaluation of Different Soil Carbon Determination Methods. Critical Reviews in Plant Sciences, 28(3), 164–178. https://doi.org/10.1080/07352680902776556 | spa |
dc.relation.references | Chaudhary, M., Naresh, R. K., Sachan, D. K., Mahajan, N. C., Jat, L., Tiwari, R., & Yadav, A. (2018). Soil Organic Carbon Fractions , Soil Microbial Biomass Carbon , and Enzyme Activities Impacted by Crop Rotational Diversity and Conservation Tillage in North West IGP : A Review Department of Agronomy , Sardar Vallabhbhai Patel University of Agriculture &. 7(11), 3573–3600. | spa |
dc.relation.references | Coblinski, J. A., Giasson, É., Demattê, J. A. M., Dotto, A. C., Costa, J. J. F., & Vašát, R. (2020). Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths. Catena, 189(July 2019). https://doi.org/10.1016/j.catena.2020.104485 | spa |
dc.relation.references | Correa-Muñoz, N. A., & Higidio-Castro, J. F. (2017). Determination of landslide susceptibility in linear infrastructure. Case: Aqueduct network in Palacé, Popayan (Colombia). Ingenieria e Investigacion, 37(2), 17–24. https://doi.org/10.15446/ing.investig.v37n2.59654 | spa |
dc.relation.references | Curcio, D., Ciraolo, G., D’Asaro, F., & Minacapilli, M. (2013). Prediction of Soil Texture Distributions Using VNIR-SWIR Reflectance Spectroscopy. Procedia Environmental Sciences, 19, 494–503. https://doi.org/10.1016/j.proenv.2013.06.056 | spa |
dc.relation.references | Dalmolin, R. S. D., Gonçalves, C. N., Klamt, E., & Dick, D. P. (2005). Relação entre os constituintes do solo e seu comportamento espectral. Ciência Rural, 35(2), 481–489. https://doi.org/10.1590/s0103-84782005000200042 | spa |
dc.relation.references | Delgado-Baquerizo, M., Karunaratne, S. B., Trivedi, P., & Singh, B. K. (2018). Climate, Geography, and Soil Abiotic Properties as Modulators of Soil Carbon Storage. In B. K. Singh (Ed.), Soil Carbon Storage (pp. 137–165). https://doi.org/10.1016/b978-0-12-812766-7.00005-6 | spa |
dc.relation.references | Dignac, M. F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., … Basile-Doelsch, I. (2017). Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development, 37(2). https://doi.org/10.1007/s13593-017-0421-2 | spa |
dc.relation.references | Dotto, A. C. (2017). Soil VIS-NIR spectroscopy: Predictive potential and the development of a graphical user interface in R. Federal University of Santa Maria. | spa |
dc.relation.references | FAO. (2017). Unlocking the potential of soil organic carbon. Global symposium on soil organic carbon | spa |
dc.relation.references | Felicísimo, A. (1994). Modelos digitales del terreno: introducción y aplicaciones a las ciencias ambientales. Oviedo: Universidad de Oviedo, 118. Retrieved from http://www.etsimo.uniovi.es/~feli | spa |
dc.relation.references | Fernández Pierna, J. A., & Dardenne, P. (2008). Soil parameter quantification by NIRS as a Chemometric challenge at “Chimiométrie 2006.” Chemometrics and Intelligent Laboratory Systems, 91(1), 94–98. doi:10.1016/j.chemolab.2007.06.007 | spa |
dc.relation.references | Florinsky, I. V. (1998). Combined analysis of digital terrain models and remotely sensed data in landscape investigations. Progress in Physical Geography, 22(1), 33–60. https://doi.org/10.1177/030913339802200102 | spa |
dc.relation.references | Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(December 2017), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007 | spa |
dc.relation.references | Gougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577 | spa |
dc.relation.references | Guevara, M., Federico Olmedo, G., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., … Vargas, R. (2018). No silver bullet for digital soil mapping: Country-specific soil organic carbon estimates across Latin America. Soil, 4(3), 173–193. https://doi.org/10.5194/soil- 4-173-2018 | spa |
dc.relation.references | Hauke, J., & Kossowski, T. (2011). Comparison of values of pearson’s and spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae, 30(2), 87–93. https://doi.org/10.2478/v10117-011-0021-1 | spa |
dc.relation.references | Heaton, L., Fullen, M. A., & Bhattacharyya, R. (2016). Critical Analysis of the van Bemmelen Conversion Factor used to Convert Soil Organic Matter Data to Soil Organic Carbon Data: Comparative Analyses in a UK Loamy Sand Soil. Espaço Aberto, 6(1), 35–44. Retrieved from https://revistas.ufrj.br/index.php/EspacoAberto/article/viewFile/5244/3852 | spa |
dc.relation.references | Hobley, E., Wilson, B., Wilkie, A., Gray, J., & Koen, T. (2015). Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant and Soil, 390(1–2), 111–127. https://doi.org/10.1007/s11104-015-2380-1 | spa |
dc.relation.references | IGAC. (2004). Estudio General de Suelos y Zonificación de Tierras del Departamento del Meta. Escala 1:100.000. Bogota, Colombia: Instituto Geográfico Agustín Codazzi | spa |
dc.relation.references | Islam, K., McBratney, A., & Balwant, S. (2003). Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of Soil Research, 41(6), 1101–1114. | spa |
dc.relation.references | Jaconi, A., Poeplau, C., Ramirez-Lopez, L., Van Wesemael, B., & Don, A. (2019). Log-ratio transformation is the key to determining soil organic carbon fractions with near-infrared spectroscopy. European Journal of Soil Science, 70(1), 127–139. https://doi.org/10.1111/ejss.12761 | spa |
dc.relation.references | Jaconi, A, Vos, C., & Don, A. (2019). Near infrared spectroscopy as an easy and precise method to estimate soil texture. Geoderma, 337(November 2018), 906–913. https://doi.org/10.1016/j.geoderma.2018.10.038 | spa |
dc.relation.references | Jalota, S. K., Vashisht, B. B., Sharma, S., & Kaur, S. (2018). Emission of Greenhouse Gases and Their Warming Effect. In Understanding Climate Change Impacts on Crop Productivity and Water Balance (pp. 1–53). https://doi.org/10.1016/b978-0-12-809520-1.00001-x | spa |
dc.relation.references | Janzen, H. (2004). Carbon cycling in earth systems—a soil science perspective. Agriculture, Ecosystems & Environment, 104(3), 399–417. https://doi.org/10.1016/j.agee.2004.01.040 | spa |
dc.relation.references | Jobbágy, E., & Jackson, R. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(April), 423–436. | spa |
dc.relation.references | Kern, J., Giani, L., Teixeira, W., Lanza, G., & Glaser, B. (2019). What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? Catena, 172(February 2018), 104–112. https://doi.org/10.1016/j.catena.2018.08.008 | spa |
dc.relation.references | Khasanah, N., van Noordwijk, M., Ningsih, H., & Rahayu, S. (2015). Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agriculture, Ecosystems and Environment, 211, 195–206. https://doi.org/10.1016/j.agee.2015.06.009 | spa |
dc.relation.references | Kunkel, V., Hancock, G. R., & Wells, T. (2019). Large catchment-scale spatiotemporal distribution of soil organic carbon. Geoderma, 334(May 2018), 175–185. https://doi.org/10.1016/j.geoderma.2018.07.046 | spa |
dc.relation.references | Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396 | spa |
dc.relation.references | Lal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food Policy, 36, Supple(0), S33–S39. https://doi.org/http://dx.doi.org/10.1016/j.foodpol.2010.12.001 | spa |
dc.relation.references | Lal, R., Delgado, J. a., Groffman, P. M., Millar, N., Dell, C., & Rotz, A. (2011). Management to mitigate and adapt to climate change. Journal of Soil and Water Conservation, 66(4), 118A-129A. https://doi.org/10.2489/jswc.66.4.118A | spa |
dc.relation.references | Lal, R., Smith, P., Jungkunst, H. F., Mitsch, W. J., Lehmann, J., Nair, P. K. R., … Ravindranath, N. H. (2018). The carbon sequestration potential of terrestrial ecosystems. Journal of Soil and Water Conservation, 73(6), 145A-152A. https://doi.org/10.2489/jswc.73.6.145a | spa |
dc.relation.references | Lagacherie, P., Mcbratney, A. B., & Voltz, M. (2007). A digital soil mapping An introductory perspective (Vol 31; Philippe Lagacherie, A. . McBratney, & M. Voltz, Eds.). Amsterdam, The Netherlands: Elsevier. | spa |
dc.relation.references | Lamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352(January), 395–413. https://doi.org/10.1016/j.geoderma.2019.05.031 | spa |
dc.relation.references | Leiva, N. (2012). Metodología para el cálculo de la humedad del suelo usando parámetros topográficos (MDE), climáticos y edáficos en un sector del piedemonte depositacional del municipio de Villavicencio. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/8910/1/795068.2012.pdf | spa |
dc.relation.references | Levi, M. R., & Rasmussen, C. (2014). Covariate selection with iterative principal component analysis for predicting physical soil properties. Geoderma, 219–220(0), 46–57. https://doi.org/http://dx.doi.org/10.1016/j.geoderma.2013.12.013 | spa |
dc.relation.references | Luo, Z., Wang, E., Fillery, I. R. P., Macdonald, L. M., Huth, N., & Baldock, J. (2014). Modelling soil carbon and nitrogen dynamics using measurable and conceptual soil organic matter pools in APSIM. Agriculture, Ecosystems and Environment, 186, 94–104. https://doi.org/10.1016/j.agee.2014.01.019 | spa |
dc.relation.references | Ma, Y., Minasny, B., Malone, B. P., & Mcbratney, A. B. (2019). Pedology and digital soil mapping (DSM). European Journal of Soil Science, 70(2), 216–235. https://doi.org/10.1111/ejss.12790 | spa |
dc.relation.references | Machado, P. L. O. D. A. (2005). Carbono do solo e a mitigação da mudança climática global. Quimica Nova, 28(2), 329–334. https://doi.org/10.1590/S0100-40422005000200026 | spa |
dc.relation.references | Manning, P., de Vries, F. T., Tallowin, J. R. B., Smith, R., Mortimer, S. R., Pilgrim, E. S., … Bardgett, R. D. (2015). Simple measures of climate, soil properties and plant traits predict nationalscale grassland soil carbon stocks. Journal of Applied Ecology, 52(5), 1188–1196. https://doi.org/10.1111/1365-2664.12478 | spa |
dc.relation.references | Martínez, E., Fuentes, J. P., & Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de La Ciencia Del Suelo y Nutrición Vegetal, 8(1), 68–96. https://doi.org/10.4067/S0718-27912008000100006 | spa |
dc.relation.references | McBratney, A., Mendonca, M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1– 2), 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4 | spa |
dc.relation.references | Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/http://dx.doi.org/10.1016/j.geoderma.2017.01.002 | spa |
dc.relation.references | Minasny, B., McBratney, A. B., & Salvador-Blanes, S. (2008). Quantitative models for pedogenesis - A review. Geoderma, 144(1–2), 140–157. https://doi.org/10.1016/j.geoderma.2007.12.013 | spa |
dc.relation.references | Mishra, U., Lal, R., Liu, D., & Van Meirvenne, M. (2010). Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale. Soil Science Society of America Journal, 74(3), 906–914. https://doi.org/10.2136/sssaj2009.0158 | spa |
dc.relation.references | Mulder, V. L. (2013). Spectroscopy-supported digital soil mapping (Wageningen University). Retrieved from http://edepot.wur.nl/274044 | spa |
dc.relation.references | Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., … Wetterlind, J. (2015). Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Advances in Agronomy, 132(March), 139–159. https://doi.org/10.1016/bs.agron.2015.02.002 | spa |
dc.relation.references | Odeh, I. O. A., & Crawford, M. (2007). Digital mapping of soil attributes for regional and catchment modelling, usingg ancillary covariates, statistical and geostatistical techniques. In Developments in Soil Science (Vol. 31, pp. 437–454). | spa |
dc.relation.references | Olaya, V. (2004) A Gentle Introduction to SAGA GIS. 1.1 Edition, Olaya Victor and Pineda Javier Editors., Madrid, Spain. | spa |
dc.relation.references | Oldfield, E. E., Wood, S. A., Palm, C. A., & Bradford, M. A. (2015). How much SOM is needed for sustainable agriculture? Frontiers in Ecology and the Environment, 13(10), 527. https://doi.org/10.1890/1540-9295-13.10.527 | spa |
dc.relation.references | Olson, K. R. (2010). Impacts of tillage, slope, and erosion on soil organic carbon retention. Soil Science, 175(11), 562–567. https://doi.org/10.1097/SS.0b013e3181fa2837 | spa |
dc.relation.references | Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2017). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7–13. https://doi.org/10.1016/j.coesh.2017.12.003 | spa |
dc.relation.references | Piccolo, A. (1996). Humic substances in terrestrial ecosystems. In A. Piccolo (Ed.), Elsevier (Vol. 66). Napoli: Elsevier B.V. | spa |
dc.relation.references | Qafoku, N. P. (2015). Climate-Change Effects on Soils: Accelerated Weathering, Soil Carbon, and Elemental Cycling (D. L. S. B. T.-A. in Agronomy, Ed.). https://doi.org/http://dx.doi.org/10.1016/bs.agron.2014.12.002 | spa |
dc.relation.references | R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. | spa |
dc.relation.references | Robinson, D. A., Hockley, N., Cooper, D. M., Emmett, B. A., Keith, A. M., Lebron, I., … Robinson, J. S. (2013). Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation. Soil Biology and Biochemistry, 57, 1023–1033. https://doi.org/10.1016/j.soilbio.2012.09.008 | spa |
dc.relation.references | Rodríguez Albarrcín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214 | spa |
dc.relation.references | Paterson, E., & Sim, A. (2013). Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Global Change Biology, 19(5), 1562–1571. https://doi.org/10.1111/gcb.12140 | spa |
dc.relation.references | Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9575–9580. https://doi.org/10.1073/pnas.1706103114 | spa |
dc.relation.references | Santos, P. (2018). Modelado espacial del carbono organico del suelo y su relacion con otras propiedades quimicas en el cultivo de arroz del distrito de riego del Norte de Santader (Universidad Nacional de Colombia). Retrieved from https://repositorio.unal.edu.co/handle/unal/63966 | spa |
dc.relation.references | Schillaci, C., Acutis, M., Vesely, F., & Saia, S. (2019). A simple pipeline for the assessment of legacy soil datasets : An example and test with soil organic carbon from a highly variable area. Catena, 175(December 2018), 110–122. https://doi.org/10.1016/j.catena.2018.12.015 | spa |
dc.relation.references | Skjemstad, D.C. Reicosky, A.R. Wilts, J.A. McGowan. (2002), Charcoal carbon in U.S. agricultural soils Soil Science Society of America Journal, 66 pp. 1255-1949 | spa |
dc.relation.references | Shepherd, K., & Aynekulu, E. (2013). Cost effective tools for soil organic carbon monitoring. Geophysical Research Abstracts, 15, 2013. | spa |
dc.relation.references | Stockmann, U., Adams, M. a., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164(2013), 80–99. https://doi.org/10.1016/j.agee.2012.10.001 | spa |
dc.relation.references | Terra, F. S., Demattê, J. A. M., & Viscarra Rossel, R. A. (2018). Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis. Geoderma, 318(October 2017), 123–136. https://doi.org/10.1016/j.geoderma.2017.10.053 | spa |
dc.relation.references | Torn, M. S., Swanston, C. W., Castanha, C., & Trumbore, S. E. (2009). Storage and Turnover of Organic Matter in Soil. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. https://doi.org/10.1002/9780470494950.ch6 | spa |
dc.relation.references | Trivedi, P., Singh, B. P., & Singh, B. K. (2018). Soil Carbon: Introduction, importance, status, threat, and mitigation. In B. K. Singh (Ed.), Soil Carbon Storage (pp. 1–28). https://doi.org/10.1016/b978-0-12-812766-7.00001-9 | spa |
dc.relation.references | Uribe, N., & Quintero, M. (2011). Aplicación del modelo hidrológico SWAT (Soil and Water Assessment Tool) a la cuenca del Rio Cañete. Cali, Colombia. | spa |
dc.relation.references | Vašát, R., Kodešová, R., & Borůvka, L. (2017). Ensemble predictive model for more accurate soil organic carbon spectroscopic estimation. Computers and Geosciences, 104(February), 75–83. https://doi.org/10.1016/j.cageo.2017.04.008 | spa |
dc.relation.references | Vagen, T., & Winowiecki, L. (2013). Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environmental Research Letters, 8. https://doi.org/10.1088/1748-9326/8/1/015011 | spa |
dc.relation.references | Varón, S. D., & Vargas, G. (2019). Análisis de la susceptibilidad por inundaciones asociadas a la dinámica fluvial del río Guatiquía en la ciudad de Villavicencio, Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 152–174. https://doi.org/10.15446/rcdg.v28n1.70856 | spa |
dc.relation.references | Vasques, G. M., Grunwald, S., & Myers, D. B. (2012). Associations between soil carbon and ecological landscape variables at escalating spatial scales in Florida, USA. Landscape Ecology, 27(3), 355–367. https://doi.org/10.1007/s10980-011-9702-3 | spa |
dc.relation.references | Velasquez, E., Lavelle, P., Barrios, E., Joffre, R., & Reversat, F. (2005). Evaluating soil quality in tropical agroecosystems of Colombia using NIRS. Soil Biology and Biochemistry, 37(5), 889–898. https://doi.org/10.1016/j.soilbio.2004.09.009 | spa |
dc.relation.references | Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007 | spa |
dc.relation.references | Viscarra Rossel, R. A., Brus, D. J., Lobsey, C., Shi, Z., & McLachlan, G. (2016). Baseline estimates of soil organic carbon by proximal sensing: Comparing design-based, model-assisted and model-based inference. Geoderma, 265(December 2015), 152–163. https://doi.org/10.1016/j.geoderma.2015.11.016 | spa |
dc.relation.references | Vogel, H. J., Bartke, S., Daedlow, K., Helming, K., Kögel-Knabner, I., Lang, B., … Wollschläger, U. (2018). A systemic approach for modeling soil functions. Soil, 4(1), 83–92. https://doi.org/10.5194/soil-4-83-2018 | spa |
dc.relation.references | Wang, S., Wang, X., & Ouyang, Z. (2012). Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China. Journal of Environmental Sciences, 24(3), 387–395. https://doi.org/10.1016/S1001-0742(11)60789-4 | spa |
dc.relation.references | Wiesmeier, M., Lützow, M. von, Wollschlaeger, U., Vogel, H. J., Garcia-Franco, N., Ließ, M., … Koegel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, under revi(July 2018), 149–162. https://doi.org/10.1016/J.GEODERMA.2018.07.026 | spa |
dc.relation.references | Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., … Kögel- Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333(November 2017), 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026 | spa |
dc.relation.references | Wilson, J. P. (2012). Digital terrain modeling. Geomorphology, 137(1), 107–121. https://doi.org/10.1016/j.geomorph.2011.03.012 | spa |
dc.relation.references | Wilson, & Bishop, M. (2013). Geomorphometry. In J. Shroder (Ed.), Treatise on Geomorphology (Vol. 3). https://doi.org/10.1016/B978-0-12-374739-6.00049-X | spa |
dc.relation.references | Yan, H., Wang, S., Wang, C., Zhang, G., & Patel, N. (2005). Losses of soil organic carbon under wind erosion in China. Global Change Biology, 11(5), 828–840. https://doi.org/10.1111/j.1365-2486.2005.00950.x | spa |
dc.relation.references | Yengoh, G. T., Dent, D., Olsson, L., & Tengberg, A. E. (2015). Use of the Normalized Index (NDVI) to Assess Diff erence Vegetation Current Status, Future Multiple Scales. Springer. | spa |
dc.relation.references | Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environment, 557–558, 838–850. https://doi.org/10.1016/j.scitotenv.2016.03.085 | spa |
dc.relation.references | Zhang, C., Tang, Y., Xu, X., & Kiely, G. (2011). Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland. Applied Geochemistry, 26(7), 1239–1248. https://doi.org/10.1016/j.apgeochem.2011.04.014 | spa |
dc.relation.references | Zhang, Y., Guo, L., Chen, Y., Shi, T., Luo, M., Ju, Q. L., … Wang, S. (2019). Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sensing, 11(14). https://doi.org/10.3390/rs11141683 | spa |
dc.relation.references | Zhong, B., & Xu, Y. J. (2009). Topographic effects on soil organic carbon in Louisiana watersheds. Environmental Management, 43(4), 662–672. https://doi.org/10.1007/s00267-008-9182- | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::639 - Caza, pesca, conservación, tecnologías relacionadas | spa |
dc.subject.lemb | CARBONO | spa |
dc.subject.lemb | Carbon | eng |
dc.subject.lemb | PROPIEDADES FISICOQUIMICAS DEL SUELO | spa |
dc.subject.lemb | Chemicophysical properties soil | eng |
dc.subject.lemb | ESPECTROSCOPIA DE REFLECTANCIA CERCANO A INFRARROJOS | spa |
dc.subject.lemb | Near infrared reflectance spectroscopy | eng |
dc.subject.lemb | COMPOSICION DE SUELOS | spa |
dc.subject.lemb | Soils - composition | eng |
dc.subject.proposal | Piedemonte Deposicional | spa |
dc.subject.proposal | Espectroscopia de reflectancia en el infrarrojo cercano | spa |
dc.subject.proposal | NIR | eng |
dc.subject.proposal | Modelos espaciales econométricos | spa |
dc.subject.proposal | Depositional Piedmont | eng |
dc.subject.proposal | Near-infrared (NIR) | eng |
dc.subject.proposal | Reflectance spectroscopy | eng |
dc.subject.proposal | Econometric spatial models | eng |
dc.title | Spatial modeling of soil organic carbon with NIR and environmental covariates in the municipality of Villavicencio | eng |
dc.title.translated | Modelación espacial del carbono orgánico del suelo con covariables NIR y ambientales en el municipio de Villavicencio | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 53011418.2020.pdf
- Tamaño:
- 9.85 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: