Spatial modeling of soil organic carbon with NIR and environmental covariates in the municipality of Villavicencio

dc.contributor.advisorDarghan Contreras, Aquiles Enriquespa
dc.contributor.authorDiaz Garcia, Nubia Cristinaspa
dc.contributor.orcidDiaz Garcia, Nubia Cristina [0009-0006-1739-0801]spa
dc.coverage.countryColombiaspa
dc.coverage.regionVillavicenciospa
dc.date.accessioned2024-10-31T20:29:52Z
dc.date.available2024-10-31T20:29:52Z
dc.date.issued2020
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractSoil is the largest reservoir of organic carbon in the biosphere after the ocean. Soil organic carbon accumulation is controlled by several natural and anthropogenic factors including climate, relief, vegetation and intrinsic soil properties. The interaction between these factors significantly modifies the impact of carbon concentration in the atmosphere under the response of CO2 fluxes from the soil. Assessing soil organic carbon content (%) for large areas is costly and time consuming due to its large spatial variability. Near-infrared reflectance spectroscopy is a fast and inexpensive tool to measure this property. In the present study, spatial regression modeling of some environmental covariates was used to estimate topsoil organic carbon (0-30 cm) in the Depositional piedmont of the municipality of Villavicencio (Meta). The georeferenced field observations were cross-referenced with raster information of 15 terrain parameters, climatic data, normalized vegetation index, sand, clay and silt content and soil spectra. The exploratory analysis of the data showed positive spatial autocorrelation for the study area, so it was necessary to consider them in the modeling. Elevation, valley depth, flow direction, vegetation index, soil spectra, and sand and clay contents were the most important predictors of carbon in the study area. With this proposal, the carbon in each of the polygons was estimated, which can be useful for taking actions in those regions where soil quality is compromised (Texto tomado de la fuente).eng
dc.description.abstractEl suelo es el mayor reservorio de carbono orgánico en la biosfera después del océano. La acumulación de carbono orgánico del suelo está controlada por varios factores naturales y antropogénicos, incluidos el clima, el relieve, la vegetación y las propiedades intrínsecas del suelo. La interacción entre estos factores modifica significativamente el impacto de la concentración de carbono en la atmósfera bajo la respuesta de los flujos de CO2 del suelo. Evaluar el contenido de carbono orgánico del suelo (%) para grandes áreas es costoso y requiere mucho tiempo debido a su gran variabilidad espacial. La espectroscopia de reflectancia en el infrarrojo cercano es una herramienta rápida y económica para medir esta propiedad. En el presente estudio, se utilizó el modelado de regresión espacial de algunas covariables ambientales para estimar el carbono orgánico del suelo superficial (0-30 cm) en el Piedemonte Depositacional del municipio de Villavicencio (Meta). Las observaciones de campo georreferenciadas se cruzaron con información raster de parámetros de terreno, datos climáticos, índice de vegetación normalizado, contenido de arena, arcilla y limo y espectros de suelos. El análisis exploratorio de los datos mostró autocorrelación espacial positiva para el área de estudio, por lo que fue necesario considerarlos en la modelación. La elevación, la profundidad del valle, la dirección del flujo, el índice de vegetación, los espectros de suelos y los contenidos de arena y arcilla fueron los predictores más importantes del carbono orgánico (%) en el área de estudio. Con esta propuesta se estimó el carbono en cada uno de los puntos muestreados, lo que puede ser útil para tomar acciones en aquellas regiones donde la calidad del suelo se ve comprometida.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestria en Ciencias Agrariasspa
dc.description.researchareaSuelos y Aguasspa
dc.format.extentx, 55 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87137
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAdhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services - A global review. Geoderma, 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009spa
dc.relation.referencesAlomar, D., & Fuchslocher, R. (1997). Fundamentos de la espectroscopia de reflectancia en el infrarojo cercano (NIRS) como método de análisis de forrajes. Agro Sur, 26, 88–104.spa
dc.relation.referencesAnselin, L. (1988). Spatial econometrics: Methods and models. Econometrica, Vol. 72, pp. 1899–1925. https://doi.org/10.1111/j.1468-0262.2004.00558.xspa
dc.relation.referencesAnselin, L. (2003). Spatial econometrics. In Badi H. Baltagi (Ed.), A companion to theoretical econometric (pp. 310–330). https://doi.org/10.1002/9780470996249spa
dc.relation.referencesAnselin, L. (2005). Spatial Regression Analysis in R–A Workbook. Urbana, 90. Retrieved from http://www.drs.wisc.edu/documents/articles/curtis/cesoc977- 11/W15_Anselin2007.pdfspa
dc.relation.referencesArbia, G. (2014). A Primer for Spatial Econometrics: With Applications in R. https://doi.org/10.1057/9781137317940spa
dc.relation.referencesAshtekar, J. M., Owens, P. R., Brown, R. A., Winzeler, H. E., Dorantes, M., Libohova, Z., … Castro, A. (2014). Digital mapping of soil properties and associated uncertainties in the llanos orientales, south america. GlobalSoilMap: Basis of the Global Spatial Soil Information System - Proceedings of the 1st GlobalSoilMap Conference, (January), 367–372. https://doi.org/10.1201/b16500-67spa
dc.relation.referencesBaldock, J. A., & Nelson, P. N. (2000). Soil Organic Matter. In M. E. Summer (Ed.), Handbook of Soil Science (pp. B25–B84). https://doi.org/10.1038/194324b0spa
dc.relation.referencesBarnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777. https://doi.org/10.1366/0003702894202201spa
dc.relation.referencesBatjes, N. H. (2014). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65(1), 10–21. https://doi.org/10.1111/j.1365-2389.1996.tb01386.xspa
dc.relation.referencesBellon-Maurel, V., & McBratney, A. (2011). Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives. Soil Biology and Biochemistry, 43(7), 1398–1410. https://doi.org/http://dx.doi.org/10.1016/j.soilbio.2011.02.019spa
dc.relation.referencesBhattacharya, S. S., Kim, K.-H., Das, S., Uchimiya, M., Jeon, B. H., Kwon, E., & Szulejko, J. E. (2016). A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem. Journal of Environmental Management, 167, 214–227. https://doi.org/http://dx.doi.org/10.1016/j.jenvman.2015.09.042spa
dc.relation.referencesBishop, M. P., James, L. A., Shroder, J. F., & Walsh, S. J. (2012). Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology, 137(1), 5–26. https://doi.org/10.1016/j.geomorph.2011.06.027spa
dc.relation.referencesBlum, W. E. H. (2005). Functions of soil for society and the environment. Reviews in Environmental Science and Biotechnology, 4(3), 75–79. https://doi.org/10.1007/s11157-005-2236-xspa
dc.relation.referencesBojko, O., & Kabala, C. (2017). Organic carbon pools in mountain soils — Sources of variability and predicted changes in relation to climate and land use changes. Catena, 149, Part, 209– 220. https://doi.org/http://dx.doi.org/10.1016/j.catena.2016.09.022spa
dc.relation.referencesBonfatti, B. R., Hartemink, A. E., Giasson, E., Tornquist, C. G., & Adhikari, K. (2016). Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma, 261, 204–221. https://doi.org/10.1016/j.geoderma.2015.07.016spa
dc.relation.referencesBongiovanni, R. (2009). Econometría Espacial Aplicada a la Agricultura de Precisión. Actualidad Económica, 19(67), 9–28.spa
dc.relation.referencesBrunet, D., Barthès, B. G., Chotte, J. L., & Feller, C. (2007). Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: Effects of sample grinding and set heterogeneity. Geoderma, 139(1–2), 106–117. https://doi.org/10.1016/j.geoderma.2007.01.007spa
dc.relation.referencesBurns, D. A., & Ciurczak, E. W. (2008). Handbook of Near-Infrared Analysis (Practical Spectroscopy) by (z-lib.org).pdf (Third Edit). CRC Press Taylor & Francis Group.spa
dc.relation.referencesCanadell, J. G., Pataki, D. E., Gifford, R., Houghton, R. A., Luo, Y., Raupach, M. R., … Steffen, W. (2007). Saturation of the Terrestrial Carbon Sink. Terrestrial Ecosystems in a Changing World, 59–78. https://doi.org/10.1007/978-3-540-32730-1_6spa
dc.relation.referencesCavazzi, S., Corstanje, R., Mayr, T., Hannam, J., & Fealy, R. (2013). Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma, 195–196, 111– 121. https://doi.org/10.1016/j.geoderma.2012.11.020spa
dc.relation.referencesChambers, A., Lal, R., & Paustian, K. (2016). Soil carbon sequestration potential of US croplands andgrasslands: Implementing the 4 per Thousand Initiative. Journal of Soil and Water Conservation, 71(3), 68A-74A.spa
dc.relation.referencesChang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R. (2001). Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal, 480–490. https://doi.org/10.2136/sssaj2001.652480xspa
dc.relation.referencesChatterjee, A., Lal, R., Wielopolski, L., Martin, M. Z., & Ebinger, M. H. (2009). Evaluation of Different Soil Carbon Determination Methods. Critical Reviews in Plant Sciences, 28(3), 164–178. https://doi.org/10.1080/07352680902776556spa
dc.relation.referencesChaudhary, M., Naresh, R. K., Sachan, D. K., Mahajan, N. C., Jat, L., Tiwari, R., & Yadav, A. (2018). Soil Organic Carbon Fractions , Soil Microbial Biomass Carbon , and Enzyme Activities Impacted by Crop Rotational Diversity and Conservation Tillage in North West IGP : A Review Department of Agronomy , Sardar Vallabhbhai Patel University of Agriculture &. 7(11), 3573–3600.spa
dc.relation.referencesCoblinski, J. A., Giasson, É., Demattê, J. A. M., Dotto, A. C., Costa, J. J. F., & Vašát, R. (2020). Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths. Catena, 189(July 2019). https://doi.org/10.1016/j.catena.2020.104485spa
dc.relation.referencesCorrea-Muñoz, N. A., & Higidio-Castro, J. F. (2017). Determination of landslide susceptibility in linear infrastructure. Case: Aqueduct network in Palacé, Popayan (Colombia). Ingenieria e Investigacion, 37(2), 17–24. https://doi.org/10.15446/ing.investig.v37n2.59654spa
dc.relation.referencesCurcio, D., Ciraolo, G., D’Asaro, F., & Minacapilli, M. (2013). Prediction of Soil Texture Distributions Using VNIR-SWIR Reflectance Spectroscopy. Procedia Environmental Sciences, 19, 494–503. https://doi.org/10.1016/j.proenv.2013.06.056spa
dc.relation.referencesDalmolin, R. S. D., Gonçalves, C. N., Klamt, E., & Dick, D. P. (2005). Relação entre os constituintes do solo e seu comportamento espectral. Ciência Rural, 35(2), 481–489. https://doi.org/10.1590/s0103-84782005000200042spa
dc.relation.referencesDelgado-Baquerizo, M., Karunaratne, S. B., Trivedi, P., & Singh, B. K. (2018). Climate, Geography, and Soil Abiotic Properties as Modulators of Soil Carbon Storage. In B. K. Singh (Ed.), Soil Carbon Storage (pp. 137–165). https://doi.org/10.1016/b978-0-12-812766-7.00005-6spa
dc.relation.referencesDignac, M. F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., … Basile-Doelsch, I. (2017). Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development, 37(2). https://doi.org/10.1007/s13593-017-0421-2spa
dc.relation.referencesDotto, A. C. (2017). Soil VIS-NIR spectroscopy: Predictive potential and the development of a graphical user interface in R. Federal University of Santa Maria.spa
dc.relation.referencesFAO. (2017). Unlocking the potential of soil organic carbon. Global symposium on soil organic carbonspa
dc.relation.referencesFelicísimo, A. (1994). Modelos digitales del terreno: introducción y aplicaciones a las ciencias ambientales. Oviedo: Universidad de Oviedo, 118. Retrieved from http://www.etsimo.uniovi.es/~felispa
dc.relation.referencesFernández Pierna, J. A., & Dardenne, P. (2008). Soil parameter quantification by NIRS as a Chemometric challenge at “Chimiométrie 2006.” Chemometrics and Intelligent Laboratory Systems, 91(1), 94–98. doi:10.1016/j.chemolab.2007.06.007spa
dc.relation.referencesFlorinsky, I. V. (1998). Combined analysis of digital terrain models and remotely sensed data in landscape investigations. Progress in Physical Geography, 22(1), 33–60. https://doi.org/10.1177/030913339802200102spa
dc.relation.referencesGomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(December 2017), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007spa
dc.relation.referencesGougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577spa
dc.relation.referencesGuevara, M., Federico Olmedo, G., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., … Vargas, R. (2018). No silver bullet for digital soil mapping: Country-specific soil organic carbon estimates across Latin America. Soil, 4(3), 173–193. https://doi.org/10.5194/soil- 4-173-2018spa
dc.relation.referencesHauke, J., & Kossowski, T. (2011). Comparison of values of pearson’s and spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae, 30(2), 87–93. https://doi.org/10.2478/v10117-011-0021-1spa
dc.relation.referencesHeaton, L., Fullen, M. A., & Bhattacharyya, R. (2016). Critical Analysis of the van Bemmelen Conversion Factor used to Convert Soil Organic Matter Data to Soil Organic Carbon Data: Comparative Analyses in a UK Loamy Sand Soil. Espaço Aberto, 6(1), 35–44. Retrieved from https://revistas.ufrj.br/index.php/EspacoAberto/article/viewFile/5244/3852spa
dc.relation.referencesHobley, E., Wilson, B., Wilkie, A., Gray, J., & Koen, T. (2015). Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant and Soil, 390(1–2), 111–127. https://doi.org/10.1007/s11104-015-2380-1spa
dc.relation.referencesIGAC. (2004). Estudio General de Suelos y Zonificación de Tierras del Departamento del Meta. Escala 1:100.000. Bogota, Colombia: Instituto Geográfico Agustín Codazzispa
dc.relation.referencesIslam, K., McBratney, A., & Balwant, S. (2003). Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of Soil Research, 41(6), 1101–1114.spa
dc.relation.referencesJaconi, A., Poeplau, C., Ramirez-Lopez, L., Van Wesemael, B., & Don, A. (2019). Log-ratio transformation is the key to determining soil organic carbon fractions with near-infrared spectroscopy. European Journal of Soil Science, 70(1), 127–139. https://doi.org/10.1111/ejss.12761spa
dc.relation.referencesJaconi, A, Vos, C., & Don, A. (2019). Near infrared spectroscopy as an easy and precise method to estimate soil texture. Geoderma, 337(November 2018), 906–913. https://doi.org/10.1016/j.geoderma.2018.10.038spa
dc.relation.referencesJalota, S. K., Vashisht, B. B., Sharma, S., & Kaur, S. (2018). Emission of Greenhouse Gases and Their Warming Effect. In Understanding Climate Change Impacts on Crop Productivity and Water Balance (pp. 1–53). https://doi.org/10.1016/b978-0-12-809520-1.00001-xspa
dc.relation.referencesJanzen, H. (2004). Carbon cycling in earth systems—a soil science perspective. Agriculture, Ecosystems & Environment, 104(3), 399–417. https://doi.org/10.1016/j.agee.2004.01.040spa
dc.relation.referencesJobbágy, E., & Jackson, R. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(April), 423–436.spa
dc.relation.referencesKern, J., Giani, L., Teixeira, W., Lanza, G., & Glaser, B. (2019). What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? Catena, 172(February 2018), 104–112. https://doi.org/10.1016/j.catena.2018.08.008spa
dc.relation.referencesKhasanah, N., van Noordwijk, M., Ningsih, H., & Rahayu, S. (2015). Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agriculture, Ecosystems and Environment, 211, 195–206. https://doi.org/10.1016/j.agee.2015.06.009spa
dc.relation.referencesKunkel, V., Hancock, G. R., & Wells, T. (2019). Large catchment-scale spatiotemporal distribution of soil organic carbon. Geoderma, 334(May 2018), 175–185. https://doi.org/10.1016/j.geoderma.2018.07.046spa
dc.relation.referencesLal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396spa
dc.relation.referencesLal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food Policy, 36, Supple(0), S33–S39. https://doi.org/http://dx.doi.org/10.1016/j.foodpol.2010.12.001spa
dc.relation.referencesLal, R., Delgado, J. a., Groffman, P. M., Millar, N., Dell, C., & Rotz, A. (2011). Management to mitigate and adapt to climate change. Journal of Soil and Water Conservation, 66(4), 118A-129A. https://doi.org/10.2489/jswc.66.4.118Aspa
dc.relation.referencesLal, R., Smith, P., Jungkunst, H. F., Mitsch, W. J., Lehmann, J., Nair, P. K. R., … Ravindranath, N. H. (2018). The carbon sequestration potential of terrestrial ecosystems. Journal of Soil and Water Conservation, 73(6), 145A-152A. https://doi.org/10.2489/jswc.73.6.145aspa
dc.relation.referencesLagacherie, P., Mcbratney, A. B., & Voltz, M. (2007). A digital soil mapping An introductory perspective (Vol 31; Philippe Lagacherie, A. . McBratney, & M. Voltz, Eds.). Amsterdam, The Netherlands: Elsevier.spa
dc.relation.referencesLamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352(January), 395–413. https://doi.org/10.1016/j.geoderma.2019.05.031spa
dc.relation.referencesLeiva, N. (2012). Metodología para el cálculo de la humedad del suelo usando parámetros topográficos (MDE), climáticos y edáficos en un sector del piedemonte depositacional del municipio de Villavicencio. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/8910/1/795068.2012.pdfspa
dc.relation.referencesLevi, M. R., & Rasmussen, C. (2014). Covariate selection with iterative principal component analysis for predicting physical soil properties. Geoderma, 219–220(0), 46–57. https://doi.org/http://dx.doi.org/10.1016/j.geoderma.2013.12.013spa
dc.relation.referencesLuo, Z., Wang, E., Fillery, I. R. P., Macdonald, L. M., Huth, N., & Baldock, J. (2014). Modelling soil carbon and nitrogen dynamics using measurable and conceptual soil organic matter pools in APSIM. Agriculture, Ecosystems and Environment, 186, 94–104. https://doi.org/10.1016/j.agee.2014.01.019spa
dc.relation.referencesMa, Y., Minasny, B., Malone, B. P., & Mcbratney, A. B. (2019). Pedology and digital soil mapping (DSM). European Journal of Soil Science, 70(2), 216–235. https://doi.org/10.1111/ejss.12790spa
dc.relation.referencesMachado, P. L. O. D. A. (2005). Carbono do solo e a mitigação da mudança climática global. Quimica Nova, 28(2), 329–334. https://doi.org/10.1590/S0100-40422005000200026spa
dc.relation.referencesManning, P., de Vries, F. T., Tallowin, J. R. B., Smith, R., Mortimer, S. R., Pilgrim, E. S., … Bardgett, R. D. (2015). Simple measures of climate, soil properties and plant traits predict nationalscale grassland soil carbon stocks. Journal of Applied Ecology, 52(5), 1188–1196. https://doi.org/10.1111/1365-2664.12478spa
dc.relation.referencesMartínez, E., Fuentes, J. P., & Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de La Ciencia Del Suelo y Nutrición Vegetal, 8(1), 68–96. https://doi.org/10.4067/S0718-27912008000100006spa
dc.relation.referencesMcBratney, A., Mendonca, M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1– 2), 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4spa
dc.relation.referencesMinasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/http://dx.doi.org/10.1016/j.geoderma.2017.01.002spa
dc.relation.referencesMinasny, B., McBratney, A. B., & Salvador-Blanes, S. (2008). Quantitative models for pedogenesis - A review. Geoderma, 144(1–2), 140–157. https://doi.org/10.1016/j.geoderma.2007.12.013spa
dc.relation.referencesMishra, U., Lal, R., Liu, D., & Van Meirvenne, M. (2010). Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale. Soil Science Society of America Journal, 74(3), 906–914. https://doi.org/10.2136/sssaj2009.0158spa
dc.relation.referencesMulder, V. L. (2013). Spectroscopy-supported digital soil mapping (Wageningen University). Retrieved from http://edepot.wur.nl/274044spa
dc.relation.referencesNocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., … Wetterlind, J. (2015). Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Advances in Agronomy, 132(March), 139–159. https://doi.org/10.1016/bs.agron.2015.02.002spa
dc.relation.referencesOdeh, I. O. A., & Crawford, M. (2007). Digital mapping of soil attributes for regional and catchment modelling, usingg ancillary covariates, statistical and geostatistical techniques. In Developments in Soil Science (Vol. 31, pp. 437–454).spa
dc.relation.referencesOlaya, V. (2004) A Gentle Introduction to SAGA GIS. 1.1 Edition, Olaya Victor and Pineda Javier Editors., Madrid, Spain.spa
dc.relation.referencesOldfield, E. E., Wood, S. A., Palm, C. A., & Bradford, M. A. (2015). How much SOM is needed for sustainable agriculture? Frontiers in Ecology and the Environment, 13(10), 527. https://doi.org/10.1890/1540-9295-13.10.527spa
dc.relation.referencesOlson, K. R. (2010). Impacts of tillage, slope, and erosion on soil organic carbon retention. Soil Science, 175(11), 562–567. https://doi.org/10.1097/SS.0b013e3181fa2837spa
dc.relation.referencesPereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2017). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7–13. https://doi.org/10.1016/j.coesh.2017.12.003spa
dc.relation.referencesPiccolo, A. (1996). Humic substances in terrestrial ecosystems. In A. Piccolo (Ed.), Elsevier (Vol. 66). Napoli: Elsevier B.V.spa
dc.relation.referencesQafoku, N. P. (2015). Climate-Change Effects on Soils: Accelerated Weathering, Soil Carbon, and Elemental Cycling (D. L. S. B. T.-A. in Agronomy, Ed.). https://doi.org/http://dx.doi.org/10.1016/bs.agron.2014.12.002spa
dc.relation.referencesR Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.referencesRobinson, D. A., Hockley, N., Cooper, D. M., Emmett, B. A., Keith, A. M., Lebron, I., … Robinson, J. S. (2013). Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation. Soil Biology and Biochemistry, 57, 1023–1033. https://doi.org/10.1016/j.soilbio.2012.09.008spa
dc.relation.referencesRodríguez Albarrcín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214spa
dc.relation.referencesPaterson, E., & Sim, A. (2013). Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Global Change Biology, 19(5), 1562–1571. https://doi.org/10.1111/gcb.12140spa
dc.relation.referencesSanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9575–9580. https://doi.org/10.1073/pnas.1706103114spa
dc.relation.referencesSantos, P. (2018). Modelado espacial del carbono organico del suelo y su relacion con otras propiedades quimicas en el cultivo de arroz del distrito de riego del Norte de Santader (Universidad Nacional de Colombia). Retrieved from https://repositorio.unal.edu.co/handle/unal/63966spa
dc.relation.referencesSchillaci, C., Acutis, M., Vesely, F., & Saia, S. (2019). A simple pipeline for the assessment of legacy soil datasets : An example and test with soil organic carbon from a highly variable area. Catena, 175(December 2018), 110–122. https://doi.org/10.1016/j.catena.2018.12.015spa
dc.relation.referencesSkjemstad, D.C. Reicosky, A.R. Wilts, J.A. McGowan. (2002), Charcoal carbon in U.S. agricultural soils Soil Science Society of America Journal, 66 pp. 1255-1949spa
dc.relation.referencesShepherd, K., & Aynekulu, E. (2013). Cost effective tools for soil organic carbon monitoring. Geophysical Research Abstracts, 15, 2013.spa
dc.relation.referencesStockmann, U., Adams, M. a., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164(2013), 80–99. https://doi.org/10.1016/j.agee.2012.10.001spa
dc.relation.referencesTerra, F. S., Demattê, J. A. M., & Viscarra Rossel, R. A. (2018). Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis. Geoderma, 318(October 2017), 123–136. https://doi.org/10.1016/j.geoderma.2017.10.053spa
dc.relation.referencesTorn, M. S., Swanston, C. W., Castanha, C., & Trumbore, S. E. (2009). Storage and Turnover of Organic Matter in Soil. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. https://doi.org/10.1002/9780470494950.ch6spa
dc.relation.referencesTrivedi, P., Singh, B. P., & Singh, B. K. (2018). Soil Carbon: Introduction, importance, status, threat, and mitigation. In B. K. Singh (Ed.), Soil Carbon Storage (pp. 1–28). https://doi.org/10.1016/b978-0-12-812766-7.00001-9spa
dc.relation.referencesUribe, N., & Quintero, M. (2011). Aplicación del modelo hidrológico SWAT (Soil and Water Assessment Tool) a la cuenca del Rio Cañete. Cali, Colombia.spa
dc.relation.referencesVašát, R., Kodešová, R., & Borůvka, L. (2017). Ensemble predictive model for more accurate soil organic carbon spectroscopic estimation. Computers and Geosciences, 104(February), 75–83. https://doi.org/10.1016/j.cageo.2017.04.008spa
dc.relation.referencesVagen, T., & Winowiecki, L. (2013). Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environmental Research Letters, 8. https://doi.org/10.1088/1748-9326/8/1/015011spa
dc.relation.referencesVarón, S. D., & Vargas, G. (2019). Análisis de la susceptibilidad por inundaciones asociadas a la dinámica fluvial del río Guatiquía en la ciudad de Villavicencio, Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 152–174. https://doi.org/10.15446/rcdg.v28n1.70856spa
dc.relation.referencesVasques, G. M., Grunwald, S., & Myers, D. B. (2012). Associations between soil carbon and ecological landscape variables at escalating spatial scales in Florida, USA. Landscape Ecology, 27(3), 355–367. https://doi.org/10.1007/s10980-011-9702-3spa
dc.relation.referencesVelasquez, E., Lavelle, P., Barrios, E., Joffre, R., & Reversat, F. (2005). Evaluating soil quality in tropical agroecosystems of Colombia using NIRS. Soil Biology and Biochemistry, 37(5), 889–898. https://doi.org/10.1016/j.soilbio.2004.09.009spa
dc.relation.referencesViscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007spa
dc.relation.referencesViscarra Rossel, R. A., Brus, D. J., Lobsey, C., Shi, Z., & McLachlan, G. (2016). Baseline estimates of soil organic carbon by proximal sensing: Comparing design-based, model-assisted and model-based inference. Geoderma, 265(December 2015), 152–163. https://doi.org/10.1016/j.geoderma.2015.11.016spa
dc.relation.referencesVogel, H. J., Bartke, S., Daedlow, K., Helming, K., Kögel-Knabner, I., Lang, B., … Wollschläger, U. (2018). A systemic approach for modeling soil functions. Soil, 4(1), 83–92. https://doi.org/10.5194/soil-4-83-2018spa
dc.relation.referencesWang, S., Wang, X., & Ouyang, Z. (2012). Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China. Journal of Environmental Sciences, 24(3), 387–395. https://doi.org/10.1016/S1001-0742(11)60789-4spa
dc.relation.referencesWiesmeier, M., Lützow, M. von, Wollschlaeger, U., Vogel, H. J., Garcia-Franco, N., Ließ, M., … Koegel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, under revi(July 2018), 149–162. https://doi.org/10.1016/J.GEODERMA.2018.07.026spa
dc.relation.referencesWiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., … Kögel- Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333(November 2017), 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026spa
dc.relation.referencesWilson, J. P. (2012). Digital terrain modeling. Geomorphology, 137(1), 107–121. https://doi.org/10.1016/j.geomorph.2011.03.012spa
dc.relation.referencesWilson, & Bishop, M. (2013). Geomorphometry. In J. Shroder (Ed.), Treatise on Geomorphology (Vol. 3). https://doi.org/10.1016/B978-0-12-374739-6.00049-Xspa
dc.relation.referencesYan, H., Wang, S., Wang, C., Zhang, G., & Patel, N. (2005). Losses of soil organic carbon under wind erosion in China. Global Change Biology, 11(5), 828–840. https://doi.org/10.1111/j.1365-2486.2005.00950.xspa
dc.relation.referencesYengoh, G. T., Dent, D., Olsson, L., & Tengberg, A. E. (2015). Use of the Normalized Index (NDVI) to Assess Diff erence Vegetation Current Status, Future Multiple Scales. Springer.spa
dc.relation.referencesYigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environment, 557–558, 838–850. https://doi.org/10.1016/j.scitotenv.2016.03.085spa
dc.relation.referencesZhang, C., Tang, Y., Xu, X., & Kiely, G. (2011). Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland. Applied Geochemistry, 26(7), 1239–1248. https://doi.org/10.1016/j.apgeochem.2011.04.014spa
dc.relation.referencesZhang, Y., Guo, L., Chen, Y., Shi, T., Luo, M., Ju, Q. L., … Wang, S. (2019). Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sensing, 11(14). https://doi.org/10.3390/rs11141683spa
dc.relation.referencesZhong, B., & Xu, Y. J. (2009). Topographic effects on soil organic carbon in Louisiana watersheds. Environmental Management, 43(4), 662–672. https://doi.org/10.1007/s00267-008-9182-spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::639 - Caza, pesca, conservación, tecnologías relacionadasspa
dc.subject.lembCARBONOspa
dc.subject.lembCarboneng
dc.subject.lembPROPIEDADES FISICOQUIMICAS DEL SUELOspa
dc.subject.lembChemicophysical properties soileng
dc.subject.lembESPECTROSCOPIA DE REFLECTANCIA CERCANO A INFRARROJOSspa
dc.subject.lembNear infrared reflectance spectroscopyeng
dc.subject.lembCOMPOSICION DE SUELOSspa
dc.subject.lembSoils - compositioneng
dc.subject.proposalPiedemonte Deposicionalspa
dc.subject.proposalEspectroscopia de reflectancia en el infrarrojo cercanospa
dc.subject.proposalNIReng
dc.subject.proposalModelos espaciales econométricosspa
dc.subject.proposalDepositional Piedmonteng
dc.subject.proposalNear-infrared (NIR)eng
dc.subject.proposalReflectance spectroscopyeng
dc.subject.proposalEconometric spatial modelseng
dc.titleSpatial modeling of soil organic carbon with NIR and environmental covariates in the municipality of Villavicencioeng
dc.title.translatedModelación espacial del carbono orgánico del suelo con covariables NIR y ambientales en el municipio de Villavicenciospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
53011418.2020.pdf
Tamaño:
9.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: