Evaluación de sostenibilidad de la generación de energía eléctrica para el municipio de Leticia

dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.authorTrujillo Moreno, Yuly Tatiana
dc.contributor.orcidTrujillo Moreno, Yuly Tatiana [0009-0009-3923-756X]
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.date.accessioned2026-02-12T14:40:18Z
dc.date.available2026-02-12T14:40:18Z
dc.date.issued2025-08
dc.descriptionIlustraciones, diagramas, gráficos, mapasspa
dc.description.abstractEl suministro de energía eléctrica en Zonas No Interconectadas (ZNI) como Leticia, Amazonas, presenta complejos desafíos de sostenibilidad debido a la alta dependencia de combustibles fósiles, con elevados costos económicos, sociales y ambientales. Esta investigación tuvo como objetivo evaluar la sostenibilidad de las alternativas energéticas técnicamente viables para dicho municipio. Para ello, se desarrolló y aplicó un marco de evaluación multicriterio, cuya principal innovación reside en su estructura jerárquica de cinco dimensiones: ambiental, social, económica, tecnológica y política, fundamentada en principios de sostenibilidad validados y ponderados a través de la participación de actores claves de diferentes sectores del territorio. Se evaluaron cinco alternativas: solar fotovoltaica, microhidroeléctrica, Residuos Sólidos Urbanos, Aceites de Cocina Usados y diésel como línea base, mediante la aplicación del método TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). Los resultados establecen un ranking de preferencia claro, concluyendo que la energía solar fotovoltaica con un coeficiente de sostenibilidad de 0.712 es la opción más sostenible para Leticia, seguida por la microhidroeléctrica con un coeficiente de sostenibilidad de 0.660. Se evidenció que, a pesar del menor costo de la hidroeléctrica, el desempeño superior de la solar en las dimensiones ambiental y social (que fueron las más valoradas por la comunidad) determinaron su posicionamiento. Este estudio no solo proporciona una hoja de ruta estratégica para la transición energética de Leticia, sino que también aporta un modelo metodológico robusto y replicable para la toma de decisiones en otras ZNI, demostrando la importancia de integrar el análisis técnico con la validación social para una planificación energética verdaderamente sostenible. (Texto tomado de la fuente)spa
dc.description.abstractProviding electrical energy in non-interconnected zones (NIZs), such as Leticia in the Amazonas region, presents complex sustainability challenges due to high dependence on fossil fuels, resulting in elevated economic, social and environmental costs. The aim of this research was to assess the sustainability of technically viable energy alternatives for the aforementioned municipality. To this end, a multicriteria evaluation framework was developed and applied. The framework's primary innovation lies in its hierarchical structure, comprising five dimensions: environmental, social, economic, technological and political. The framework is based on sustainability principles that were validated and weighted through the participation of key stakeholders from various sectors within the territory. Five alternatives were evaluated using the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method: solar photovoltaic, micro-hydroelectric, municipal solid waste, used cooking oils, and diesel as the baseline. The results clearly show that solar photovoltaic energy is the most sustainable option for Leticia, with a sustainability coefficient of 0.712, followed by micro-hydroelectric energy with a coefficient of 0.660. Despite the lower cost of hydroelectric power, the superior performance of solar energy in the environmental and social dimensions — which were the most valued by the community — determined its positioning. This study provides a strategic roadmap for Leticia's energy transition and contributes a robust, replicable model for decision-making in other NIZs. It demonstrates the importance of integrating technical analysis with social validation for genuinely sustainable energy planning.eng
dc.description.degreelevelMaestría
dc.description.degreenameMaster en Ingeniería Ambiental
dc.format.extentv, 105 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89523
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.relation.referencesE. Ilskog, “Indicators for assessment of rural electrification-An approach for the comparison of apples and pears,” Energy Policy, vol. 36, no. 7, pp. 2665–2673, May 2008, doi: 10.1016/j.enpol.2008.03.023
dc.relation.referencesC. K. Ingole, “Sustainability of productive use of off-grid renewable energy: A case of a women’s collective from rural India,” International Journal of Management and Sustainability, vol. 12, no. 3, pp. 337–354, Aug. 2023, doi: 10.18488/11.v12i3.3444.
dc.relation.referencesCMNUCC, “El Acuerdo de París,” https://unfccc.int/process-and-meetings/the-paris-agreement
dc.relation.referencesI. International Energy Agency, “World Energy Outlook 2020,” 2020. [Online]. Available: www.iea.org/weo
dc.relation.referencesS. Tahseen and B. W. Karney, “Reviewing and critiquing published approaches to the sustainability assessment of hydropower,” Sep. 15, 2017, Elsevier Ltd. doi: 10.1016/j.rser.2016.09.031.
dc.relation.referencesL. Stamford and A. Azapagic, “Sustainability indicators for the assessment of nuclear power,” Energy, vol. 36, no. 10, pp. 6037–6057, Sep. 2011, doi: 10.1016/j.energy.2011.08.011.
dc.relation.referencesK. Hacatoglu, I. Dincer, and M. A. Rosen, “A new model to assess the environmental impact and sustainability of energy systems,” J Clean Prod, vol. 103, pp. 211–218, Jun. 2015, doi: 10.1016/j.jclepro.2014.06.050.
dc.relation.referencesA. Leduchowicz-Municio, A. López-Gozález, B. Domenech, L. Ferrer-Martí, M. E. M. Udaeta, and A. L. V. Gimenes, “Last-mile rural electrification: Lessons learned from universalization programs in Brazil and Venezuela,” Energy Policy, vol. 167, Jun. 2022, doi: 10.1016/j.enpol.2022.113080.
dc.relation.referencesJ. A. Ovalle Murcia, “Estado de la Cobertura Eléctrica y las Zonas No Interconectadas en la Región Central,” Universidad Distrital Francisco José de Caldas, 2020
dc.relation.referencesJ. A. Ovalle Murcia, “Estado de la Cobertura Eléctrica y las Zonas No Interconectadas en la Región Central,” Universidad Distrital Francisco José de Caldas, 2020
dc.relation.referencesCepal y Patrimonio Natural, “Amazonia posible y sostenible,” Bogotá, 2013.
dc.relation.referencesBanRep, “Leticia: Conectora de regiones.” Accessed: May 15, 2024. [Online]. Available: https://www.banrepcultural.org/biblioteca-virtual/credencial-historia/numero-233/leticia-conectora-de-regiones
dc.relation.referencesJ. E. Roa Barragán and J. C. Caicedo Ulloa, “Viabilidad Técnico – Financiera Para La Generación De Energía Eléctrica, Con Un Sistema Solar Fotovoltaico Interconectado Al Sistema Eléctrico De La Ciudad De Leticia - Amazonas, En El Marco De La Resolución Creg 076 De 2016,” Universidad Distrital Francisco José de Caldas, Bogotá, 2016.
dc.relation.referencesIPSE, “Caracterización Energética de las ZNI,” Minminas. Accessed: Sep. 06, 2025. [Online]. Available: https://ipse.gov.co/cnm/caracterizacion-de-las-zni/
dc.relation.referencesWorld Bank, “Energy Overview.” Accessed: Jun. 14, 2025. [Online]. Available: https://www.worldbank.org/en/topic/energy/overview#3
dc.relation.referencesT. Ponomarenko, E. Reshneva, and A. P. Mosquera Urbano, “Assessment of Energy Sustainability Issues in the Andean Community: Additional Indicators and Their Interpretation,” Energies (Basel), vol. 15, no. 3, p. 1077, Feb. 2022, doi: 10.3390/en15031077.
dc.relation.referencesG. A. C. A. mondiales C. Olade, Manual de Planificación Energética, 2nd ed. OLADE, 2017. Accessed: Mar. 05, 2023. [Online]. Available: https://www.olade.org/publicaciones/manual-de-planificacion-energetica-2017/
dc.relation.referencesR. Kyte, “El papel futuro de la iniciativa ‘Energía Sostenible para Todos’ en la promoción de la energía sostenible,” https://www.un.org/es/chronicle/article/el-papel-futuro-de-la-iniciativa-energia-sostenible-para-todos-en-la-promocion-de-la-energia.
dc.relation.referencesM. Sadiq, P. Kokchang, and S. Kittipongvises, “Sustainability assessment of renewable power generation systems for scale enactment in off-grid communities,” Renewable Energy Focus, vol. 46, pp. 323–337, Jul. 2023, doi: 10.1016/j.ref.2023.07.006.
dc.relation.referencesInstituto de Energía, Kpmg, Kearney, and IEA, “Statistical Review of World Energy 2023 | 72 nd edition,” 2023.
dc.relation.referencesInternational Energy Agency (IEA), “Global Energy Crisis,” What is the energy crisis? Accessed: Oct. 21, 2023. [Online]. Available: https://www.iea.org/topics/global-energy-crisis?
dc.relation.referencesI. Siksnelyte and E. K. Zavadskas, “Achievements of the European Union countries in seeking a sustainable electricity sector,” Energies (Basel), vol. 12, no. 11, Jun. 2019, doi: 10.3390/en12122254.
dc.relation.referencesA. Evans, V. Strezov, and T. J. Evans, “Assessment of sustainability indicators for renewable energy technologies,” Jun. 2009. doi: 10.1016/j.rser.2008.03.008
dc.relation.referencesInternational Energy Agency (IEA), “Panorama energético internacional 2023,” 2024. Accessed: Oct. 12, 2024. [Online]. Available: https://www.eia.gov/outlooks/ieo/data/pdf/A_A2_r_230822.081459.pdf
dc.relation.referencesM. R. Elkadeem, A. Younes, S. W. Sharshir, P. E. Campana, and S. Wang, “Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis,” Appl Energy, vol. 295, May 2021, doi: 10.1016/j.apenergy.2021.117071
dc.relation.referencesA. Leduchowicz-Municio, M. Juanpera, B. Domenech, L. Ferrer-Martí, M. E. M. Udaeta, and A. L. V. Gimenes, “Field-driven multi-criteria sustainability assessment of last-mile rural electrification in Brazil,” Renewable and Sustainable Energy Reviews, vol. 192, Dec. 2023, doi: 10.1016/j.rser.2023.114211
dc.relation.referencesM. Juanpera, B. Domenech, L. Ferrer-Martí, A. Garzón, and R. Pastor, “Renewable-based electrification for remote locations. Does short-term success endure over time? A case study in Peru,” Renewable and Sustainable Energy Reviews, vol. 146, May 2021, doi: 10.1016/j.rser.2021.111177.
dc.relation.referencesB. Mainali and S. Silveira, “Using a sustainability index to assess energy technologies for rural electrification,” Oct. 10, 2014, Elsevier Ltd. doi: 10.1016/j.rser.2014.09.018.
dc.relation.referencesA. Katre, A. Tozzi, and S. Bhattacharyya, “Sustainability of community-owned mini-grids: Evidence from India,” Energy Sustain Soc, vol. 9, no. 1, Sep. 2019, doi: 10.1186/s13705-018-0185-9.
dc.relation.referencesA. Heidari, A. Hajinezhad, and A. Aslani, “A Sustainable Power Supply System, Iran’s Opportunities via Bioenergy,” 2018. doi: 10.1002/ep.12937.
dc.relation.referencesA. Evans, V. Strezov, and T. J. Evans, Sustainability assessment of hydroelectricity. 2010.
dc.relation.referencesL. F. Abdulrazak, A. Islam, and M. B. Hossain, “Towards energy sustainability: Bangladesh perspectives,” Oct. 29, 2021, Elsevier Ltd. doi: 10.1016/j.esr.2021.100738.
dc.relation.referencesJ. Li, R. R. Z. Tarpani, L. Stamford, and A. Gallego-Schmid, “Life cycle sustainability assessment and circularity of geothermal power plants,” Oct. 29, 2022, Elsevier B.V. doi: 10.1016/j.spc.2022.10.027
dc.relation.referencesA. Mio, E. Barbera, A. Massi Pavan, A. Bertucco, and M. Fermeglia, “Sustainability analysis of hydrogen production processes,” Int J Hydrogen Energy, vol. 54, pp. 540–553, Jun. 2023, doi: 10.1016/j.ijhydene.2023.06.122.
dc.relation.referencesbp, “Energy Outlook,” 2024. Accessed: May 12, 2024. [Online]. Available: https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html
dc.relation.referencesC. Tatiana, G. Jaime, M. Luis, R. Targelia, S. Katherine, and Y. Marco, Anuario 2017 Estadísticas Energéticas. 2017. Accessed: Nov. 17, 2023. [Online]. Available: https://www.olade.org/publicaciones/anuario-de-estad%EF%BF%BDsticas-energeticas-2017/
dc.relation.referencesS. A. Rodríguez Blanco, “Propuesta metodológica basada en vigilancia tecnológica para el desarrollo del marco regulatorio de las fuentes no convencionales renovables de energía en Colombia. Estudio de Caso.,” Universidad Nacional de Colombia, Bogotá, 2018.
dc.relation.referencesS. Arango-Aramburo, J. P. Ríos-Ocampo, and E. R. Larsen, “Examining the decreasing share of renewable energy amid growing thermal capacity: The case of South America,” Renewable and Sustainable Energy Reviews, vol. 119, Dec. 2019, doi: 10.1016/j.rser.2019.109648.
dc.relation.referencesT. Tezer, R. Yaman, and G. Yaman, “Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems,” Feb. 08, 2017, Elsevier Ltd. doi: 10.1016/j.rser.2017.01.118.
dc.relation.referencesW. Apichonnabutr and A. Tiwary, “Trade-offs between economic and environmental performance of an autonomous hybrid energy system using micro hydro,” Appl Energy, vol. 226, pp. 891–904, Jun. 2018, doi: 10.1016/j.apenergy.2018.06.012.
dc.relation.referencesInternational Energy Agency (IEA), “Colombia 2023, Energy Policy Review.” Accessed: Jun. 14, 2025. [Online]. Available: https://www.iea.org/reports/colombia-2023
dc.relation.referencesD. Saina, N. Chandramohanan, and S. Parameswara, Prospects for Sustainable Development of Kerala State through the Electricity Sector Policy Interventions. International Conference on Advances in Green Energy, 2014.
dc.relation.referencesUPME, “Plan Energético Nacional 2020-2050,” 2020.
dc.relation.referencesIRENA, Renewable Capacity Statics 2024. 2024. Accessed: Jan. 28, 2025. [Online]. Available: www.irena.org
dc.relation.referencesM. Giraldo, R. Vacca Ramírez, and A. Urrego Quintanilla, “Las Energías Alternativas ¿una oportunidad para Colombia?,” 2018.
dc.relation.referencesNaciones Unidas, “La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una Oportunidad para América Latina y el Caribe,” Santiago, 2018. [Online]. Available: www.issuu.com/publicacionescepal/stacks
dc.relation.referencesM. ’Taborda, L. ’Valencia, D. ’Montoya, “Objetivos de Desarrollo Sostenible en Colombia: Trayectoria, compromisos y contribuciones de la industria,” CIDET. Accessed: Apr. 06, 2025. [Online]. Available: https://cidet.org.co/innovacion/objetivos-de-desarrollo-sostenible-en-colombia-trayectoria-compromisos-y-contribuciones-de-la-industria/#:~:text=Los%20objetivos%20de%20desarrollo%20sostenible%20son%2017%2C%20los%20cuales%20son,%2C%209)%20Industria%2C%20innovaci%C3%B3n%20e
dc.relation.referencesDyner et.al., “Hoja de ruta: electricidad 100 % renovable en Colombia a 2030,” Aug. 2022.
dc.relation.referencesDepartamento Nacional de Planeación (DNP), “7. Energía asequible y no contaminante - La agenda 2030 en Colombia.” Accessed: Sep. 06, 2025. [Online]. Available: https://ods.dnp.gov.co/es/objetivos/energia-asequible-y-no-contaminante
dc.relation.referencesR. F. Colmenares-Quintero, G. P. Maestre-Gongora, L. J. Pacheco-Moreno, N. Rojas, K. E. Stansfield, and J. C. Colmenares-Quintero, “Analysis of the energy service in non-interconnected zones of Colombia using business intelligence,” Cogent Eng, vol. 8, no. 1, Apr. 2021, doi: 10.1080/23311916.2021.1907970.
dc.relation.referencesCorpoamazonia, Gobernación del Amazonas, PNUD, and MADS, “Plan Integral de Gestión de Cambio Climático Territorial del Departamento de Amazonas. Proyecto Amazonía Sostenible para la Paz - PNUD,” Leticia, 2022.
dc.relation.referencesCEPAL. UN, “Ley Orgánica de Ordenamiento Territorial de Colombia,” Observatorio Regional de Planificación para el Desarrollo de América Latina y el Caribe. Accessed: Nov. 09, 2023. [Online]. Available: https://observatorioplanificacion.cepal.org/es/marcos-regulatorios/ley-organica-de-ordenamiento-territorial-de-colombia
dc.relation.referencesParques Nacional Natural (PNN), “Sistema Nacional de Área Protegidas,” Políticas y Marco Normativo. Accessed: Nov. 09, 2023. [Online]. Available: https://old.parquesnacionales.gov.co/portal/es/sistema-nacional-de-areas-protegidas-sinap/politicas-y-marco-normativo/
dc.relation.referencesDepartamento Nacional de Planeación (DPN), “Instalación celdas solares en zonas no interconectadas,” https://proyectostipo.dnp.gov.co/index.php?option=com_k2&view=item&id=136:instalacion-celdas-solares-en-zonas-no-interconectadas&Itemid=213.
dc.relation.referencesA. Haghighat Mamaghani, S. A. Avella Escandon, B. Najafi, A. Shirazi, and F. Rinaldi, “Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia,” Renew Energy, vol. 97, pp. 293–305, Jun. 2016, doi: 10.1016/j.renene.2016.05.086
dc.relation.referencesGobernación del Amazonas, “Plan de Desarrollo Departamental (PDD): Progresando con Equidad,” Leticia, 2020.
dc.relation.referencesSuperservicios, “Evaluación Integral de Prestadores de Eenergía para el Amazonas S.A. ESP.,” BOgotá, Nov. 2018.
dc.relation.referencesAlcaldía de Leticia, “Plan de Desarrollo Municipal (PDM) 2020-2023: Juntos por Una Leticia Mejor,” 2020.
dc.relation.referencesM. P. García Cardona and J. A. Silvara Guerrero, “Energías Alternativas en la Amazonía Colombiana,” Universidad Nacional Abierta y a Distancia - UNAD, 2018.
dc.relation.referencesO. Gómez, “Sustitución Actual de Generación de Energía Eléctrica a Base de Diesel a partir de FNCE para San Andrés Islas.,” Pontificia Universidad Javeriana, 2022.
dc.relation.referencesH. Rodríguez, “Formulación de una Propuesta para una Acción de Mitigación Nacionalmente Apropiada (NAMA) para las Zonas No Interconectadas (ZNI) de Colombia: Informe Final Consolidado Mayo de 2016,” May 2016.
dc.relation.referencesL. C. López Rojas, “Decision methodology for the conceptual design of a sustainable energy supply system for the Leticia campus of Universidad Nacional De Colombia,” Universidad Nacional de Colombia, Bogotá, 2022.
dc.relation.referencesL. N. Cuadrado Castellanos and L. C. Puentes Atuesta, “Establecimiento de la línea base ambiental a partir de la generación de energía eléctrica en el municipio de Leticia en el departamento del Amazonas,” Bogotá, Jan. 2011. [Online]. Available: https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria
dc.relation.referencesE. A. Borja Guasca and Sergio. Gonzalez Castellano, “Análisis del Impacto Ambiental generado por la Construcción de la Planta de Tratamiento de Aguas Residuales en el Municipio de Leticia, Amazonas,” Universidad Militar Nueva Granada, Bogotá, 2022.
dc.relation.referencesUnited Nation (UN), “Report of the World Commission on Environment and Development: Our Common Future,” 1987.
dc.relation.referencesM. Sahabuddin and I. Khan, “Multi-criteria decision analysis methods for energy sector’s sustainability assessment: Robustness analysis through criteria weight change,” Sustainable Energy Technologies and Assessments, vol. 47, Jun. 2021, doi: 10.1016/j.seta.2021.101380.
dc.relation.referencesG. K. Sarangi, A. Mishra, Y. Chang, and F. Taghizadeh-Hesary, “Indian electricity sector, energy security and sustainability: An empirical assessment,” Energy Policy, vol. 135, Sep. 2019, doi: 10.1016/j.enpol.2019.110964.
dc.relation.referencesM. U. Ben-Eli, “Sustainability: definition and five core principles, a systems perspective,” Integrated Research System for Sustainability Science, vol. 13, no. 5, pp. 1337–1343, Sep. 2018, doi: 10.1007/s11625-018-0564-3.
dc.relation.referencesJ. J. Wang, Y. Y. Jing, C. F. Zhang, and J. H. Zhao, “Review on multi-criteria decision analysis aid in sustainable energy decision-making,” Dec. 2009. doi: 10.1016/j.rser.2009.06.021
dc.relation.referencesIniciativa de las Academias - Universidades, “Pilas con el Futuro,” 2022.
dc.relation.referencesA. Martínez, S. Valero, and C. Senabre, “Estado del arte de modelos y metodologías de indicadores utilizados para evaluar la sostenibilidad energética de las naciones,” Técnica Industrial, vol. 323, pp. 30–40, May 2019, doi: 10.23800/10209.
dc.relation.referencesS. Mckenzie, “SOCIAL SUSTAINABILITY: TOWARDS SOME DEFINITIONS,” Magill, 2004. [Online]. Available: http://www.hawkecentre.unisa.edu.au/institute/
dc.relation.referencesA. L. G. Lemence and B. C. McLellan, “Social Sustainability Assessment of Energy Systems: Research Status and Opportunities,” in 2024 8th International Conference on Green Energy and Applications, ICGEA 2024, Kyoto: Institute of Electrical and Electronics Engineers Inc., 2024, pp. 223–228. doi: 10.1109/ICGEA60749.2024.10560748.
dc.relation.referencesW. W. Purwanto and N. Afifah, “Assessing the impact of techno socioeconomic factors on sustainability indicators of microhydro power projects in Indonesia: A comparative study,” Renew Energy, vol. 93, pp. 312–322, Aug. 2016, doi: 10.1016/j.renene.2016.02.071.
dc.relation.referencesE. Ilskog, Rural Electrification Sustainability Indicators-Manual for Field Workers. Estocolmo, 2008. [Online]. Available: www.kth.se
dc.relation.referencesP. Lillo, L. Ferrer-Martí, and M. Juanpera, “Strengthening the sustainability of rural electrification projects: Renewable energy, management models and energy transitions in Peru, Ecuador and Bolivia,” Energy Res Soc Sci, vol. 80, Aug. 2021, doi: 10.1016/j.erss.2021.102222.
dc.relation.referencesE. Ilskog and B. Kjellström, “And then they lived sustainably ever after?-Assessment of rural electrification cases by means of indicators,” Energy Policy, vol. 36, no. 7, pp. 2674–2684, May 2008, doi: 10.1016/j.enpol.2008.03.022.
dc.relation.referencesI. del Guayo, “The evolution of principles of energy law (a review of the content of the Journal of Energy & Natural Resources Law, 1982–2022),” Journal of Energy and Natural Resources Law, vol. 40, no. 1, pp. 43–60, Feb. 2022, doi: 10.1080/02646811.2021.2017650
dc.relation.referencesM. Missimers, K. H. Robèrt, and G. Broman, “A strategic approach to social sustainability - Part 2: a principle-based definition,” J Clean Prod, vol. 140, pp. 42–52, Jan. 2017, doi: 10.1016/j.jclepro.2016.04.059.
dc.relation.referencesM. Zimek and R. J. Baumgartner, “Systemic sustainability assessment: Analyzing environmental and social impacts of actions on sustainable development,” Cleaner Production Letters, vol. 7, Dec. 2024, doi: 10.1016/j.clpl.2024.100064.
dc.relation.referencesF. Fernández-Tirado and C. Parra-López, “DEFINICIÓN Y PRIORIZACIÓN DE CRITERIOS PARA LA EVALUACIÓN DE LA SOSTENIBILIDAD DE BIOCARBURANTES EN ESPAÑA,” 2009
dc.relation.referencesOrganización de las Naciones Unidas, “United nations division for sustainable development. Expert Group Meeting on Indicators of Sustainable Development ,” Dec. 2005.
dc.relation.referencesM. G. Carvalho, N. H. Afgan, and M. Jovanovic, “Sustainability Assessment of Solar Energy Systems,” 2004. Accessed: Aug. 28, 2024. [Online]. Available: http://www.asme.org/about-asme/terms-of-use
dc.relation.referencesH. Meyar-Naimi and S. Vaez-Zadeh, “Sustainability assessment of a power generation system using DSR-HNS framework,” IEEE Transactions on Energy Conversion, vol. 28, no. 2, pp. 327–334, 2013, doi: 10.1109/TEC.2013.2253610.
dc.relation.referencesM. A. Isa et al., “Assessing the sustainable development of micro-hydro power plants in an isolated traditional village west java, indonesia,” Energies (Basel), vol. 14, no. 20, Oct. 2021, doi: 10.3390/en14206456.
dc.relation.referencesB. Atilgan and A. Azapagic, “An integrated life cycle sustainability assessment of electricity generation in Turkey,” Energy Policy, vol. 93, pp. 168–186, Jun. 2016, doi: 10.1016/j.enpol.2016.02.055.
dc.relation.referencesA. Razmjoo, L. Gakenia Kaigutha, M. A. Vaziri Rad, M. Marzband, A. Davarpanah, and M. Denai, “A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area,” Renew Energy, vol. 164, pp. 46–57, Feb. 2021, doi: 10.1016/j.renene.2020.09.042.
dc.relation.referencesISO, “ISO 14040:2006(en) Environmental management — Life cycle assessment — Principles and framework,” 2006. Accessed: Aug. 16, 2025. [Online]. Available: https://www.iso.org/obp/ui/en/#iso:std:37456:en
dc.relation.referencesI. Viole, L. Shen, L. R. Camargo, M. Zeyringer, and S. Sartori, “Sustainable astronomy: A comparative life cycle assessment of off-grid hybrid energy systems to supply large telescopes,” International Journal of Life Cycle Assessment, vol. 29, no. 9, pp. 1706–1726, Sep. 2024, doi: 10.1007/s11367-024-02288-9.
dc.relation.referencesM. Alam et al., “System-level optimisation of hybrid energy powered irrigation system,” Renew Energy, vol. 234, Nov. 2024, doi: 10.1016/j.renene.2024.121158.
dc.relation.referencesN. van Dulmen, C. F. B. Rocha, S. Toboso-Chavero, R. Heijungs, and J. Guinée, “Evaluating the landscape of social assessment methods: integrating the social dimension in sustainability assessment of product value chains,” International Journal of Life Cycle Assessment, 2025, doi: 10.1007/s11367-025-02432-z.
dc.relation.referencesR. K. Lukman, V. Omahne, and D. Krajnc, “Sustainability assessment with integrated circular economy principles: A toy case study,” Sustainability (Switzerland), vol. 13, no. 7, Apr. 2021, doi: 10.3390/su13073856.
dc.relation.referencesY. Vogt Gwerder, P. Marques, L. C. Dias, and F. Freire, “Life beyond the grid: A Life-Cycle Sustainability Assessment of household energy needs,” Appl Energy, vol. 255, Dec. 2019, doi: 10.1016/j.apenergy.2019.113881.
dc.relation.referencesP. UNEP, Towards a Life Cycle Sustainability Assessment: Making informed choices on products. 2011.
dc.relation.referencesP. Zhou, B. W. Ang, and K. L. Poh, “A survey of data envelopment analysis in energy and environmental studies,” Aug. 16, 2008. doi: 10.1016/j.ejor.2007.04.042.
dc.relation.referencesB. Lin and H. Long, “A stochastic frontier analysis of energy efficiency of China’s chemical Industry,” J Clean Prod, vol. 87, no. 1, pp. 235–244, 2015, doi: 10.1016/j.jclepro.2014.08.104.
dc.relation.referencesS. Soltanian et al., “Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review,” Renewable and Sustainable Energy Reviews, vol. 156, Mar. 2022, doi: 10.1016/j.rser.2021.111975.
dc.relation.referencesJ. Antonanzas, M. Arbeloa-Ibero, and J. C. Quinn, “Comparative life cycle assessment of fixed and single axis tracking systems for photovoltaics,” J Clean Prod, vol. 240, Dec. 2019, doi: 10.1016/j.jclepro.2019.118016.
dc.relation.referencesM. T. Siddique, P. Koukaras, D. Ioannidis, and C. Tjortjis, “A Methodology Integrating the Quantitative Assessment of Energy Efficient Operation and Occupant Needs into the Smart Readiness Indicator,” Energies (Basel), vol. 16, no. 19, Oct. 2023, doi: 10.3390/en16197007.
dc.relation.referencesJ. Kitzes, “An introduction to environmentally-extended input-output analysis,” Dec. 01, 2013, MDPI AG. doi: 10.3390/resources2040489.
dc.relation.referencesR. Wüstenhagen, M. Wolsink, and M. J. Bürer, “Social acceptance of renewable energy innovation: An introduction to the concept,” Energy Policy, vol. 35, no. 5, pp. 2683–2691, May 2007, doi: 10.1016/j.enpol.2006.12.001.
dc.relation.referencesW. M. O. OMM, “Impactos de El Niño y los cambios climáticos alcanzaron a América Latina y el Caribe en 2023.” Accessed: Feb. 02, 2025. [Online]. Available: https://wmo.int/news/media-centre/el-nino-and-climate-change-impacts-slam-latin-america-and-caribbean-2023
dc.relation.referencesDPN and PND, “Bases Plan Nacional de Desarrollo 2022-2026: Colombia Potencia Mundial de la Vida.” Accessed: Apr. 13, 2023. [Online]. Available: https://colaboracion.dnp.gov.co/CDT/portalDNP/PND-2023/2023-03-17-bases-plan-nacional-desarrollo-web.pdf https://2022.dnp.gov.co/Paginas/plan-nacional-de-desarrollo-2023-2026.aspx
dc.relation.referencesD. N. de P. DPN, “El Plan Nacional de Desarrollo marca la ruta de la transición energética del país.” Accessed: Feb. 02, 2025. [Online]. Available: https://www.dnp.gov.co/Prensa_/Noticias/Paginas/el-plan-nacional-de-desarrollo-marca-la-ruta-de-la-transicion-energetica-del-pais.aspx
dc.relation.referencesF. Costa and J. Marengo, “Declaración Sobre la Sequía Amazónica del 2023 y sus Consecuencias Imprevistas,” 2023. [Online]. Available: https://www.nature.com/articles/s43247-023-00704-w
dc.relation.referencesInfoamazonia, “Sequía, deforestación y llamas: la Amazonia vive una ‘tormenta perfecta.’” Accessed: Feb. 02, 2025. [Online]. Available: https://infoamazonia.org/es/2024/11/07/sequia-deforestacion-y-llamas-la-amazonia-vive-una-tormenta-perfecta/
dc.relation.referencesIDEAM, “Atlas de radiación solar, ultravioleta y ozono de Colombia,” 2017.
dc.relation.referencesFINDETER, “Estructuración y formulación de la NAMA de Residuos Sólidos Municipales,” 2021.
dc.relation.referencesIpse y Cnm, “Informe Mensual De Telemetría Ipse-Gi-F06: Boletín Mensual De Operación De Localidades Con Telemetría Cnm-Ipse,” 2023.
dc.relation.referencesM. Behzadian, S. Khanmohammadi Otaghsara, M. Yazdani, and J. Ignatius, “A state-of the-art survey of TOPSIS applications,” Dec. 01, 2012, Elsevier Ltd. doi: 10.1016/j.eswa.2012.05.056
dc.relation.referencesV. Anes and A. Abreu, “Adaptive Cluster-Based Normalization for Robust TOPSIS in Multicriteria Decision-Making,” Applied Sciences (Switzerland), vol. 15, no. 7, Apr. 2025, doi: 10.3390/app15074044.
dc.relation.referencesI. Khan and Z. Kabir, “Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment,” Renew Energy, vol. 150, pp. 320–333, May 2020, doi: 10.1016/j.renene.2019.12.132.
dc.relation.referencesM. M. Ahmadi et al., “A multi-approach framework for developing feasible, viable, and sustainable hybrid energy systems in remote areas: The case of Con Dao island in Vietnam,” J Clean Prod, vol. 426, Nov. 2023, doi: 10.1016/j.jclepro.2023.139072.
dc.relation.referencesM. Claudia Roldán, M. Martínez, and R. Peña, “Scenarios for a hierarchical assessment of the global sustainability of electric power plants in México,” 2014, Elsevier Ltd. doi: 10.1016/j.rser.2014.02.007.
dc.relation.referencesN. H. Afgan, M. G. Carvalho, and M. Jovanovic, “Biomass-fired power plant: The sustainability option,” International Journal of Sustainable Energy, vol. 26, no. 4, pp. 179–193, Dec. 2007, doi: 10.1080/14786450701550434.
dc.relation.referencesR. Bhandari, L. G. Saptalena, and W. Kusch, “Sustainability assessment of a micro hydropower plant in Nepal,” Energy Sustain Soc, vol. 8, no. 3, 2018, doi: 10.1186/s13705-018-0147-2.
dc.relation.referencesA. C. Brent and D. E. Rogers, “Renewable rural electrification: Sustainability assessment of mini-hybrid off-grid technological systems in the African context,” Renew Energy, vol. 35, no. 1, pp. 257–265, Jan. 2010, doi: 10.1016/j.renene.2009.03.028.
dc.relation.referencesI. Khan, “Power generation expansion plan and sustainability in a developing country: A multi-criteria decision analysis,” J Clean Prod, vol. 220, pp. 707–720, May 2019, doi: 10.1016/j.jclepro.2019.02.161.
dc.relation.referencesA. Katre and A. Tozzi, “Assessing the sustainability of decentralized renewable energy systems: A comprehensive framework with analytical methods,” Sustainability (Switzerland), vol. 10, no. 4, Apr. 2018, doi: 10.3390/su10041058.
dc.relation.referencesA. Maxim, “Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis,” Energy Policy, vol. 65, pp. 284–297, 2014, doi: 10.1016/j.enpol.2013.09.059.
dc.relation.referencesL. Stamford and A. Azapagic, “Life cycle sustainability assessment of electricity options for the UK,” Int J Energy Res, vol. 36, no. 14, pp. 1263–1290, Nov. 2012, doi: 10.1002/er.2962.
dc.relation.referencesJ. K. Musango, A. C. Brent, B. Amigun, L. Pretorius, and H. Müller, “Technology sustainability assessment of biodiesel development in South Africa: A system dynamics approach,” Energy, vol. 36, no. 12, pp. 6922–6940, 2011, doi: 10.1016/j.energy.2011.09.028.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.blaaTransición energéticaspa
dc.subject.blaaEnergías renovablesspa
dc.subject.blaaAnálisis multicriteriospa
dc.subject.ddc660 - Ingeniería química
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.subject.lembPolítica energéticaspa
dc.subject.lembEnergy policyeng
dc.subject.proposalSostenibilidad energéticaspa
dc.subject.proposalZonas No Interconectadasspa
dc.subject.proposalModelo DPCIspa
dc.subject.proposalRegión Amazónicaspa
dc.titleEvaluación de sostenibilidad de la generación de energía eléctrica para el municipio de Leticiaspa
dc.title.translatedSustainability Assessment of Electric Power Generation for the Municipality of Leticiaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentResponsables políticos
dcterms.audience.professionaldevelopmentConsejeros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterios de Ciencia Tecnología e Innovación - Minciencias

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Evaluación de Sostenibilidad de la Generación de Energía Eléctrica para el Municipio de Leticia_YTM.pdf
Tamaño:
1.63 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: